
The Synthesis of Complex Arithmetic Computation on
Stochastic Bit Streams Using Sequential Logic

Peng Li†, David J. Lilja†, Weikang Qian‡, Kia Bazargan†, and Marc Riedel†

†Department of Electrical and Computer Engineering, University of Minnesota, Twin Cities, USA
‡Electrical and Computer Engineering Devision, University of Michigan-Shanghai Jiao Tong University Joint Institute, China

{lipeng, lilja, kia, mriedel}@umn.edu, qianwk@sjtu.edu.cn

Abstract—The paradigm of logical computation on stochastic bit
streams has several key advantages compared to deterministic computa-
tion based on binary radix, including error-tolerance and low hardware
area cost. Prior research has shown that sequential logic operating on
stochastic bit streams can compute non-polynomial functions, such as
the tanh function, with less energy than conventional implementations.
However, the functions that can be computed in this way are quite limited.
For example, high order polynomials and non-polynomial functions
cannot be computed using prior approaches. This paper proposes a new
finite-state machine (FSM) topology for complex arithmetic computation
on stochastic bit streams. It describes a general methodology for syn-
thesizing such FSMs. Experimental results show that these FSM-based
implementations are more tolerant of soft errors and less costly in terms
of the area-time product that conventional implementations.

I. INTRODUCTION

Circuit reliability has become increasingly important in recent
years [1], [2], [3]. The paradigm of logical computation on stochastic
bit stream has become an attractive solution for many applications. It
uses conventional digital logic to perform computation on random
bit streams, where the signal value is encoded as the probability
of a one versus a zero in the stream. This approach can gracefully
tolerate very large errors at lower cost than conventional techniques,
such as over-design, while maintaining equivalent performance [4].
The images in Fig. 1, for example, illustrated that the fault tolerance
capability of stochastic computing for image segmentation that is
based on the frame difference algorithm as opposed to a conventional
implementation. As the soft error injection rate increases, a conven-
tional implementation of the image segmentation algorithm rapidly
degrades until the output image is no longer recognizable. However,
the second row shows that an implementation using stochastic bit
streams to encode the data is able to produce the correct output at
even very high error rates.

In addition, computations on stochastic bit streams can be per-
formed with very simple logic. For example, multiplication can be
implemented with an AND gate [6], [7]. Assuming that the two
input stochastic bit streams A and B are independent, the number
represented by the output stochastic bit stream C is c = P (C =
1) = P (A = 1 and B = 1) = a · b. So the AND gate multiplies the
two values represented by the stochastic bit streams. Scaled addition
can be implemented with a multiplexer (MUX) [6], [7], [8]. With
the assumption that the three input stochastic bit streams A, B, and
S are independent, the number represented by the output stochastic

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
2012, November 5-8, 2012, San Jose, California, USA

Copyright c©2012 ACM 978-1-4503-1573-9/12/11. . . $15.00

bit stream C is c = P (C = 1) = P (S = 1 and A = 1) + P (S =
0 and B = 1) = s · a+ (1− s) · b. Thus the computation performed
by a MUX is the scaled addition of the two input values a and b,
with a scaling factor of s for a and (1− s) for b.

Despite its great potential in terms of high fault-tolerance and
low hardware cost, stochastic computing suffers from encoding
inefficiency. Assume that a numerical value is represented by M
bits using binary radix, we need 2M bits to represent the same value
stochastically. For small values of M such as M = 8 (e.g., used
in most image processing algorithms and artificial neural networks),
the benefits of stochastic computing overwhelm its high encoding
overhead. In terms of performance, although computation on bit
streams needs more clock cycles to finish, the circuit can be operated
under a much faster clock frequency. This is because the circuit is
extremely simple, and has a much shorter critical path. In addition,
computation on bit streams can be implemented in parallel by trading
off silicon area with the number of clock cycles [8].

In terms of energy consumption, complex computations on stochas-
tic bit streams can be performed using quite simple sequential logic.
Brown and Card [7] showed that, if a single input linear finite-
state machine (FSM) is used to perform the exponentiation and
tanh functions on stochastic bit streams, when M ≤ 10 it will
consume less energy than deterministic implementations using adders
and multipliers based on binary radix.

However, one shortcoming of the work in [7] is that the functions
that can be implemented using the proposed FSM are very limited.
For example, high order polynomials and non-polynomials such
as functions used in low-density parity-check coding cannot be
implemented using the FSM introduced in the previous work [7].
As a result, most applications in artificial neural networks (ANNs),
communication systems, and digital signal processing, cannot benefit
from this technique.

To solve this problem, we find that the FSM used in stochastic com-
puting can be analyzed using Markov chains [7], [9]. By redesigning
the topology of the FSM, we increase the degree of design freedom,
so that more sophisticated functions can be synthesized stochastically.
The remainder of this paper is organized as follows. In Section II,
we briefly review the previous work in this area. In Section III, we
demonstrate the new FSM topology. In Section IV, we introduce the
synthesis approach. In Section V, we present the results of synthesis
trials, comparing cost, fault-tolerance, and energy consumption of the
proposed designs with the previous ones. Section VI concludes and
discusses future directions.

