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Abstract—Digital computation on stochastic bit streams is a non-
conventional type of computation, which uses digital circuits to process
probabilistic inputs. In this paradigm, digital circuits compute on the
probability values. This leads to extremely simple digital implementations
for complex arithmetic operations. The combinational logic-based designs
can be implemented in parallel to realize fast computation by trading off
silicon area with delay. However, it is impossible to implement the current
sequential logic-based designs in parallel to reduce delay, since they need
to compute for a large number of clock cycles to obtain the result.
In this work, we propose a novel design methodology for synthesizing
sequential circuits that compute on stochastic bit streams, which does
not require a long computation delay. We further demonstrate a parallel
implementation based on our design, which provides ultra-fast arithmetic
computation.

I. INTRODUCTION AND BACKGROUND

Emerging nanoscale devices such as carbon nanotubes, molecular
switches, and nanowire crossbars hold the promise for ultra-dense
integration beyond CMOS, since they offer vast numbers of switches
and bits at a small scale [1]–[3]. However, they suffer from high
defect rates and exhibit randomness in their interconnections. Most
researches on how to design circuits with these emerging nanoscale
devices target at overcoming the randomness [1], [4].

A promising but different design strategy is to apply the paradigm
of logical computation on random bits [5]. In this paradigm, ordinary
digital circuits are employed but they operate on sequences of random
bits instead of deterministic values. Indeed, a real value x in the unit
interval [0, 1] is represented by a sequence of random bits, each of
which has probability x of being 1 and probability 1 − x of being
0. These bits can either be serial streaming on a single wire or in
parallel on a bundle of wires. When serially streaming, the signals
are probabilistic in time, as illustrated in Fig. 1(a); when in parallel,
they are probabilistic in space, as illustrated in Fig. 2(a) [6]. With
this type of computation, we can deliberately exploit the randomness
provided by the nanoscale devices instead of overcoming it.

Fig. 1: Stochastic bit stream and computation on stochastic bit streams:
(a) A stochastic bit stream encoding the value x = 5/8; (b) An AND
gate multiplying two values encoded by two input stochastic bit streams.

When computing on sequences of random bits, a digital circuit
essentially transforms input probability values into output probability
values. This type of computation enables complex arithmetic oper-
ations to be implemented with simple circuits. It also has strong
tolerance to bit-flip errors [7]. The major disadvantage of digital
computation on stochastic bit streams is that it is subject to error
due to stochastic variance. Thus, this type of computation is suitable
for applications that do not demand high accuracy, such as image
processing and computer vision.

Both combinational and sequential circuits can be applied to
implement such computation. Basic arithmetic operations such as

Fig. 2: Stochastic bit bundle and computation on stochastic bit bundles:
(a) A stochastic bit bundle encoding the value x = 5/8; (b) A multiplier
consisting of multiple AND gates which multiplies two values encoded
by two stochastic bit bundles.

multiplication and addition can be implemented using combinational
circuits [6], [8]. For example, with the serial stochastic encoding,
multiplication can be implemented by a single AND gate, since the
probability of obtaining a one in the output bit stream equals the
product of the two input probabilities. This is shown in Fig. 1(b). In
this specific example, the inputs and the output are represented by
stochastic bit streams of length 8. Thus, it takes 8 clock cycles for
the circuit to obtain the multiplication result.

Since the outputs of any combinational circuit only depend on its
current inputs, we can transform the serial processing into parallel
processing by copying the combinational circuit multiple times.
Fig. 2(b) shows how we put AND gates in parallel to implement
a multiplier on stochastic bit bundles. In this specific example, the
multiplier takes only 1 clock cycle to get the result, but, as a trade-
off, it needs 8 AND gates. Thus, by choosing between the serial
implementation and the parallel implementation, we are able to trade
off circuit area with computational delay or vice versa.

Besides combinational circuits, sequential circuits have also been
proposed to compute on stochastic bit streams. A sequential circuit
taking stochastic bit streams as inputs can be modeled as a time-
homogeneous Markov chain. We can implement division and square
root function using a counter-based sequential circuit [8], [9]. Re-
cently, Brown and Card proposed a linear finite state machine (FSM)-
based design to implement the sigmoid function and exponentiation
function, which are widely used in artificial neural networks [8]. The
FSM is shown in Fig. 3, which has N states arranged in a line and
is controlled by a single input X . Li et al. generalized the work of
Brown and Card. They proposed a method which can synthesize a
sequential circuit based on the linear FSM to implement an arbitrary
arithmetic function [10].

