
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 1

Logical Computation on Stochastic Bit
Streams with Linear Finite State Machines
Peng Li, Student Member, IEEE, David J. Lilja, Fellow, IEEE, Weikang Qian, Member, IEEE,

Marc D. Riedel, Senior Member, IEEE, and Kia Bazargan, Senior Member, IEEE

Abstract—Most digital systems operate on a positional representation of data, such as binary radix. An alternative is to
operate on random bit streams where the signal value is encoded by the probability of obtaining a one versus a zero. This
representation is much less compact than binary radix. However, complex operations can be performed with very simple logic.
Furthermore, since the representation is uniform, with all bits weighted equally, it is highly tolerant of soft errors (i.e., bit flips).
Both combinational and sequential constructs have been proposed for operating on stochastic bit streams. Prior work has shown
that combinational logic can implement multiplication and scaled addition effectively while linear finite-state machines (FSMs) can
implement complex functions such as exponentiation and tanh effectively. Prior work on stochastic computation has largely been
validated empirically.This paper provides a rigorous mathematical treatment of stochastic implementation of complex functions
such as exponentiation and tanh implemented using linear finite state machines. It presents two new functions, an absolute
value function and exponentiation based on an absolute value, motivated by specific applications. Experimental results show
that the linear FSM-based constructs for these functions have smaller area-delay products than the corresponding deterministic
constructs. They also are much more tolerant of soft errors.

Index Terms—stochastic computing, finite state machine, stochastic bit streams.

�

1 INTRODUCTION

In a paradigm first advocated by Gaines [1], logical compu-

tations are performed on stochastic bit streams: each real-

valued number x (0 ≤ x ≤ 1) is represented by a sequence

of random bits, each of which has probability x of being

one and probability 1 − x of being zero. Compared to a

binary radix representation, a stochastic representation is

not very compact. However, it leads to remarkably simple

hardware for complex functions; it also provides very high

tolerance to soft errors.

In the decades since Gaines’ original work, there have

been numerous papers discussing the paradigm. For ex-

ample, Keane and Atlas [2] proposed a stochastic imple-

mentation of a finite impulse response filter for digital

signal processing. Gaudet and Rapley proposed a stochastic

implementation of an iterative decoding algorithm [3].

Gross et al. proposed a stochastic implementation of a

low-density parity-check decoder [4]. McNeill and Card

proposed a refractory system for counting pulses in neural

computation [5]. Li et al. proposed a stochastic imple-

mentation of a neural network controller for small wind

turbine systems [6]. Hori et al. proposed a stochastic

implementation of a blind source separation system [7].

• Peng Li, David J. Lilja, Marc D. Riedel, and Kia Bazargan are with
the Department of Electrical and Computer Engineering, University of
Minnesota, Twin Cities, MN, 55455, USA.
E-mail: {lipeng, lilja, mriedel, kia}@umn.edu

• Weikang Qian is with University of Michigan-Shanghai Jiao Tong
University Joint Institute, Shanghai Jiao Tong University, Shanghai,
200240, P.R.China.
E-mail: qianwk@sjtu.edu.cn.

Onomi et al. proposed a stochastic implementation of

a high-speed single flux-quantum up/down counter for

neural computation [8]. Qian et al. presented a general

synthesis method for logical computation on stochastic bit

streams [9], [10], [11]. They showed that combinational

logic can be synthesized to implement arbitrary polynomial

functions, provided that such polynomials map the unit

interval onto the unit interval. Their method is based on

novel mathematics for manipulating polynomials in a form

called Bernstein polynomials. In [10], Qian et al. showed

how to convert a general power-form polynomial into a

Bernstein polynomial with coefficients in the unit interval.

In [9], they showed how to realize such a polynomial

with a form of “generalized multiplexing.” In [11], they

demonstrated a reconfigurable architecture for computation

on stochastic bit streams. They analyzed cost as well

as the sources of error: approximation, quantization, and

random fluctuations. They also studied the effectiveness of

the architecture on a collection of benchmarks for image

processing. More recently, Li and Lilja demonstrated a

stochastic implementation of a kernel density estimation-

based image segmentation algorithm [12] and other digital

image processing algorithms [13].
Among them, most notable has been the work by Brown

and Card [14], [15]. They demonstrated efficient constructs

for a wide variety of basic functions, including multiplica-

tion, squaring, addition, subtraction, and division. Further,

they provided elegant constructs for complex functions

such as tanh, linear gain, and exponentiation.1 They used

1. Such functions are of interest to the artificial neural networks com-
munity. The tanh function, in particular, performs a non-linear, sigmoidal
mapping; this is used to model the activation function of a neuron.