II. RELATED WORK

Logical computation on stochastic bit streams was first introduced
by Gaines [6]. He proposed two coding formats: a unipolar format
and a bipolar format. Both formats can coexist in a single system. In
the unipolar coding format, a real number x in the unit interval (i.e.,

Computation Based on Binary Radix

Computation Base on Stochastic Bit Streams

(a) (b) (c) (d) (e) (f) (g)

Original Image

Fig. 1. A comparison of the fault tolerance capabilities of different hardware implementations for the frame difference based image segmentation algorithm.
The images in the first row are generated by a conventional implementation. The images in the second row are generated using a stochastic implementation.
Soft errors are injected at a rate of (a) 0%; (b) 1%; (c) 2%; (d) 5%; (e) 10%; (f) 15%; (g) 30% [5].

0 ≤ x ≤ 1) corresponds to a sequence of random bits, each of which
has probability x of being one and probability 1− x of being zero.
If a stochastic bit stream of length N has k ones, then the real value
represented by the bit stream is k

N
. In the bipolar coding format, the

range of a real number x is extended to −1 ≤ x ≤ 1. The probability
that each bit in the stream is one is P (X = 1) = x+1

2
. Thus, a real

number x = −1 is represented by a stream of all zeros and a real
number x = 0 is represented by a stream of bits that have probability
0.5 of being one. If a stochastic bit stream of length N has k ones,
then the real value represented by the bit stream is 2 k

N
− 1.

Beginning with the work by Gaines, prior research has described
the implementations of specific arithmetic functions based on the
stochastic representation [6]. These include constructs for multipli-
cation and addition, discussed in the previous section, as well as
constructs for the tanh and the exponentiation functions proposed by
Brown and Card [7].

The tanh and the exponentiation functions are implemented with
sequential logic, in the form of a single input linear finite state ma-
chine [7]. Its state transition diagram is shown in Fig. 2. The machine
has a single input X and a set of states S0, S1, . . . , SN−1 arranged
as a linear sequence. Given the current state St (0 < t < N − 1),
the next state will be St−1 if X = 0 and will be St+1 if X = 1.

With a stochastic encoding, the input X takes the form of a
stochastic bit stream. As a result the state transition process is a
special type of a Markov chain [7], [9]. The output Y of this state
machine, not shown in Fig. 2, is only determined by the current state:
for some states the output Y is one and for the others it is zero. Thus,
the output Y is also a stochastic bit stream. Based on different choices
of the set of states that let the output Y be one, this linear FSM can
be used to implement different functions.

S0 S1 SN-2 SN-1

……
……
……

X=1

X=0

X=0 X=1

X=1 X=1 X=1

X=0 X=0 X=0

Fig. 2. A generic linear state transition diagram.

For example, consider an FSM whose output Y is one when the
current state is in the set {SN/2, . . . , SN−1} and is zero when the
current state is in the set {S0, . . . , SN/2−1}, as shown in the state
transition diagram in Fig. 3. If we let x be the bipolar coding of the

input bit stream X and y be the bipolar coding of the output bit stream
Y , then the functional relation between x and y is approximately a
tanh function [7],

y ≈ e
N
2
x − e−

N
2
x

e
N
2
x + e−

N
2
x
. (1)

Now consider another FSM whose output Y is one when the
current state is in the set {S0, . . . , SN−G−1} and is zero when the
current state is in the set {SN−G, . . . , SN−1} (where G � N), as
shown in the state transition diagram in Fig. 4. If we let x be the
bipolar coding of the input bit stream X and y be the unipolar coding
of the output bit stream Y , then the functional relation between x
and y is approximately an exponentiation function [7],

y ≈

{
e−2Gx, 0 ≤ x ≤ 1,
1, −1 ≤ x < 0.

(2)

However, besides these two functions, how to configure other
functions based on the linear FSM has not been studied. In 2008, Qian
et al. proposed a general approach for synthesizing combinational
logic to implement polynomials on stochastic bit streams [8]. The
procedure begins by transforming a power-form polynomial into a
Bernstein polynomial [10]. For example, The polynomial

f(x) =
1

4
+

9

8
x− 15

8
x2 +

5

4
x3,

can be converted into a Bernstein polynomial of degree 3:

f(x) =
2

8
B0,3(x) +

5

8
B1,3(x) +

3

8
B2,3(x) +

6

8
B3,3(x),

where each Bi,3(x) (0 ≤ i ≤ 3) is a Bernstein basis polynomial of
the form

Bi,3(x) =

(
3

i

)
xi(1− x)3−i. (3)

A Bernstein polynomial,

y = B(x) =

n∑
i=0

biBi,n(x),

with all coefficients bi in the unit interval can be implemented
stochastically by a generalized multiplexing circuit, shown in Fig. 5.
The circuit consists of an adder block and a multiplexer block. The
inputs to the adder are x1, . . . , xn. The data inputs to the multiplexer

S0 -----
Y=0

SN/2-1 -----
Y=0

SN-1 -----
Y=1

X=0 X=1

SN/2 -----
Y=1

S1 -----
Y=0

SN-2 -----
Y=1

……
……
……

……
……
……

X=1 X=1 X=1 X=1 X=1 X=1 X=1

X=0 X=0 X=0 X=0 X=0 X=0X=0

Fig. 3. The state transition diagram of an FSM implementing a tanh function stochastically. In the figure, the number below each state Si represents the
output Y of the FSM when the current state is Si (0 ≤ i ≤ N − 1) [7].

