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Abstract—Conventional precise adders need long delay and large power
consumption to obtain accurate results. However, in recognition of the error
tolerance of some applications such as multimedia processing and machine
learning, a few recent works proposed approximate adders that generate
inaccurate results occasionally to reduce the delay and power consumption.
However, existing approximate adders rarely control the relative error and
the potential sign error of the calculation results. In this paper, we propose
a novel approximate adder that exploits the generate signals for carry
speculation. Furthermore, we introduce a very low-cost error reduction
module to effectively control the maximal relative error and a low-overhead
sign correction module to fix the sign errors. Compared to the conventional
adders, our adder is up to 4.3x faster and saves 47% power for a 32-
bit addition. Compared to the existing approximate adders, our adder
significantly reduces the maximal relative error and ensures correct sign
calculation with comparable area, delay, and power consumption.

I. INTRODUCTION

The continued scaling of CMOS technology causes the power con-
sumption on a chip to continuously increase, which becomes a major
bottleneck in sustaining the Moore’s law. Thus, energy-efficiency has
become a critical concern in designing VLSI circuits [1]. At the same
time, with the prevalence of mobile computing, there is an increasing
demand for signal processing, multimedia, machine learning, and pattern
recognition applications [1]–[8]. One feature of these applications is that
they can tolerate some error in the computation results. For example,
since a small amount of error embedded in images cannot be caught
by human beings, we could allow an image processing application to
occasionally produce an incorrect value for a pixel. The relaxation of
the accuracy requirement for these applications potentially enlarges the
design space, which may contain some solutions with smaller delay
and power consumption than those targeted for accurate computation.
This leads to a new design paradigm, known as approximate computing,
which deliberately sacrifices a small amount of accuracy to achieve
improvement in performance and power.

Since adders are a commonly-used hardware in those error-tolerant ap-
plications, in the previous works, people have proposed several different
kinds of approximate adders. The Low-part-OR Adder (LOA) proposed
in [9] applies the precise adder to the leading bits in the addends, while
only uses a simple OR gate to obtain the sum bits for the trailing bits.
This method, however, has the drawback of high error rate. Also, if the
bit length of the accurate part is long, the time delay is still very large.
Furthermore, the relative error will be large when doing addition on
small values. Similarly, Error-Tolerant Adder I (ETAI) proposed in [3]
utilizes a kind of modified XOR gate to compute the less significant
part in the sum, which has the same drawbacks as LOA. In [10], the
author proposed a k-bit lookĺCahead approximate adder to limit the carry
propagate chain for each bit in a segment of length k, in order to reduce
the critical path. However, the area cost of this adder is large due to the
fact that the computation of each bit needs an individual carry generator.
In [4], the authors proposed an Accuracy-Configurable Adder (ACA).
However, the sub-adders used in it results in a large area cost and power
consumption. The ETAII [5], ETAIV [11], Variable Latency Carry Select
Addition (VLCSA-1) [6] and Carry Skip Approximate Adder (CSA) [7]
use the segmentation method to truncate the carry propagation chain.
The computation of each segment is based on the carry signal speculated
using the bits in the lower segment. This method could effectively reduce
the critical path delay, but, at the same time, it could introduce large
relative error for the computation results, which may not be proper for
some applications. Furthermore, all of the approximate adders are subject
to sign calculation error when doing signed addition for 2’s complement
numbers. Although after introducing an error reduction module, the

relative error of CSA can be controlled, it still fails to solve the sign
problem. Sign correction modules are introduced in VLSCA-2 [6] and
the adder proposed in [12].However, both of them require an additional
clock cycle and accurate adder to fix the sign error, which increases the
delay and power consumption.

In this paper, we propose a novel approximate adder with an effective
carry speculating method by exploiting generate signals. The segmenta-
tion of carry chain can significantly reduce the carry propagation delay,
increasing the speed of computation. We further introduce a low-cost
error reduction module into the adder, which significantly reduces the
maximal relative error. We provide a rigorous analysis of two error
measures, the error rate and the maximal relative error, of the proposed
adder containing the error reduction module, which shows that both
error measures are very low. Furthermore, we add a low-overhead sign
correction module into the adder, which eliminates the potential sign
error in 2’s complement signed addition without the need of an additional
clock cycle. Compared to the conventional adders, our adder is up to
4.3x faster and saves 47% power for a 32-bit addition. Compared to the
existing approximate adders, our adder significantly reduces the maximal
relative error and ensures correct sign calculation with comparable area,
delay, and power consumption.

The remainder of this paper is organized as follows. In Section II,
we introduce some background on conventional adders. In Section III,
we describe our proposed approximate adder and give the error analysis.
In Section IV, we present an enhanced adder with the sign correction.
In Section V, we give the comparison of our proposed adder with two
conventional adders and six other approximate adders. The conclusion
is drawn in Section VI.