Digital Object Indentifier 10.1109/TC.2012.231 0018-9340/12/$31.00 © 2012 IEEE

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 2

combinational logic to implement simple functions such

as multiplication and scaled addition. They further used

sequential logic in the form of linear finite-state machines

(FSMs) to implement complex functions such as tanh.

It was the first time that FSMs were used to construct

sophisticated functions stochastically. Their contributions

are significant: systems implemented using the FSM-based

stochastic computational elements (SCEs) normally have

better performance in terms of energy consumption, hard-

ware cost, and fault-tolerance. However, many questions

still need to be answered regarding FSM-based SCEs.

For example, how can we mathematically show how the

behavior of the FSM relate to the computation of the tanh

function? Can we implement more functions stochastically

using the FSM, and how can we design the corresponding

state transition diagrams? Since Brown and Card’s work

had an empirical focus and complex constructs were vali-

dated by simulation only, we cannot obtain such answers

directly from their prior work. As a result, the algorithms

that can be implemented using the FSM-based SCEs are

very limited. Most algorithms in digital image processing

and artificial neural networks cannot benefit from this

technique without additional research.

S0 SN/2-1 SN/2 SN-1
……
……
……

X

X
_

X

X X X

S1
X

SN-2
X……

……
……

X

X
_

Y=1Y=0
X
_

X
_

X
_

X
_

X
_

X
_

Fig. 1. State transition diagram of the FSM-based
stochastic tanh function.

The first goal of this paper is to provide a rigorous

mathematical treatment of complex functions such as tanh

and exponentiation implemented with linear FSMs. We

present three fundamental properties of linear FSMs oper-

ating on stochastic bit streams. Based on these properties,

we analyze and validate theoretically the constructs for

tanh and exponentiation (Exp) proposed by Brown and

Card [14]. Next we present stochastic constructs for two

new functions, exponentiation based on an absolute value

(ExpAbs) and absolute value (Abs), motivated by specific

applications. We also provide detailed analysis of the area,

performance, and error tolerance of all these constructs.

The mathematical foundations presented in this paper make

it possible to develop a general synthesis approach to

construct arbitrary functions using the FSMs so that more

algorithms can benefit from this technique [16], [17], [18],

[19].
The remainder of this paper is organized as follows.

Section 2 provides background information including the

details of stochastic encoding and decoding, combina-

tional logic for simple functions, and several FSM-based

constructs proposed by Brown and Card [14]. Section 3

presents three fundamental properties of linear FSMs op-

erating on stochastic bit streams. Section 4 presents and

analyzes four linear FSM-based constructs: tanh, Exp,

ExpAbs, and Abs. Section 5 analyzes the sources of error

in these four constructs. Section 6 presents experimental

results for the cost, the performance, and the error-tolerance

of both stochastic and deterministic implementations of the

four constructs. Section 7 discusses future directions.

2 BACKGROUND

2.1 Conversion Approach
In the stochastic paradigm, logical operations are performed

on stochastic bit streams. Signal values are encoded by

probabilities. To convert a deterministic value xd (xd ∈
[a, b]) into a stochastic bit stream X , we can generate a

random number and compare it to xd. The pseudocode for

this operation is shown as follows,

===========================
for (t = 0; t < L; t++){

if rand() < xd−a
b−a

X(t) = 1;
else

X(t) = 0; }
===========================

where L is the length of the stochastic bit stream X . The

function rand() is used to generate a random number in the

range [0, 1] based on a uniform distribution. The stochastic

bit stream X generated by this code has the probability

P (X = 1) =
xd − a

b− a
.

Random Number
Generator

Constant Number
Register

Comparator

Stochastic Bit Stream:
0, 1, 0, 0, 1, ...

Fig. 2. The Randomizer Unit [11].

This conversion can be implemented with the circuit

shown in Fig. 2, which is called a Randomizer Unit [11].

The Random Number Generator is implemented with a lin-

ear feedback shift register (LFSR). By setting the constant

value of the Constant Number Register, we can generate a

stochastic bit stream with a desired probability.

By counting the number of ones in a stochastic bit

stream, we can convert the stochastic bit stream back to

the corresponding deterministic value as

x′
d = a+

sum(X)

L
· (b− a) ≈ xd.

The error between x′
d and xd stems from quantization

effects and random fluctuations [11], which are discussed

further in Section 5 of this paper.