S0 -----
Y=1

SN-G -----
Y=0

SN-1-----
Y=0

X=0 X=1

S1 -----
Y=1

X=1 ……
……
……

SN-G-1 -----
Y=1

……
……
……

SN-G-2 -----
Y=1

X=1 X=1 X=1 X=1 X=1 X=1

X=0 X=0 X=0 X=0 X=0 X=0X=0

Fig. 4. The state transition diagram of an FSM implementing an exponentiation function stochastically. In the figure, the number below each state Si
represents the output Y of the FSM when the current state is Si (0 ≤ i ≤ N − 1). Note that the number G� N [7].

+

x1
x2

xn

MUX

z0

z1

zn

y

Ʃi xi

...

Pr(xi = 1) = x

Pr(zi = 1) = bi

...

Fig. 5. A generalized multiplexing circuit implementing the Bernstein
polynomial y = B(x) =

∑n
i=0 biBi,n(x) with 0 ≤ bi ≤ 1, for

i = 0, 1, . . . , n [8].

are z0, . . . , zn. The outputs of the adder are the selecting inputs to
the multiplexer block.

0,0,0,1,1,0,1,1 (4/8)

0,1,1,1,0,0,1,0 (4/8)

1,1,0,1,1,0,0,0 (4/8)

0,0,0,1,0,1,0,0 (2/8)

x1

x2

x3

1,2,1,3,2,0,2,1

0,1,0,1,0,1,1,1 (5/8)

0,1,1,0,1,0,0,0 (3/8)

1,1,1,0,1,1,0,1 (6/8)

MUX 0,1,0,0,1,1,0,1 (4/8)

z0

z1

z2

z3

y

0

1

2

3

Fig. 6. Logical computation on stochastic bit streams implementing the Bern-
stein polynomial f(x) = 2

8
B0,3(x) +

5
8
B1,3(x) +

3
8
B2,3(x) +

6
8
B3,3(x)

at x = 0.5. Stochastic bit streams x1, x2 and x3 encode the value x = 0.5.
Stochastic bit streams z0, z1, z2 and z3 encode the corresponding Bernstein
coefficients [8].

When the number of ones in the input set {x1, . . . , xn} is i,
then the adder will output a binary number equal to i and the
output y of the multiplexer will be set to zi. The inputs x1, . . . , xn
are independent stochastic bit streams X1, . . . , Xn representing the
probabilities P (Xi = 1) = x ∈ [0, 1], for 1 ≤ i ≤ n. The
inputs z0, . . . , zn are independent stochastic bit streams Z0, . . . , Zn
representing the probabilities P (Zi = 1) = bi ∈ [0, 1], for

0 ≤ i ≤ n, where the bi’s are the Bernstein coefficients. The output of
the circuit is a stochastic bit stream Y in which the probability of a bit
being one equals the Bernstein polynomial B(x) =

∑n
i=0 biBi,n(x).

A circuit implementation of the above example is shown in Fig. 6 [8].

The tanh and the exponentiation functions, as shown in equations
(1) and (2), can also be implemented by this Bernstein polynomial-
based approach. However, it requires more hardware than the FSM-
based ones. To leverage the low-cost and low-power properties
of the FSM-based stochastic computation, this paper demonstrates
how to synthesize sophisticated functions based on a new FSM
topology. Based on this technique, more sophisticated functions in
ANNs, communication systems, and digital signal processing could
be computed on the stochastic bit streams with lower hardware cost,
lower energy consumption, and higher fault-tolerance.

S0 ------------
0

……
……
……

11

00

S1 ------------
1

SN-2 ------------
N-2

SN-1 ------------
N-1

SN ------------
N

……
……
……

SN+1 ------------
N+1

S2N-2 ------------
2N-2

S2N-1 ------------
2N-1

01

…
…

…

…

…
…

…
…

…

…

…
…

…
…

…

…

…
…

…
…

…

…

…
…

…… …… ……

S(M-1)N------------
(M-1)N

……
……
……

S(M-1)N+1 ------------
(M-1)N+1

SMN-2 ------------
MN-2

SMN-1 ------------
MN-1

11 11 11

00 00 00

11

00

11 11 11

00 00 00

11

00

11 11 11

00 00 00

10 01 10 01 10 01 10

01 10 01 10 01 10 01 10

01 10 01 10 01 10 01 10

00 o
r 0

1
11 or 01

11 o
r 1

000 or 10 10 10

01 01

00 11

Fig. 7. The FSM has two inputs X and K. The numbers on each arrow
represent the transition condition, with the first corresponding to the input
X and the second corresponding to the input K. The FSM has log2dMNe
outputs, encoding a value in binary radix. In the figure, the number below
each state St (0 ≤ t ≤MN−1) represents the value encoded by the outputs
of the FSM when the current state is St.