II. BACKGROUND ON CONVENTIONAL ADDER

We discuss the background on the conventional adder in this section.
We use the following notations in the paper. A and B represent the two
inputs of the adder. Cin represents the carry-in bit of the adder. ai and
bi represent the i-th least significant bits of A and B, respectively. pi,
gi and ki represent the propagate, generate, and kill signal at the i-th bit
position, respectively. They are defined as

pi = ai ⊕ bi, gi = ai · bi, ki = āi · b̄i,

where si and ci represent the sum bit and the carry-out bit at the i-th
bit position, respectively. They are given by

s0 = p0 ⊕ Cin, c0 = g0 + p0 · Cin

si = pi ⊕ Ci−1, ci = g0 + p0 · Ci−1, i > 0.
(1)

If gi = 1, then ci = 1, which indicates the “generate” of the carry-out.
If ki = 1, then ci = 0, which indicates the “kill” of the carry-out. If
pi = 1, then ci = ci−1, which indicates the “propagate” of the carry-
out from the (i − 1)-th position to the i-th position. Applying Eq. (1)
recursively, we can represent the carry-out signal ci as

ci = gi + gi−1 · pi + · · ·+ g0 ·
i∏

j=1

pj + Cin ·
i∏

j=0

pj .

There are a number of different ways to realize an adder, among which
the simplest form is the ripple carry adder (RCA). Fig. 1(a) shows the
block diagram of one variation of RCA, where the n-bit adder is divided
into several blocks, each with k bits. Each block is composed of a k-bit
propagate/generate (P/G) signal generator, a k-bit carry generator, and
a k-bit sum generator. The number of blocks is m =

⌈
n
k

⌉
. We order

the rightmost block as block 0 and the leftmost block as block m-1.



In the figure, Ai
k−1:0 and Bi

k−1:0 represent the two k-bit inputs of the
i-th block; pik−1:0 and gik−1:0 represent the propagate and the generate
signals of the i-th block, respectively, which are produced by the P/G
generators; Si

k−1:0 represents the partial sum of the i-th block, which
is produced by the sum generator; Ci

o represents the carry-out of the
i-th block, which is the output of the carry generator. Ci

o feeds into the
(i+1)-th carry generator and sum generator as the carry-in signal. We
further use ai

j , bij , pij , gij , sij and cij to represent the first input bit, the
second input bit, the propagate signal, the generate signal, the sum bit,
and the carry-out bit, respectively, at the j-th position in the i-th block.
In each segment, sij and cij are calculated based on the propagate and
generate signals of the current block together with the carry-in Ci−1

o as
follows

Ci
o = gik−1 + gik−2p

i
k + · · ·+ gi0 ·

k−1∏
x=1

pix + Ci−1
o ·

k−1∏
x=0

pix. (2)

The sum bits sij is calculated in the sum generator as follows

si0 = Ci−1
o ⊕ pi0

sij = cij−1 ⊕ pij , j = 1, . . . , k − 1

ci0 = gi0 + pi0 · Ci−1
o

cij = gij + pij · ci(j−1), j = 1, . . . , k − 2,

where cij is the internal carry signals in the sum generator. We further
define

ppi =

k−1∏
x=0

pix. (3)

From the above equation, it can be seen that Ci
o depends on Ci−1

o if and
only if ppi=1. When ppi=0, Ci

o is independent of Ci−1
o .

III. PROPOSED APPROXIMATE ADDER

A. Approximate Adder Architecture
The longest critical path for the adder shown in Fig. 1(a) appears when

the propagates at all the bit positions equal 1, which leads to cn−1 = Cin.
Thus, to reduce critical path delay, one effective method is to reduce the
length of the carry propagation chain.

Fig. 1(b) shows the block diagram of the proposed approximate adder.
It is based on the RCA shown in Fig. 1(a). To reduce the potential
long carry chain, we introduce a carry speculation strategy in the carry
generator: we use the generate signal of the most significant bit in the
previous block as the carry-in signal of the carry generator, i.e., gi−1

k−1 =

ai−1
k−1 ·b

i−1
k−1 is used as the carry-in signal of the carry generator in block i.

Thus, the output of the carry generator in block i is now an approximate
to the correct carry-out, which is denoted as Ci

apx,o

Ci
apx,o = gik−1 + · · ·+ gi0 ·

k−1∏
x=1

pix + gi−1
k−1 ·

k−1∏
x=0

pix. (4)

As shown in Fig. 1(b), the approximate carry-out is used as the carry-
in signal to the sum generator. Thus, the sum bits at block i are also an
approximate result, which we denote as Si

apx,k−1:0.
The length of the longest carry propagate path is thus reduced from

n to 2k, which significantly reduces the circuit delay. However, Ci
apx,o

is just a speculated carry-out signal of the i-th block, which could be
wrong.

We first study when the speculated carry-out is different from the cor-
rect carry-out. Clearly, this happens when the following two conditions
both hold:
1. gi−1

k−1 6= Ci−1
o , i.e., the carry-in is different from the correct carry-in.

2. ppi (shown in Eq. (3)) equals 1, which results in the wrong carry-in
to propagate to the carry-out.