However, all the sequential logic-based designs proposed so far
are all serial implementations; no parallel implementations have been
proposed yet. The reason is that all the known design techniques are
based on the “steady-state” probability distribution of the underlying
Markov chain, which can only be reached by running the sequential
circuit for a sufficiently large number of clock cycles. No methods
have been proposed to implement a target function using a sequential
design with a significantly reduced number of clock cycles. This



Fig. 3: The state transition diagram of a linear finite state machine
proposed in [8].

limits the application of sequential circuits in implementing com-
putation on random bits, since they can only be used when a long
computational delay is allowed.

In this work, we propose a method to implement target computation
using a sequential circuit that computes on random bits with a limited
number of clock cycles. With the computational delay significantly re-
duced, we can implement the sequential circuit in parallel to trade off
area for delay. Based on this, we propose a parallel architecture with
the sequential circuit to implement arbitrary arithmetic functions. We
compare our parallel stochastic implementation with the conventional
implementations, showing that our system is significantly faster than
the conventional implementations. Although subject to approximation
error and stochastic variance, our system can implement an arbitrary
target function very closely. It is also highly tolerant to bit flip errors.

II. SEQUENTIAL CIRCUITS COMPUTING ON RANDOM BITS

Our sequential design is based on the FSM shown in Fig. 3, which
consists of a set of N states S0, S1, . . . , SN−1 arranged in a linear
form. We assume that this FSM is built with K flip-flops. Thus,
we have N = 2K . The FSM has a single input X , which takes a
stream of random bits as input, with each bit having probability x of
being 1. The state transition of the FSM depends only on the present
state and the present input bit; it does not depend on the past states.
Therefore, it can be modeled as a time-homogeneous Markov chain.
Let Pi(x, t) be the probability that the FSM is at the state Si after
t clock cycles. Based on the property of Markov chain, Pi(x, t) can
be recursively calculated as

Pi(x, t) =

N−1∑
i=0

Pj(x, t− 1)qji (1)

where qji denotes the conditional probability that the next state is
i given the present state being j. With i as a row index and j as
a column index, all the qij’s form an N × N transition matrix Q.
Based on the FSM shown in Fig. 3, the transition matrix is

Q =



1− x x 0
1− x 0 x
0 1− x 0 x

. . .
. . .

. . .
1− x 0 x

0 1− x x

 (2)

Let P (x, t) = [P0(x, t), . . . , PN−1(x, t)] be the row vector
denoting the probability distribution of all the states after t clock
cycles. Given an initial uniform distribution over all the states, i.e.,
P (x, 0) = [ 1

N
, . . . , 1

N
], we can rewrite the recursive relation (1) in

matrix form as

P (x, t) = P (x, t− 1) ·Q = P (x, 0) ·Qt. (3)

Our new design is based on the probability distribution over all the
states of the FSM after a short number of clock cycles, say T clock
cycles. From Eqn. (3), we can see that the probability Pi(x, T ) is a
polynomial on x of degree T . Increasing N increases the number of
terms in the distribution vector P (x, T ), while increasing T increases
the degree of each polynomial Pi(x, T ).

Example 1
Consider an FSM shown in Fig. 3 with N = 4 states. The transition
matrix is

Q =

1− x x 0 0
1− x 0 x 0
0 1− x 0 x
0 0 1− x x


With a uniform initial state distribution, if we choose T = 3,

the probability distribution over all the states after T clock cycles is
P (x, 3) = [P0(x, 3), . . . , P3(x, 3)], with

P0(x, 3) = x2 − 2x+ 1, P1(x, 3) = x3 − 5

2
x2 +

3

2
x,

P2(x, 3) = −x3 +
1

2
x2 +

1

2
x, P3(x, 3) = x2.

III. THE PARALLEL ARCHITECTURE

Our design, shown in Fig 4, is a parallel implementation of
the sequential construct proposed by Li et al., which consists of
an up/down counter and a multiplexer [10]. However, the parallel
version faces one issue of how to make multiple copies of the input
stochastic bit bundles. We introduce a circular shift register to solve
this problem. We also empirically study the optimal design choice
between the parameters T and N .
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Fig. 4: The parallel architecture with sequential circuits. Each up/down
counter implements the FSM shown in Fig. 3 with 8 states.

The Up/Down Counters: Each up/down counter in Fig. 4 is used
to implement the state transition shown in Fig. 3. A stochastic bit
stream X of length T is input into each counter. A bit 0 will decrease
the counter by one and a bit 1 will increase it by one; this corresponds
to the forward and backward state transition shown in Fig. 3. Also
note that if the current state is the first one, a bit 0 will not lead to
any transition. Similarly, a bit 1 will have no influence on the FSM if
the current state is the last one. The output of each up/down counter
is a K-bit binary number, encoding the current state number. The
probability that a counter is at the i-th state after T clock cycles is
given by Pi(x, T ).