III. THE NEW FSM TOPOLOGY

The state transition diagram of the proposed FSM is shown in
Fig. 7. It has two inputs (we call them X and K) and in total M ×N
states, arranged as an M × N two-dimensional array. We normally
set M × N = 2R, where R is a positive integer, because we can
implement an FSM with 2R states by R D flip-flops (DFFs). In
addition, we set M = 2b

R
2 c, and N = 2d

R
2 e. The FSM shown

in Fig. 7 is a Moore-style machine, which has log2dMNe outputs
encoding an integer in the range [0, MN − 1] using binary radix.
If the current state is St (0 ≤ t ≤ MN − 1), the value encoded by
its output is just the current state number t. In short, we say that the
output of the FSM is t. It can be seen that the output configuration of
the FSM looks like an up/down counter. However, the state transitions
of this FSM are quite different from a conventional up/down counter.
For example, if we assume that the current state is SN+1 in Fig. 7,
its next state and the corresponding output will be: SN+2 and N+2,
if (X,K) = (1, 1); SN and N , if (X,K) = (0, 0); S2N+1 and
2N + 1, if (X,K) = (1, 0); S2 and 2, if (X,K) = (0, 1). An
example of such an FSM with 8 states is shown in Fig. 8.

S0 ------------
0

S1 ------------
1

S2 ------------
2

S3 ------------
3

S4 ------------
4

S5 ------------
5

S6 ------------
6

S7 ------------
7

11

00

11 11

00 00

11

00

11 11

00 00

01 10 01 10 01 10 01 10

00 o
r 0

1
11 or 01

11 o
r 1

000 or 10

01 01

10 10

Fig. 8. An example of the state transition digram of the proposed FSM with
8 states. Here, M = 2 and N = 4.

The inputs X and K of this FSM consist of stochastic bit streams.
We define the probability that each bit in the input stream X is one
to be PX , and the probability that each bit in the input stream K
is one to be PK . Because both inputs X and K are stochastic bit
streams with fixed probabilities, the state transition process of the
FSM can be modeled as a time-homogeneous Markov chain. It can
be shown that this Markov chain is irreducible and aperiodic. Then,
based on the theory of Markov chain, the FSM has an equilibrium
state distribution [9]. We define the probability that the current state
is St (0 ≤ t ≤ MN − 1) in the equilibrium (or the probability that
the current output is t) to be Pt. Intuitively, Pt is a function of both
PX and PK . In the following, we derive a closed form expression
of Pt in terms of PX and PK . This expression is used to synthesize
a given target function T (PX) on PX . The synthesis details will be
discussed in the next section.

In the following discussion, we define i =
⌊
t
N

⌋
and j = t modulo

N , i.e., i and j are the quotient and the remainder of t divided by
N , respectively (or t = i×N + j). Based on the theory of Markov
chains [9], at the equilibrium stage, the probability of transitioning
from the state Si×N+j to its horizontal adjacent state Si×N+j−1,
equals the probability of transitioning from the state Si×N+j−1 to
the state Si×N+j . Thus, we have

Pi×N+j · (1− PX) · (1− PK) = Pi×N+j−1 · PX · PK . (4)

In addition, the probability of transitioning from the state Si×N+j

to its vertical adjacent state, S(i−1)×N+j , equals the probability of
transitioning from the state S(i−1)×N+j to the state Si×N+j :

Pi×N+j · (1− PX) · PK = P(i−1)×N+j · PX · (1− PK). (5)

Because all the individual state probabilities Pi×N+j (or Pt) must
sum to unity, we have

MN−1∑
t=0

Pt =

M−1∑
i=0

N−1∑
j=0

Pi×N+j = 1. (6)

Based on equation (4), (5), and (6), we obtain

Pt = Pi×N+j =
tix · tjy

M−1∑
u=0

N−1∑
v=0

tux · tvy
, (7)

where tx and ty are,

tx =
PX

1− PX
· PK

1− PK
,

ty =
PX

1− PX
· 1− PK

PK
.

It can be seen that equation (7) is a closed form expression of Pt
in terms of PX and PK . In the next section, we discuss how Pt is
used to synthesize a given target function.

IV. THE FSM-BASED SYNTHESIS APPROACH

In this section, we introduce how to synthesize a target function
T (PX) based on the proposed FSM. More specifically, we use the
circuit shown in Fig. 9 to synthesize T (PX).

The
Proposed

FSM

X

w0 w1

…...

wMN-1

Y
K

MUXThe current
state number

Fig. 9. The circuit for synthesizing target functions.

In Fig. 9, as we introduced in the previous section, the inputs of the
proposed FSM are X and K, its output is the current state number,
which is connected to the selection inputs of the multiplexer “MUX”,
which has M ×N data inputs (w0, w1, · · · , wMN−1). Note that if
the current state of the FSM is St (0 ≤ t ≤ MN − 1), then the
channel that connects wt to Y will be selected in the “MUX.”

We let X , K, and wt be stochastic bit streams, and define PX to
be the probability of ones in X , PK to be the probability of ones
in K, Pwt to be the probability of ones in wt, and PY to be the
probability of ones in Y . Based on the circuit shown in Fig. 9, it can
be seen that the probability that the “MUX” input wt is selected as its

output is Pt, because this probability is the same as the probability
that the current state of the FSM is St. Thus, we can obtain PY as

PY = P (Y = 1)

=

MN−1∑
t=0

P (Y = 1 | wt is selected) · P (wt is selected)

=

MN−1∑
t=0

P (wt = 1) · P (wt is selected) =

MN−1∑
t=0

Pwt · Pt.