Note that when the generate signal gi−1
k−1 = 1 , the correct carry-in

signal Ci−1
o must be 1. Thus, the first condition does not hold when

gi−1
k−1 = 1 . As a result, a necessary condition that the speculated carry-

out could be wrong is that ppi = 1 and gi−1
k−1 = 0. Furthermore, if the

condition happens, the maximal relative error could be large. Indeed,
consider a special case where the above necessary condition happens at
the leftmost block, i.e., ppm−1 = 1 and gm−2

k−1 = 0. We further assume
that at the same time, Cm−2

apx,o = 1. The calculation result of the adder
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Fig. 1: Block diagram of adders: (a) Conventional adder. (b) Proposed
approximate adder without error reduction. (c) Proposed approximate adder
with error reduction.

is illustrated in Fig. 2 with i = m − 1. On the one hand, according to
Eq. (4), we have Cm−1

apx,o = 0. Since the carry-in signal of calculating sum
bits is Cm−2

apx,o = 1 , we have Sm−1
apx,j = 0, for all j = 0, · · · , k − 1. On

the other hand, based on Eq. (2), we can show that Cm−2
o = 1, which

means that the correct carry-in to the (m − 1)-th block is Cm−2
o = 1.

This results the correct carry-out and the sum bits at block (m − 1) to
be Cm−1

o = 1 and sm−1
j = 0, for all j = 0, . . . , k − 1.

In summary, the approximate sum begins with 00. . . 0, while the
correct sum should begin with 10. . . 0. This could lead to a relative error
up to 100%. Similar large relative error can be obtained for cases where
ppi = 1, gi−1

k−1 = 0, Ci−1
apx,o = 1 and all the input bits to the blocks

to the left of the block i are all 0. To reduce the large relative error,
we further introduce an error reduction module into the approximate
adder shown in Fig. 1(b). The modified approximate adder is shown in
Fig. 1(c), where we only insert a 2-to-1 multiplexor between each pair of
adjacent blocks. The two inputs of the multiplexor are the generate signal
of the most significant bit in the previous block, gi−1

k−1, and the carry-out
signal produced by the carry generator in the previous block, Ci−1

apx,o.
The selection signal is ppi =

∏k−1
j=0 pij . Such a signal has already been



generated in the carry generator of block i (as shown in Eq. (4)), so we
do not need to include additional circuits to obtain it. The output signal
of the multiplexor is used as the carry-in signal of the sum generator
of the current block, which is denoted as Ci

in. This improvement comes
from the idea of lowering the bit position where error occurs, which is
achieved by forcing some bits in lower positions to be wrong rather than
letting one bit in higher position to be incorrect.

As can be seen, this modification causes nearly no overhead to the
original approximate adder. In the following subsections, we will first
demonstrate that the proposed adder has a very small relative error. Then,
we will show that another error metric, error rate, of it is also small.
Finally, we will analyze its delay.
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Fig. 2: An example of addition error due to wrong carry speculation:
(a) without error reduction (b) with error reduction.
B. Relative Error Analysis

In this section, we will show the effect of the modification in reducing
the relative error, which is defined as

Ere =

∣∣∣∣S − Sapx

S

∣∣∣∣ ,
where Ere is the relative error and S and Sapx are the correct and
approximate outputs for the given inputs, respectively.

First, consider the case we introduced in the previous section which
results in a large relative error for the original approximate adder, i.e.,
the case where ppm−1 = 1, gm−2

k−1 = 0, and Cm−2
apx,o = 1. The calculation

result of the modified adder is shown in Fig. 2(b). Since ppm−1 = 1
and gm−2

k−1 = 0 , the carry-in to the sum generator is also 0 due to the
multiplexor, which causes sm−1

apx,j = 1, for all j = 0, . . . , k − 1.
Furthermore, Cm−1

apx,o = 0. Thus, the approximate sum begins with
011. . . 1. This is very close to the correct sum, which begins with 100. . . 0.
The relative error is significantly reduced, i.e., from up to 100% to 1

2k
.

Indeed, we can show that not only for the above special cases, but
also for all possible cases, our design can effectively limit the relative
error to be no more than 1

2k
, where k is the bit length of each block.

To show this, we will partition the m blocks into several groups.
Suppose that a group is composed of blocks i + s, . . . , i. Then, it has
the following property: there exits a t ∈ [0, s− 1] such that ppi+x = 0
for any t + 1 ≤ x ≤ s and ppi+x = 1 for any 0 ≤ x ≤ t. Not that the
leftmost group may consist of block(s) with all ppi equal to 1, and the
rightmost group may consist of block(s) with all ppi equal to 0. Fig. 3
gives an example of 8 blocks divided into 4 groups.

Block: 

pp: 

Group: 

7     6     5     4     3     2     1     0 

1     0     1     0     0     1     1     0   

IIIIIIIV

Fig. 3: An illustration of groups of bit blocks, used in relative error analysis.
Consider a group in the middle, which starts at block i+s and ends at

block i. By the definition of a group, we have ppi+s+1 = 1, ppi+s = 0,
ppi = 1 and ppi−1 = 0. Also assume ppi+x = 0 for t+ 1 ≤ x ≤ s and
ppi+x = 1 for 0 ≤ x ≤ t, where 0 ≤ t ≤ s−1. Then, the carry-in to the
sum generator at block i is Ci

apx,in = gi−1
k−1 and the carry-in to the carry

generator at block i is also gi−1
k−1. Assume the approximate carry-out of

block i − 1 is Ci−1
apx,o. Since ppi−1 = 0, Ci−1

apx,o = Ci−1
o , which is the

accurate carry-out. Consider the following three cases:

1) The case where Ci−1
o = gi−1

k−1 = 0. It is not hard to see that
Ci+x

apx,in = gi+x−1
k−1 = Ci+x−1

o = 0 for all 0 ≤ x ≤ t. For t <

x ≤ s, since ppi+x = 0, we have Ci+x
apx,in = Ci+x−1

apx,o = Ci+x−1
o .