The Multiplexers: The output of each up/down counter is con-
nected to the selection input of a multiplexer (MUX). The MUX has
N data inputs D0, . . . , DN−1. Note that the i-th data input of each
multiplexer has probability di to be one. If the output of a counter is
i, then the MUX will choose its i-th data input as its output. Given
that both the data inputs Di to the multiplexer and the state S of an
up/down counter after T clock cycles are random, the probability of
each bit in the output bundle Y to be one can be calculated as

y = P (Y = 1) =

N−1∑
i=0

P (Y = 1|S = Si)P (S = Si).



By our design, P (S = Si) = Pi(x, T ). Further, P (Y = 1|S =
Si) = P (Di = 1) = di. Therefore, the probability of each bit in Y
to be one can be expressed as

y = P (Y = 1) =

N−1∑
i=0

diPi(x, T ), (4)

which is a linear combination on the polynomials
P0(x, T ), . . . , PN−1(x, T ).

By choosing different sets of probabilities di, we can realize
different polynomials on x. Given a target function y = f(x), we can
realize it by finding a set of di’s so that the linear combination (4)
gives the best approximation to f(x). We use a technique proposed
in [10] to find the optimal choice of di.

The Circular Shift Register: The parallel design takes a bundle of
L random bits as inputs. We also require its output to be a bundle of
the same width. Thus, the circuit contains L copies of the sequential
construct, each generating a single output bit. However, since each
counter is driven by a stream of T random bits, we need LT random
bits in total. Thus, we need to reuse each input random bit in the
bundle X for T times. We design a circular shift register shown in
Fig. 4 for this purpose. The shift register consists of L D-flip-flops
(DFFs), each holding one bit of the bundle X . A controller loads X
into the shift register at the beginning and shifts the bits from top
to bottom in the next T clock cycles. In each clock cycle, each bit
stored in a DFF drives the corresponding counter. As a result, the
k-th to the (k+ T − 1)-th bits of the input bundle X drive the k-th
counter.

Fig. 4 also illustrates how our proposed circuit works. Assume
that the circuit starts at clock cycle t0 and the parallel input X
is 1, 0, 0, . . . , 1 as shown in the figure. In the next clock cycle t1,
the sequence stored in the shift register becomes 1, 1, 0, . . . , 0. The
controller controls the shift for 3 clock cycles. Thus, there will be 3
bits sent into each counter. Also note that the initial state of each FSM
is chosen randomly to generate a uniform initial state distribution.
After 3 clock cycles, the output of each counter, which is equal to its
final state number, is input into a multiplexer. Each bit of the output
Y is selected from the corresponding bit of Di. As shown in the
figure, the up/down counters from top to bottom output 4, 1, 2, . . . , 6
in parallel. Given this, the first bit of D4 is selected as the first bit
of Y , the second bit of D1 is selected as the second bit of Y , and
so on. Therefore, the output Y is 1, 1, 0, . . . , 1.

The Optimal Choice between the Parameters T and N : T ,
the stop time, and N , the number of states of the FSM, are two
parameters in our design. Since our design approximates a target
function f(x) through a linear combination of the probability func-
tions P0(x, T ), . . . , PN−1(x, T ) (as given in Eqn. (4)), the choice of
T and N may affect the approximation error. We empirically study
the optimal choices between T and N by performing approximation
on five randomly selected functions. We set N = 8 and vary T
from 4 to 16. We quantify the approximation error using an objective
function given in [10]:

ε =

∫ 1

0

(
f(x)−

N−1∑
i=0

diPi(x, T )

)2

dx (5)

The plot of their approximation errors versus T is shown in Fig 5.
We find that when T = N − 1 the approximation error reaches its
minimum.

IV. EXPERIMENTAL RESULTS

In our experiments, we set the width of the bit bundles as 1024.
The FSM has N = 8 states and the number of clock cycles is T = 7.

A. Accuracy of the Computation
We first study the computation accuracy of our stochastic design,

which is subject to two types of errors: 1) the approximation error
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Fig. 5: The approximation errors versus different choices of T for five
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through the linear combination shown in Eqn. (4), and 2) the error
due to stochastic variance in the random sequences [7]. In stochastic
encoding, although each bit in the sequence has probability p of being
one, the actual number of ones in an observation of N bits is not
guaranteed to be Np. It could be any integer in the range [0, N ].
This kind of error is due to the stochastic variance in generating a
sequence of random bits.

We randomly generate 50 polynomials which map the unit interval
into the unit interval as our target functions. We restrict the degree
of these polynomials to 7, since for approximating polynomials with
higher degrees, the FSM with more than 8 states should be used. For
each polynomial, we choose ten evaluation points x = 0, 0.1, . . . , 0.9
and compare the ideal result, the approximation by the linear com-
bination (4), and the stochastic simulation results. The stochastic
simulation simulates the real operation condition of the hardware
and thus contains the error due to stochastic variance.