(8)

Note that PY is a function of PX , PK , and Pwt , because Pt is a
function of PX and PK (refer to (7)). It can be seen that equation
(8) is a closed form expression of PY . This expression is used to
synthesize the given function T (PX). We define the approximation
error ε as

ε =

∫ 1

0

(T (PX)− PY)2 · d(PX). (9)

The synthesis goal is to compute Pwt and PK to minimize ε. In the
following, we discuss how to obtain these parameters.

A. How to Compute Pwt
By expanding (9), we can rewrite ε as

ε =

∫ 1

0

T (PX)2 · d(PX)− 2

∫ 1

0

T (PX) · PY · d(PX)

+

∫ 1

0

P 2
Y · d(PX).

The first term
∫ 1

0
T (PX)2 · d(PX) is a constant because T (PX) is

given. Thus minimizing ε is equivalent to minimizing the following
objective function ϕ:

ϕ =

∫ 1

0

P 2
Y · d(PX)− 2

∫ 1

0

T (PX) · PY · d(PX). (10)

We define a vector b, a vector c, and a matrix H as follows,

b = [Pw0 , Pw1 , · · · , PwMN−1]T ,

c =

−
∫ 1

0
T (PX) · P0 · d(PX)

−
∫ 1

0
T (PX) · P1 · d(PX)

...
−
∫ 1

0
T (PX) · PMN−1 · d(PX)

 ,

H = [H0,H1, · · · ,HMN−1]T ,

where Pt (0 ≤ t ≤MN −1) in vector c are defined by equation (7)
and Ht (0 ≤ t ≤ MN − 1) in matrix H is a row vector defined as
follows,

Ht =

∫ 1

0
Pt · P0 · d(PX)∫ 1

0
Pt · P1 · d(PX)

...∫ 1

0
Pt · PMN−1 · d(PX)

T

.

Note that (refer to the expression of PY in (8)),

bTHb =

∫ 1

0

P 2
Y · d(PX),

cTb = −
∫ 1

0

T (PX) · PY · d(PX),

Thus, the objective function ϕ in (10) can be rewrite as

ϕ = bTHb + 2cTb. (11)

We notice that, computing Pwt (i.e., the vector b) to minimize
ϕ in the form of equation (11) is a typical constrained quadratic
programming problem, if PK is a constant. This is because Pt is a
function of both PX and PK (please refer to (7)). When we set PK
to a constant, the integral of Pt on PX is also a constant, so are
the vector c and the matrix H. Based on (11), the solution of Pwt
(i.e., the vector b) can be obtained using standard techniques [11].
Then PK can be solved using a numerical approach, which will be
discussed in the next section.

B. How to Compute PK

As we introduced in the previous section, PK is first set to a
constant. Then we compute Pwt using standard techniques [11] to
minimize ε (or the equivalent ϕ). Note that all the values between
0 and 1 (with a step 0.001) will be used to set PK in the synthesis
process. More specifically, we first set PK to 0.001, and compute the
corresponding Pwt and ε. Next, we set PK to 0.002, and compute
the corresponding Pwt and ε. So on and so forth. Finally, we set PK
to 1, and compute the corresponding Pwt and ε. Among these 1000
results of ε, we select the minimum one, and the corresponding PK
and Pwt .

C. Summary of the Proposed Synthesis Approach

After we get the optimal values of PK and Pwt , the stochastic
bit streams K and wt in Fig. 9 will be generated to implement
the target function T (PX) stochastically. Note that the synthesis
approach discussed in this section also works for other FSM topolo-
gies. For example, we can use the same approach to synthesize the
exponentiation and tanh functions proposed by Brown and Card [7]
based on the FSM topology shown in Fig. 2 [12], [13], [14]. However,
that FSM topology cannot be used to synthesize more sophisticated
functions, such as high order polynomials and other non-polynomials.
We also tried other different FSM topologies in both single input and
two inputs configurations. Only the one proposed in this paper works.
Intuitively, the additional input K and the balanced state transitions
give the proposed FSM more degree of design freedom to synthesize
more sophisticated functions.

In the next section, we use three examples to show the synthesis
effect of the proposed approach. Then we compare this work to the
previous ones in terms of hardware cost, energy consumption, and
fault-tolerance.

V. EXPERIMENTAL RESULTS

In our experiments, we first present three examples to show the
synthesis results of the proposed approach. Then we compare the
proposed approach to the Bernstein polynomial-based approach and
the binary radix representation-based approach in terms of hardware
area, performance, energy consumption, and fault-tolerance. We use
an 8-state FSM (i.e., the one shown in Fig. 8) for all the experiments.

A. Synthesis Examples

Example 1: Synthesizing Gaussian distribution function:

T (x) =
1

δ
√

2π
e
− (x−µ)2

2δ2 , (−1 ≤ x ≤ 1).

The Proposed
FSM (8-State)

X

w0 w1

…...

w7

Y

MUX

K

t0t1t2t3t4...

...

...

01100

00110

t1t2t3t4

0451

t5...

... 0

t1t2t3t4

0111

t5...

... 0

w0w4w5w0w1...

t0

0

t0

0

w0

Fig. 10. An example about how the circuit shown in Fig. 9 works (the FSM is implemented with the state transition diagram shown in Fig. 8).