Therefore, no error occurs in the sum for this group.
2) The case where Ci−1

o = 1 and gi−1
k−1 = 0. Then, the carry-in fails to

be propagated into the group. For any 0 ≤ x ≤ t, the approximate
sum bits of block i + x will be 11 . . . 1, while the accurate ones
should be 00 . . . 0. The carry-in signal of block i + t + 1 will be
Ci+t+1

apx,in = Ci+t
apx,o = 0, while the accurate value should be 1. Thus,

the sum at block i+t+1 will be smaller than the accurate result by
1. No any other error occurs in block i + x, t < x ≤ s, since their
pp signals are 0. Thus, the error of sum bit will be the difference
between 100. . . 0 (in total (t+1)·k 0s) and 011. . . 1 (in total (t+1)·k
1s), which equals 1 at the lowest bit position of the group, i.e., bit
position i · k. Suppose the sum result of block i + x, t < x ≤ s is
S. Then the relative error of this group is:

Ere =
1 · 2i·k

(S + 2(t+1)·k) · 2i·k =
1

S + 2(t+1)·k , t ≥ 0.

The maximal relative error for the group in this case is 1
2k

, which
occurs when S = 0 and t = 0.

3) The case where Ci−1
o = 1 and gi−1

k−1 = 1. Then, we have Ci
apx,in =

gi−1
k−1 = Ci−1

o = 1. The sum bits of block i are correct, which are
(00. . . 0), and the approximate carry-out signal is also correct which
is Ci

apx,o = Ci
o = 1. If t = 0, then ppi+x = 0 for any 1 ≤ x ≤ s.

Thus, the sum bits of these blocks will always be correct, since
Ci+x

apx,in = Ci+x−1
apx,o = Ci+x−1

o . Therefore, when t = 0, no error
occurs. However if t > 0, then the other blocks in this group will
face the situation as in Case 2. The difference between approximate
and accurate result will be “1” at bit position (i + 1) · k. Then the
relative error of such group will be

Ere =
1 · 2(i+1)·k

(S + 2(t+1)·k) · 2i·k =
2k

S + 2(t+1)·k , t > 0.

The maximal relative error for this case is also 1
2k

, which occurs
when S = 0 and t = 1.

Besides, it can be shown that the relative error for the first and the
last group are also bounded by 1

2k
. Thus, the maximal relative error of

our proposed approximate adder with error reduction is 1
2k

.

C. Error Rate Analysis

Besides relative error, another commonly-used error metric is error
rate, which is the ratio of incorrect outputs out of a total number of
inputs [1]. We analyze the error rate of our proposed adder in this section.
We assume that the inputs are uniformly distributed.

Instead of directly calculating the error rate Pr(E), we calculate the
probability of getting a correct result, Pr(C), from which we can obtain
Pr(E) = 1− Pr(C). First, we define the following three events:



1) Ax: the approximate carry-out of block x, Cx
apx,o, is correct, and

the approximate sums of the block x and all the less significant
blocks are correct, i.e., Si

apx,k−1:0, 0 ≤ i ≤ x are correct.
2) Bx: gxk−1 = 0, the correct carry-out Cx

o = 0, and the approximate
sums of the block x and all the less significant blocks are correct.

3) Cx: gxk−1 = 1, the correct carry-out Cx
o = 1, and the approximate

sums of the block x and all the less significant blocks are correct.
Let Pr (Ax) = ax, Pr (Bx) = bx and Pr (Cx) = cx. Clearly, the

result of the approximate adder is correct if and only if Am−1 happens.
Thus, Pr (C) = Pr (Am−1).

First, consider when the event Ax happens. We divide the event into
two cases, based on whether ppx = 0 or 1, since this determines what
the carry-in to the sum generator of block x is.

1) If ppx = 0, then Cx
apx,o is equal to the correct carry-out Cx

o , since
the carry-out does not depend on the carry-in to the current block.
Moreover, since Cx−1

apx,o is chosen to be the carry-in to the sum
generator due to ppx = 0, the correctness of the partial sum at
block x requires the correctness of Cx−1

apx,o. Thus, the event Ax

occurs if and only if the event Ax−1 occurs.
2) If ppx = 1, then based on Eq. (4), Cx

apx,o = gx−1
k−1 . At the

same time, in the accurate adder, we have Cx
o = Cx−1

o . Thus,
the correctness of Cx

apx,o requires gx−1
k−1 to be the same as the

correct carry-out of block (x-1), i.e., gx−1
k−1 = Cx−1

o = 0 or
gx−1
k−1 = Cx−1

o = 1. Thus, the event Ax occurs if and only if
either the event Bx−1 or the event Cx−1 occurs.Thus, we have

ax = Pr (ppx = 0) · ax−1 + Pr (ppx = 1) · (bx−1 + cx−1) . (5)

Now consider when the event Bx happens. We still divide the event
into two cases, based on whether ppx = 0 or 1.