As a result, the average absolute error between the approximation
and the ideal value is 2.6×10−9. The average absolute error between
the stochastic simulation result and the ideal value is 1.25 × 10−2.
We can see that the average error due to the approximation by the
linear combination is very small. However, there is a large difference
between the stochastic simulation result and the ideal value, which
is mainly caused by the error due to stochastic variance. We can
decrease this error by making more copies of the basic circuit to
increase the width of the bit bundles. However, for many applications
that do not demand high accuracy, such as image processing and
computer vision, this scale of error is still acceptable.

B. Delay Comparison

We compare the delay of our stochastic design to that of the
conventional design based on binary radix. We consider computation
of polynomials. We apply the approach used in [11] to evaluate the
conventional design. Suppose that the polynomial is of degree n and
the precision of the computation corresponds to M binary digits.
Then, the delay of the conventional design is equal to (12M − 11)n
basic gate delays. In contrast, to compute a polynomial of degree
n, the delay of our parallel stochastic implementation is equal to
(6n + 2) gate delays. For precision M = 10, a comparison of the
delay of the conventional design with the delay of our proposed
stochastic design is shown in Table I. From the table, we can see
that our parallel implementation achieves a huge speedup over the
conventional design.

One thing to mention is that in order to achieve the same precision,
our stochastic design requires 2M = 1024 copies of the basic
sequential construct. However, the design of the basic circuit is
much smaller than the conventional designs using binary adders and
multipliers. Given these facts, we estimate that the area increase of
our design is less than two orders of magnitude than the conventional
design. Hence, our proposed method can be viewed as trading off
circuit area for speed.



TABLE I: Delay comparison of the conventional implementation and the
proposed parallel stochastic implementation of polynomial arithmetic. n
refers to the degree of a polynomial. The precision of the computation
corresponds to 10 binary digits.

n conv. delay stoch. delay stoch. delay/conv. delay
5 545 32 0.0587
6 654 38 0.0581
7 763 44 0.0577
8 872 50 0.0573
9 981 56 0.0571

C. Comparison of Circuit Performance on Noisy Input Data
We compare the performance of the conventional implementation

and the FSM-based stochastic implementation on polynomial calcu-
lations when the input data are corrupted with noise. The width of the
bit bundles of our stochastic implementation is 1024. To achieve the
same precision, the conventional implementation operates on binary
numbers of 10 bits.

We experiment on the same set of 50 polynomials used in
Section IV-A. We set the error ratio of the input data to be
0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.15 and 0.2, as measured by the
fraction of random bit flips that occur. We obtain the absolute output
errors of each implementation for all the polynomials and then
average them. Fig. 6 compares the average absolute output errors
for the two implementations.

Fig. 6: Absolute output errors of the conventional implementation and
the stochastic implementation for different error rates on the input data.

From Fig. 6, we can see that when the error rate is small, the
stochastic implementation has larger output errors than the conven-
tional implementation. However, the stochastic implementation is
more tolerant to larger input errors than the conventional implemen-
tation.

We further analyze the distributions on the absolute output errors
for the two implementations when the input error rate is 0.05, which
leads to almost the same average output errors for the two different
implementations. We plot the distribution of the absolute output errors
for the two implementations in Fig. 7. From the figure, we can
see that the stochastic implementation never generates output errors
larger than 0.1, while the conventional implementation could generate
error as large as 0.5. The reason for this is because the stochastic
encoding is a uniform encoding. Thus, a single bit flip occurred any
where does not have a significant influence on the encoded value.
In contrast, conventional implementations operate on binary radix
encoded values. Thus, if a bit flip occurs at the most significant bit,
it will cause a large change to the value.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose a new method to design sequential
circuits computing on stochastic bit streams to implement arithmetic
computation. It synthesizes a target function based on the probability

Fig. 7: The distributions of the absolute output errors for the conventional
implementation and the stochastic implementation under input error rate
of 0.05.

distribution over the FSM states after a limited number of clock cy-
cles. With this, the delay of a sequential circuit computing on stochas-
tic bit streams is greatly reduced. Therefore, it can be implemented
in parallel to trade off the circuit area with the computation delay.
We further demonstrate a parallel implementation of a linear FSM.
Compared with conventional designs using binary radix encoding,
our design is much faster. Also, our design is more fault tolerant
to bit flip errors than conventional designs. In this work, we focus
on a special linear FSM. However, the synthesis method and the
architecture can also be applied to other FSMs. In our future work,
we will study some other complex FSMs to find good choices that
are more powerful in realizing different target functions.
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