Because x could be negative values, we need to convert x to PX
using bipolar coding (please refer to Section II), i.e., we set PX =
0.5(x+ 1), and rewrite the target function as

T (PX) =
1

δ
√

2π
e
− (2PX−1−µ)2

2δ2 , (0 ≤ PX ≤ 1). (12)

Note that in (12), δ could be any value as long as δ ≥ 1√
2π

, because
in computation on stochastic bit streams, the output is a probability
value that should be greater than or equal to 0 and less than or equal
to 1 and when δ ≥ 1√

2π
, we guarantee that the maximal value of the

function T (PX) is less than or equal to 1. We normally set µ = 0
for simplicity, because using different value of µ will only shift the
curve along on the x-axis instead of changing the shape of the curve.
If we set δ = 2 and µ = 0, for example, we compute PK and Pwt
using the synthesis approach discussed in the previous section. The
results are listed in Table I. The approximation error ε (defined in
(9)) is 7.0× 10−4. Fig. 11 shows the simulation result.

TABLE I
PK AND Pwt (0 ≤ t ≤ 7) FOR SYNTHESIZING THE TARGET FUNCTION IN

(12) WITH δ = 2 AND µ = 0.

PK = 0.5

Pw0
= 0 Pw1

= 1 Pw2
= 1 Pw3

= 1

Pw4
= 1 Pw5

= 1 Pw6
= 1 Pw7

= 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Px

T(
P

x)

Target Function

The FSM Approximation

Fig. 11. Synthesis result of the target function in (12) with δ = 2 and µ = 0.

This means that, using the circuit shown in Fig. 9, if the probability
of ones in the input bit stream K equals 0.5 and the probabilities of
ones in the input bit streams wt equal Pwt shown in Table I, the
probability of ones in the output bit stream Y will be

1

2
√

2π
e−

(2PX−1)2

8 , (0 ≤ PX ≤ 1),

where PX is the probability of ones in the input X . Note that if
Pwt equal 0 or 1, then wt can be set to a constant ‘0’ or ‘1’
correspondingly, and the hardware implementation can be further
simplified.

We give an example in Fig. 10 to show how this circuit works.
Assume that the circuit starts working at clock cycle t0 and the initial
state of the FSM is S0 (please note that the initial state has no
influence on the final results, it could be any one of the 8 states). The
output of the FSM at t0 is 0 (because its initial state is S0) and the
output of the multiplexer “MUX” at t0 is w0 (because its selection
input equals 0 at t0), and w0 = 0 based on Table I.

Because at t0, X = K = 0 and the initial state is S0, in the next
clock cycle t1, the current state of the FSM is still S0 (and the output
of the FSM is still 0) based on the state transition diagram shown in
Fig. 8. The output of the “MUX” at t1 is still w0, which equals 0
based on Table I.

In the next clock cycle t2, based on the state transition diagram
shown in Fig. 8, the current state becomes S4 because X = 1 K = 0
at the previous clock cycle t1, and the output of the FSM is 4. Thus,
the output of the “MUX” at t2 becomes w4, which equals 1 based
on Table I.

So on and so forth. Assume that we use 1024 bits to represent
a value stochastically. After 1024 clock cycles, if the probability of
ones in X equals PX , and the probability of ones in K equals 0.5,

then the probability of ones in Y will be 1

2
√
2π
e−

(2PX−1)2

8 . �
Example 2: Synthesizing the function φ(x) used in low-density
parity-check decoding [15]:

φ(x) = log
ex + 1

ex − 1
, (x > 0).

For this example, we use unipolar coding because we do not deal
with negative values, and set PX = x/α, where α is a scaling factor
to map the range of x to unitary. We rewrite the target function in

terms of PX as

T (PX) = log
eαPX + 1

eαPX − 1
, (0 < PX ≤ 1). (13)

If we set α = 20, for example, we compute PK and Pwt using the
proposed synthesis approach and show the results in Table II. The
approximation error ε (defined in (9)) is 2.0× 10−4. Fig. 12 shows
the simulation result. �

TABLE II
PK AND Pwt FOR SYNTHESIZING THE TARGET FUNCTION IN (13) WITH

α = 20.

PK = 0.9375

Pw0
= 1 Pw1

= 0 Pw2
= 0 Pw3

= 0

Pw4 = 1 Pw5 = 0 Pw6 = 0 Pw7 = 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Px

T(
P

x)

Target Function

The FSM Approximation

Fig. 12. Synthesis result of the target function in (13) with α = 20.

Example 3: Synthesizing the following high order polynomial λ(x)
used in low-density parity-check coding [16]:

λ(x) = 0.1575x+ 0.3429x2 + 0.0363x5 + 0.059x6

+ 0.279x8 + 0.1253x9, (0 ≤ x ≤ 1).

For this example, we use unipolar coding because we do not deal
with negative values and x is in the unitary range. We rewrite the
target function in terms of PX (PX = x) as

T (PX) = 0.1575PX + 0.3429P 2
X + 0.0363P 5

X + 0.059P 6
X

+ 0.279P 8
X + 0.1253P 9

X , (0 ≤ PX ≤ 1).
(14)

We compute PK and Pwt using the proposed synthesis approach and
show the results in Table III. The approximation error ε (defined in
(9)) is 4.0 × 10−6. Fig. 13 shows the simulation result. Note that
the bit streams w1 and w5 can be generated with extremely low cost
using the technique proposed by Qian et al. [17]. �

TABLE III
PK AND Pwt FOR SYNTHESIZING THE TARGET FUNCTION IN (14).