1) If ppx = 0, then Cx−1
apx,o is chosen to be the carry-in to the sum gen-

erator. To ensure the partial sum at block x to be correct, we require
Cx−1

apx,o to be the correct carry-out of the block (x-1). Furthermore,
we require that the approximate sums of all the less significant
blocks are correct. Thus, the event Ax−1 must occur. What’s more,
Cx

o = 0 and ppx = 0 mean that there is a kill signal in block x
which propagates all the way to the most significant bit position
of block x. Thus, we require one of the following events to occur:
kx
k−1 = 1, pxk−1 = kx

k−2 = 1, . . . , or pxk−1 = · · · = px1 = kx
0 = 1.

Also, as long as one of the above events happens, it guarantees that
gxk−1 = 0.

2) If ppx = 1, then of course gxk−1 = 0. Due to the carry propagate,
we have Cx−1

o = Cx
o = 0. Further, since the carry-in to block

x is gx−1
k−1 and the approximate partial sum at block x is correct,

we require gx−1
k−1 to be the same as the true carry-in Cx−1

o . Thus,
gx−1
k−1 = Cx−1

o = 0. Thus, Bx happens if and only if Bx−1 happens.
So we have
bx =[Pr(kxk−1 = 1) + · · ·+ Pr(pxk−1 = · · · = px1 = kx0 = 1)] · ax−1

+ Pr(ppx = 1) · bx−1.
(6)

Finally, we consider the occurrence of the event Cx. Under this event,
we require gxk−1 = 1. Once gxk−1 = 1, Cx

o = 1 is always guaranteed.
Furthermore, ppx can only be 0. Thus, the carry-in to the sum generator
in block x is always chosen to be Cx−1

apx,o. To ensure the partial sum at
block x to be correct, we require Cx−1

apx,o to be the correct carry-out of
the block (x− 1). Also, we require that the approximate sums of all the
less significant blocks are correct. Thus, the event A(x− 1) must occur.
As a consequence, we have

cx = Pr (gxk−1 = 1) · ax−1. (7)

Note that Eq. (5), (6) and (7) give us a recursive way to obtain ax,
bx and cx. To eventually obtain these values, we only need to get the
values a0, b0 and c0, corresponding to the base case.

To get the base case values, we analyze the least significant block,
block 0. For this block, the carry-in of both the carry generator and sum
generator are both the input Cin, so the carry-out signal, C0

o , given by
the carry generator, and the partial sum, S0

apx,k−1:0, given by the sum
generator, are always correct. It means that the event A0 always happens,
i.e., a0 = 1.

Clearly, the event B0 happens if and only if g0k−1 = 0 and C0
o = 0

both happen. This indicates one of the following events happens: k0
k−1 =

1, p0k−1 = k0
k−2 = 1, . . . ,p0k−1 = · · · = p01 = k0

0 = 1, or p0k−1 = · · · =

p00 = 1 and Cin = 0. Thus, we have

b0 =Pr(k0
k−1 = 1) + · · ·+ Pr(p0k−1 = · · · = p01 = k0

0 = 1)

+ Pr(p0k−1 = · · · = p00 = 1) · Pr(Cin = 0) =
1

2
.

The event C0 happens if and only if g0k−1 = 1 and C0
o = 1

both happen. Since g0k−1 = 1 guarantees that C0
o = 1, we have

c0 = Pr
(
g0k−1 = 1

)
= 1

4
. Thus, we obtain the full set of recursive

equations:

a0 = 1, b0 =
1

2
, c0 =

1

4
;

ax =

(
1− 1

2k

)
· ax−1 +

1

2k
· (bx−1 + cx−1) , 0 < x < m;

bx =
1

2

(
1− 1

2k

)
· ax−1 +

1

2k
· bx−1, 0 < x < m;

cx =
1

4
· ax−1, 0 < x < m.

Finally, we can get the error rate as

Pr (E) = 1− Pr (C) = 1− am−1.

Fig. 4 shows some error rates of the proposed adder with different bit
length and different block size. For the block size of 8 bits, the error rate
will be in the magnitude between about 10−1 and 10−3; for the block
size of 16 bits, the error rate will be in the magnitude of no more than
10−4. It shows that the error rate of our design is quite small.

Fig. 4: Error rates of adders with different bit length and different block size.

D. Delay Analysis
We analyze the delay of the proposed approximate adder in this sec-

tion. The addition operation works as follows. As shown in Fig. 1(c), the
propagate signals and generate signals are first created by the P/G genera-
tors, and delivered to the carry generators and the sum generators. Next,
all the carry generators in each blocks will simultaneously create the
carry-out signals