PK = 0.1875

Pw0 = 0 Pw1 = 0.86 Pw2 = 0 Pw3 = 0

Pw4 = 0 Pw5 = 0.89 Pw6 = 0 Pw7 = 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Px

T(
P

x)

Target Function

The FSM Approximation

Fig. 13. Synthesis result of the target function in (14).

B. Comparison with the Bernstein Polynomial-Based Approach

As we introduced in Section II, the Bernstein polynomial-based
approach uses combinational logic (an adder and a multiplexer, as
shown in Fig. 6) to perform computation on stochastic bit streams.
Hardware area required by this approach depends on the degree of
polynomial. Table IV lists its area in terms of the number of fan-in
two logic gates [8].

TABLE IV
THE NUMBER OF THE FAN-IN TWO LOGIC GATES FOR COMPUTING

BERNSTEIN POLYNOMIALS OF DEGREE 3, 4, 5, AND 6 [8].

Degree n 3 4 5 6

Number of Gates 22 40 49 58

Note that by using the 8-state FSM shown in Fig. 8, we can
synthesize a polynomial of degree up to 9 (refer to Example 3).
In addition, for those non-polynomials, such as the target functions
introduced in Example 1 and Example 2, the Bernstein polynomial-
based approach normally takes at least degree 6 to obtain the same
level of approximation error. The proposed FSM with 8 states can
be implemented using 3 D-flip-flops (DFFs) as follows,

D2 = XKQ0 +XQ1 +KQ1 +Q1Q0,

D1 = XK̄ +XQ2 + K̄Q2,

D0 = X̄K̄Q1Q̄0 + X̄KQ0 +XKQ1 +XK̄Q0 +XKQ0,

where D0, D1, and D2 are the inputs of the three DFFs, and Q0, Q1,
and Q2 are the corresponding outputs. Because it is a Moore FSM,
we assign Q2Q1Q0 = 000 for state S0, Q2Q1Q0 = 001 for state
S1, · · · , and Q2Q1Q0 = 111 for state S7. Based on the report of
the logic synthesis tool Synonsys Design Compiler, the entire circuit
(including the multiplexer in Fig. 9) can be implemented using 45
fan-in two logic gates. Please note that the evaluation is based on
a generalized version of the circuit shown in Fig. 9, if wt is set to
a constant ‘0’ or ‘1’, the circuit can be further simplified and the
number of logic gates can be further reduced. It can be seen that, to
synthesize non-polynomials and polynomials of degree greater than
4, the proposed FSM takes less hardware.

In terms of performance, because both techniques compute on
stochastic bit streams, they have equivalent processing time. In terms
of energy consumption, we assume that given a CMOS technology,
a digital circuit consumes a constant power dissipation per unit
area. We use the product of area and processing time as a metric
of the energy consumption [7]. Because these two techniques have

equivalent processing time, the FSM-based approach consumes less
energy when computing non-polynomials and high order polynomials
with degree larger than 4.

In terms of fault-tolerance, we compare the two techniques when
the input data is corrupted with noise. We evaluate the fault-tolerant
performance on circuits implementing the target functions intro-
duced in the last section and other functions such as trigonometric
functions (sin(x), cos(x), and tan(x)) and logarithmic functions
(y = log2(x), y = log10(x), and y = ln(x)). The length of the
stochastic bit streams which are used to represent a value is set to
1024. We define the error ratio γ as the percentage of random bit
flips that occur in the computation. We choose the error ratio γ to be
0%, 0.5%, 1%, 5%, and 10%. For example, under 10% error ratio,
102 of 1024 bits will be flipped in the computation. To measure the
impact of the noise, we evaluated each target function at 13 distinct
input data points: 0.2, 0.25, 0.3, · · · , 0.8. For each error ratio γ,
each target function, and each evaluation point, we simulated both
the FSM-based implementation and the Bernstein polynomial-based
implementation 1000 times. We averaged the relative errors over all
simulations. Finally, for each error ratio γ, we averaged the relative
errors over all target functions and all evaluation points. Table V
shows the average relative error of the two different implementations
versus different γ values. It can be seen that these two techniques
has almost equivalent fault-tolernace (the difference is less than
0.5%), because both techniques perform computation on stochastic
bit streams.

TABLE V
RELATIVE ERROR FOR THE FSM-BASED IMPLEMENTATION AND THE

BERNSTEIN POLYNOMIAL-BASED IMPLEMENTATION OF TARGET
FUNCTION COMPUTATION VERSUS THE ERROR RATIO γ IN THE INPUT

DATA.