(
· · · , Ci+1

apx,o, C
i
apx,o, C

i−1
apx,o, · · ·

)
with the speculated

carry-in signal as
(
· · · , gik−1, g

i−1
k−1, g

i−2
k−1, · · ·

)
. Then, the carry-in signals

to the sum generators (· · · , Ci+1
in , Ci

in, C
i−1
in , · · · ) are simultaneously

chosen from the two sets of signals
(
· · · , Ci

apx,o, C
i−1
apx,o, C

i−2
apx,o, · · ·

)
and (· · · , gik−1, g

i−1
k−1, g

i−2
k−1, · · · ) by the multiplexors based on

the propagate chain detective signals (· · · , ppi+1, ppi, ppi−1, · · · )
obtained from the carry generators. Finally, the sum genera-
tors take the carry-in signals to compute the approximate sums
(· · · , Si+1

apx,k−1:0, S
i
apx,k−1:0, S

i−1
apx,k−1:0, · · · ). Thus, the critical path

delay of our proposed approximate adder can be calculated as

tapx = tPG + tCG + tmux + tSG,

where tPG, tCG, tmux and tSG are the delays of P/G generator, carry
generator, multiplexor, and sum generator. Note that the sum generator
could be implemented by any kind of conventional adders like RCA
or carry-lookahead adder (CLA). In our implementation, we use RCA.
Then, the asymptotic upper bounds for these delay values are

tPG = O(1), tCG = O(log k), tmux = O(1), tSG = O(k),

tapx = O(k).



As demonstrated by our experimental results, when k is small the
delay is also small. Then, using RCA to realize the sum generator has
the advantage of small area and low power consumption. However, when
k is large and we want to further reduce the delay, we can use CLA for
the sum generator. Then both tSG and tapx reduce to O (log k).

IV. SIGN CORRECTION MODULE

The approximate adder introduced in the previous section is targeted
for unsigned addition where the inputs are assumed to be two unsigned
numbers. However, there exist many situations where 2’s complement
signed additions are required. Most existing approximate adders are not
targeted for signed addition, and hence could generate incorrect sign bit
when applied for signed additions, leading to catastrophic consequences.
In our design, based on the proposed unsigned approximate adder, we
further proposed a low-overhead sign correction module to solve the
potential sign error in the approximate addition. Our basic idea of fixing
the sign error in 2’s complement signed addition is to detect the situation
when sign error occurs and then correct the leading bits that are wrong.

Accurate 
signed reuslt

P/G Generator
(m-1) 

Carry Generator
(m-1)

Sum Generator
(m-1)

block m-1=1

Am-1
3:0    0101 

Bm-1
3:0    1010  

gm-1
3:0    0000

pm-1
3:0    1111

P/G Generator
(m-2) 

Carry Generator
(m-2)

Sum Generator
(m-2)

block m-2=0

Am-2
3:0    0100 

Bm-2
3:0    1100  

gm-2
3:0    0100

pm-2
3:0    1000

Apx Sapx
m-1

3:0   1111 Sapx
m-2

3:0   0000 

0000 0000

gm-2
3

1 0

 0 

 1 

Cm-2apx,o

 0 

ppm-1

 1 

Ciapx,in

Fig. 5: Case of approximate addition with potential sign error.

Fig. 5 shows an example where sign error occurs when we perform
a 2’s complement signed addition using the approximate adder. With
m = 2, the two signed inputs, represented as decimal numbers, are
84 and -84. The correct sum should be 0. However, the result by our
approximate adder is -16, which is quite different from the correct one.

We first study what kind of conditions will cause the incorrect sign
calculation for the adder shown in Fig. 1(c). In 2’s complement signed
addition, the sign bit is the most significant bit of the sum.

One necessary condition is that the propagate signals in the most
significant block (i.e., block m− 1) should be all true, i.e., ppm−1 = 1.
Otherwise, ppm−1 = 0, which indicates either pm−1

k−1 = 0 or∏k−2
j=0 pm−1

j = 0. If the first case where pm−1
k−1 = 0 occurs, then the

sign bit only depends on the two most significant bits in the inputs, i.e.,
am−1
k−1 and bm−1

k−1 . Thus, the sign bit is always correct. If the second case
where

∏k−2
j=0 pm−1

j = 0 occurs, then the carry-in to the most significant
position,cm−1

k−2 , is always correct, no matter of the value of the speculated
carry-in to block (m− 1), Cm−1

apx,in. Thus, the sign bit is always correct.
Now we assume that ppm−1 = 1. Then, there exists an s ∈ [1,m]

such that ppm−1 = · · · = ppm−s = 1 and ppm−s−1 = 0, which means
that the propagate signals in blocks m−1, . . . , m− s are all true, while
a propagate signal at block m − s − 1 is false1. There are two cases
depending on whether Cm−s−1

o is 0 or 1.
1. The case where Cm−s−1

o = 0. Due to ppm−1 = · · · = ppm−s = 1,
the correct partial sums of the s most significant blocks are all 11. . . 1,
i.e., Si

apx,k−1:0 = 11 . . . 1, m− s < i < m−1. Since Cm−s−1
o = 0,

we must have gm−s−1
k−1 = 0. Thus, the speculated carry-in to block

(m− s) is Cm−s
apx,in = gm−s−1

k−1 = 0, due to ppm−s = 1. Furthermore,
since ppm−1 = · · · = ppm−s = 1, we have gm−2

k−1 = . . . = gm−s
k−1 =

0 and Cm−1
apx,in = . . . = Cm−s+1

apx,in = 0. Based on the block diagram
of the proposed approximate adder shown in Fig. 1a, the approximate

1We define: pp−1 = 0, g−1
k−1 = C−1

apx,o = C−1
o = Cin

partial sums of the s most significant blocks are all 11. . . 1, which are
the same as the correct ones. Clearly, no sign error occurs.

2. The case where Cm−s−1
o = 1. Due to ppm−1 = · · · = ppm−s = 1,

the correct partial sums of the s most significant blocks are all 00. . . 0.
First, we consider the situation where s ≥ 2. Since ppm−1 = · · · =
ppm−s = 1, we have gm−2

k−1 = . . . = gm−s
k−1 = 0 and Cm−1

apx,in =

. . . = Cm−s+1
apx,in = 0. Based on the block diagram of the proposed

approximate adder shown in Fig. 1(a), the approximate partial sums of
the (s− 1) most significant blocks are all 11. . . 1, which are different
from the correct ones. Clearly, a sign error occurs. Now consider the
remaining situation where s = 1. If the generate signal at position
k−1 in block m−2 is 0, i.e., gm−2

k−1 = 0, it can be easily shown that
the approximate partial sum of the most significant blocks is 11. . . 1.
Thus, a sign error occurs. Otherwise, if gm−2

k−1 = 1, the approximate
partial sum of the most significant blocks is 00. . . 0, which means that
no sign error occurs.

By the above analysis, we can see that a sign error occurs only if
there exists an s ∈ [1,m] such that ppm−1 = · · · = ppm−s = 1,
ppm−s−1 = 0, and Cm−s−1

o = 1. We notice that the occurrence of the
conditions ppm−s−1 = 0 and Cm−s−1

o = 1 indicates that Cm−s−1
apx,o = 1.

Thus, a necessary condition for a sign error to occur is that there exists
an s ∈ [1,m] such that ppm−1 = · · · = ppm−s = 1 and Cm−s−1

apx,o = 1.
To correct the sign error, we first define the following signal for

checking the necessary condition for any 1 ≤ s ≤ m:

spm−s = ppm−1 · · · · · ppm−s · Cm−s−1
apx,o ,

which can be realized by an (s+1)-input AND gate, as shown in Fig. 6(a).
If there is 1 ≤ s ≤ m such that spm−s = 1, then the partial approximate
sums of blocks m − 1, . . . ,m − s may be incorrect. Furthermore, if
spm−s = 1, then it indicates that ppm−1 = · · · = ppm−s = 1 and
Cm−s−1

apx,o = 1. Note that Cm−s−1
apx,o = 1 indicates the correct carry-out at

block (m−s−1) is Cm−s−1
o = 1. As a consequence, the correct partial

sums of the blocks m − 1, . . . , m − s must all be 00. . . 0. This means
that if spm−s = 1, no matter whether the partial approximate sums of
blocks m− 1, . . . ,m− s are correct or incorrect, they should be set to
00. . . 0, to achieve the correct calculation. Thus, the partial sum of block
i should be forced to 00. . . 0 when one of spi, spi−1, . . . ,sp0 is 1. Thus,
we modify the approximate partial sum at block i as follows:

Si
sapx,k−1:0 = Si

apx,k−1:0 · CSi, 0 < i < m,

where CSi is a sign-correction signal for each block, defined as

CSi = spi + · · ·+ sp0, 0 ≤ i < m,

which can be realized by an i+1-input OR gate, as shown in Fig. 6(b).
The final sign-correct approximate sum bits, Si

sapx,k−1:0, can then
be obtained by ANDing the unsigned approximate sum bits with the
negation of the signal CSi, as shown in Fig. 6(c).

This sign correction module offers us an alternative choice to apply the
approximate adder for 2’s complement signed addition. It ensures that the
result given by the approximate addition has no sign error. Its maximal
relative error can be shown to be equal to that of the approximate adder
shown in Fig. 1(c). Its error rate is smaller than the approximate adder
shown in Fig. 1(c).

ppm-1

spm-1

Cm-2apx,o

ppm-1

ppi ...
...

Ci-1apx,o

...

sp0

spm-1...

spi

...
...

sp0
spi ...

CSm-1

CSi Sapxij

Ssapxij
CSi

...
...

(a) (b) (c)

Fig. 6: Circuits of the sign correction module.

V. EXPERIMENTAL RESULTS

We evaluate our proposed approximate adders (with and without the
correction module) in this section. They are designed in Verilog HDL
and synthesized with a 45nm NAN-gate cell library [13] using Design
Compiler [14]. We chose the length of the addition to be 32 and the size
of each block to be 4.

For comparison purpose, we also implemented two conventional
adders (RCA and CLA) and six other approximate adders(LOA [9],



ETAII [5], VLCSA-1 [6], ACA [4], LUA [10] and CSA [7]) for a 32-bit
addition. We used the same block size 4 for ETAII, VLCSA-1, and CSA.
For LOA, we set its accurate and inaccurate segments to both have 16
bits. For ACA, we use 8-bit sub-adders, to make it have an equivalent
block size of 4. For LUA, we set the look-ahead as 4 bits. Furthermore,
the same designs of the 4-bit RCA and the 4-bit carry-lookahead module
were used as sum generator and carry generator, respectively, in the
ETAII, VLCSA-1, CSA, LUA, and our proposed adders. For VLCSA-1
and ACA, they have their own error detection and correction modules,
but such modules incur additional area overhead and require an additional
clock cycle to realize the error correction. Thus, we did not include such
modules in our implementation of them. We compared six metrics of
our proposed adders to those of the other adders, which are area, delay,
power consumption, error rate, maximal relative error, and the capability
to ensure the correct sign calculation. The results are listed in Table I.