Error Ratio γ (%) 0 0.5 1 5 10
Relative Error of the FSM (%) 2.26 2.78 3.16 6.75 11.2
Relative Error of Bernstein (%) 2.21 2.72 3.36 6.25 11.7

C. Comparison with the Binary Radix-Based Approach

Assume that M is the number of bits used to represent a numerical
value in binary radix. In order to get the same resolution for computa-
tion on stochastic bit streams, we need a 2M -bit stream to represent
the same value. Both Qian et al. [8] and Brown et al. [7] showed
that, when M ≤ 10, computation on stochastic bit streams has
better performance than the ones based on binary radix using adders
and multipliers in terms of hardware area and energy consumption.
In fact, in most applications of the stochastic computation, M is
between 8 to 10 [7], [8]. As we discussed in the Section V-B, the
proposed approach using FSM has better performance than the one
proposed by Qian et al. [8] for computing non-polynomials and high
order polynomials. Thus, when M ≤ 10, the proposed approach
also has better performance than the ones using binary radix for
those functions. In addition, computing on stochastic bit streams
offers tunable precision: as the length of the stochastic bit stream
increases, the precision of the value represented by it also increases.
Thus, without hardware redesign, we have the flexibility to trade-off
precision and computation time. The main issue of this computing
technique is the long latency. However, it can be solved by using a
faster clock frequency, because its logic is simple and has shorter
critical path. Parallel computing can also be used to solve this issue.
For example, in digital image processing applications, we can process
multiple pixels in an image in parallel. In ANN applications, we can
process the computation on multiple neurons in parallel.

VI. CONCLUSION
This paper proposed a new FSM topology to synthesize compu-

tation on stochastic bit streams for complex and useful functions.
Compared to other implementations, the resulting circuits are less
costly in terms of hardware area and energy consumption. In future
work, we will study synthesis techniques for general purpose compu-
tation using these techniques. Our eventual goal is a fully stochastic
design of a microprocessor.

ACKNOWLEDGMENT
This work is supported in part by National Science Foundation

grant NO. CCF-1241987. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the authors
and do not necessarily reflect the views of the NSF. This work is
also supported in part by the Minnesota Supercomputing Institute
and a donation from NVIDIA. The authors would like to thank the
reviewers for their helpful feedback.

REFERENCES

[1] N. Iqbal, M. Siddique, and J. Henkel, “Seal: soft error aware low power
scheduling by monte carlo state space under the influence of stochastic
spatial and temporal dependencies,” in Design Automation Conference
(DAC), 2011 48th ACM/EDAC/IEEE, pp. 134–139, IEEE, 2011.

[2] X. Shih, H. Lee, K. Ho, and Y. Chang, “High variation-tolerant obstacle-
avoiding clock mesh synthesis with symmetrical driving trees,” in
Proceedings of the International Conference on Computer-Aided Design,
pp. 452–457, IEEE Press, 2010.

[3] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable software
for unreliable hardware: embedded code generation aiming at reliability,”
in Proceedings of the seventh IEEE/ACM/IFIP international conference
on Hardware/software codesign and system synthesis, pp. 237–246,
ACM, 2011.

[4] P. Li and D. J. Lilja, “A low power fault-tolerance architecture for the
kernel density estimation based image segmentation algorithm,” in IEEE
International Conference on Application - specific Systems, Architectures
and Processors, ASAP’11, 2011.

[5] P. Li and D. J. Lilja, “Using stochastic computing to implement digital
image processing algorithms,” in IEEE International Conference on
Computer Design, ICCD’11, 2011.

[6] B. Gaines, “Stochastic computing systems,” Advances in Information
Systems Science, vol. 2, no. 2, pp. 37–172, 1969.

[7] B. D. Brown and H. C. Card, “Stochastic neural computation I: Compu-
tational elements,” IEEE Transactions on Computers, vol. 50, pp. 891–
905, September 2001.

[8] W. Qian and M. D. Riedel, “The synthesis of robust polynomial
arithmetic with stochastic logic,” in 45th ACM/IEEE Design Automation
Conference, DAC’08, pp. 648–653, 2008.

[9] A. A. Markov, “Extension of the limit theorems of probability theory to
a sum of variables connected in a chain,” reprinted in Appendix B of:
R. Howard. Dynamic Probabilistic Systems, volume 1: Markov Chains.
John Wiley and Sons, 1971.

[10] G. Lorentz, Bernstein Polynomials. University of Toronto Press, 1953.
[11] G. Golub and C. Van Loan, Matrix computations, vol. 3. Johns Hopkins

Univ Pr, 1996.
[12] P. Li, W. Qian, M. Riedel, K. Bazargan, and D. Lilja, “The synthesis of

linear finite state machine-based stochastic computational elements,” in
Design Automation Conference (ASP-DAC), 2012 17th Asia and South
Pacific, pp. 757–762, IEEE, 2012.

[13] P. Li, D. J. Lilja, W. Qian, and K. Bazargan, “Using a two-dimensional
finite-state machine for stochastic computation,” in International Work-
shop on Logic and Synthesis, IWLS’12, 2012.

[14] P. Li, W. Qian, and D. J. Lilja, “A stochastic reconfigurable architecture
for fault-tolerant computation with sequential logic,” in IEEE Interna-
tional Conference on Computer Design, ICCD’12, 2012.

[15] W. Ryan, “An introduction to ldpc codess,” 2003.
[16] T. Richardson, M. Shokrollahi, and R. Urbanke, “Design of capacity-

approaching irregular low-density parity-check codes,” Information The-
ory, IEEE Transactions on, vol. 47, no. 2, pp. 619–637, 2001.

[17] W. Qian, M. Riedel, K. Bazargan, and D. Lilja, “The synthesis of
combinational logic to generate probabilities,” in Proceedings of the
2009 International Conference on Computer-Aided Design, pp. 367–
374, ACM, 2009.