TABLE I: Comparison of the proposed adders with other 32-bit adders
(k = 4).

Adders Area Delay
(ns) Power Error

rate(%)
Max relative

error(%)
Solve sign

error
RCA 161.7 5.62 29.0 0 0 Yes
CLA 587.9 1.28 79.4 0 0 Yes

LOA(16-16) 99.5 3.09 15.8 99 50 No
ETAII 208.5 0.94 28.2 16.94 100 No

VLCSA-1 389.7 0.93 44.7 20.51 100 No
ACA 283.0 1.55 31.1 16.34 100 No
LUA 322.4 0.85 40.0 34.64 100 No
CSA a 240.5 1.29 33.6 0.91 100 No

Proposed b 238.6 1.23 33.1 10.03 6.25 No
Proposed c 307.8 1.3 41.7 <10.03 6.25 Yes

a Without error reduction module
b Without sign correction module; c With sign correction module

Although RCA has smaller area and power consumption than our
proposed approximate adders, our designs are much faster than RCA. Our
adders have similar delay as CLA, but the area and power consumption
of our adders are much smaller than CLA. Indeed, our proposed approx-
imate adder with the sign correction module is 4.3x faster than RCA and
saves 47% power over CLA. Compared with the six approximate adders,
our adders also show advantages. Although like RCA, LOA has smaller
area and power consumption than ours, its delay is much larger. Because
of its simple structure, its error rate and relative error are also quite large.
Compared with the other five approximate adders (i.e., ETAII, VLCSA-1,
ACA, LUA, and CSA), our adders have comparable area, delay, and
power consumption. The error rates of our adders are only inferior to
CSA among all the six approximate adders. It is because CSA looks
ahead two blocks for carry speculation, while ours look ahead only one
block.

The most significant advantages of our adders are demonstrated in the
last two columns in the table, which show the maximal relative error
and the capability to ensure the correct sign calculation. We can see that
all the other approximate adders have large maximal relative error and
are unable to always guarantee the correct sign calculation when applied
for 2’s complement signed addition. In contrast, the maximal relative
errors of our designs are limited to a small value. In the experiment, we
choose k = 4. According to our analysis, the maximal relative error is
1
2k

= 6.25%. With a larger block size, the maximal relative error can be
further reduced. Furthermore, by including the proposed low-overhead
sign correction module, we can ensure that our approximate adder has
no sign error in signed additions, which cannot be achieved by all the
other approximate adders.

Table II shows another set of experiments on 32-bit adders with block
length k = 8. Similar as the situation where n = 32 and k = 4, our
proposed adders have comparable area, delay, and power consumption
compared with the other adders. Our main advantages are the small
maximal relative error and the capability to ensure the correct sign
calculation in the signed addition. Comparing the proposed adders with
k = 4 (Table I) to the ones with k = 8 (Table II), we can see that
when the block length k increases, the delay of the proposed adders
increases. This is because the critical path of each block increases. With
the block length k increasing, the area of the proposed adder without
sign correction module increases because the increase of block length
causes the area of the carry generator and the sum generator to increase.
In contrast, with the block length k increasing, the area of the proposed

adder with sign correction module decreases. This is because the increase

TABLE II: Comparison of the proposed adders with other 32-bit adders
(k = 8).

Adders Area Delay
(ns) Power Error

rate(%)
Max relative

error(%)
Solve sign

error
RCA 161.7 5.62 29.0 0 0 Yes
CLA 587.9 1.28 79.4 0 0 Yes

LOA(16-16) 99.5 3.09 15.8 99 50 No
ETAII 223.4 1.6 29.56 0.4 100 No

VLCSA-1 384.9 1.98 50.69 0.58 100 No
ACA 242.6 2.97 31.14 0.39 100 No
LUA 482.8 1.19 56.9 2.22 100 No
CSA a 250.1 2.09 35.56 <0.1 100 No

Proposed b 248.2 2.03 34.31 0.29 0.39 No
Proposed c 270.26 2.09 39.72 <0.29 0.39 Yes

a Without error reduction module
b Without sign correction module; c With sign correction module

of block length leads to the decrease of the number of blocks and hence,
the area of the sign correction module is reduced. Furthermore, we can
see that the increase of the block length significantly reduces the error
rate and maximal relative error of the proposed adders.

VI. CONCLUSION

In this paper, we proposed a novel approximate adder which signifi-
cantly reduces the delay and power consumption over the conventional
accurate adders. For a 32-bit addition, our adder is up to 4.3x faster
and saves up to 47% power, compared with those accurate adders. The
efficient carry speculating and error reduction technique proposed in this
work can make our adders have a low error rate, and, more importantly,
a low maximal relative error. Furthermore, a low-overhead enhancement
to our adder was proposed that ensures the correct sign calculation in
2’s complement signed addition.
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