In fact there are two possible coding formats: a unipolar

coding format and a bipolar coding format [1]. These two

coding formats are the same in essence, and can coexist in a

single system. In the unipolar coding format, a real number

x in the unit interval (i.e., 0 ≤ x ≤ 1) corresponds to a bit

stream X(t) of length L, where t = 1, 2, ..., L. The proba-

bility that each bit in the stream is one is P (X = 1) = x.

For example, the value x = 0.3 would be represented

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 3

by a random stream of bits such as 0100010100, where

approximately 30% of the bits are “1” and the remainder are

“0.” In the bipolar coding format, the range of a real number

x is extended to −1 ≤ x ≤ 1. However, the probability

that each bit in the stream is one is P (X = 1) = x+1
2 .

The trade-off between these two coding formats is that

the bipolar format can deal with negative numbers directly

while, given the same bit stream length, L, the precision of

the unipolar format is twice that of the bipolar format.

2.2 Combinational Logic-based SCEs
Three basic arithmetic operations – scaled addition, scaled

subtraction, and multiplication – can be implemented

very simply with combinational logic in the stochastic

paradigm [1], [14]. Scaled addition can be implemented

with a multiplexer (MUX) for both the bipolar and the

unipolar coding formats. Scaled subtraction can be imple-

mented with a MUX and a NOT gate using the bipolar

coding format. Multiplication can be implemented with

a two-input AND gate using the unipolar coding format,

and with a two-input XNOR gate using the bipolar coding

format. We will briefly explain each of these constructs in

this section.

2.2.1 Scaled Addition
This operation can be implemented with a multiplexer

(MUX) as shown in Fig. 3 for both the bipolar and the

unipolar coding formats. The function of the MUX is,

C = (S ∧A) ∨ (S̄ ∧B),

where ∧ represents logical AND, ∨ represents logical OR,

and S̄ represents the negation of S.

MUX
S

B

C

01
A

Fig. 3. The scaled addition implemented with a MUX.

If we assume A, B, C, and S are stochastic bit streams,

and PA, PB , PC , and PS are their corresponding probabil-

ities, we obtain:

PC = PS · PA + (1− PS) · PB . (1)

For the unipolar coding format, the values represented by

the stochastic bit streams A, B, and C are a = PA, b = PB ,

and c = PC , respectively. For the bipolar coding format,

the values represented by the stochastic bit streams A, B,

and C are a = 2PA − 1, b = 2PB − 1, and c = 2PC −
1, respectively. Based on (1), for both of the two coding

formats, we have

c = PS · a+ (1− PS) · b. (2)

In (2), we normally set PS = 0.5 to perform unbiased

scaled addition.

2.2.2 Scaled subtraction
This operation can be implemented with a MUX and a

NOT gate as shown in Fig. 4. It works only for the bipolar

coding format. The function of the circuit is

C = (S ∧A) ∨ (S̄ ∧ B̄).

MUX
S

B

C

01

A

Fig. 4. The scaled subtraction implemented with a
MUX and a NOT gate for the bipolar coding format.

If we assume A, B, C, and S are stochastic bit streams,

and PA, PB , PC , and PS are their corresponding probabil-

ities, we obtain:

PC = PS · PA + (1− PS) · (1− PB). (3)

We define a, b, and c as the corresponding values encoded

by the stochastic bit streams A, B, and C using the bipolar

coding format, respectively, i.e., a = 2PA−1, b = 2PB−1,

and c = 2PC − 1. Then equation (3) can be rewritten as

c = PS · a− (1− PS) · b. (4)

If we set PS = 0.5 in equation (4), we have c = 0.5·(a−b).

2.2.3 Multiplication
This operation can be implemented with a two-input AND

gate as shown in Fig. 5(a) for the unipolar coding format,

and with a two-input XNOR gate as shown in Fig. 5(b) for

the bipolar coding format. The multiplication based on the

AND gate for unipolar coding format is straightforward.

We will explain the one based on the XNOR gate for the

bipolar coding format as follows. In Fig. 5(b), we have

C = (A ∧B) ∨ (Ā ∧ B̄). (5)

A C
B

(a) AND Gate

A C
B
(b) XNOR Gate

Fig. 5. Multiplication in stochastic computing.

If we define PA, PB , and PC as the probabilities of

the streams A, B, and C, respectively, then based on the

Boolean function of the XNOR gate, we have

PC = PA · PB + (1− PA) · (1− PB). (6)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 4

If we define a, b, and c as the corresponding values encoded

by the streams A, B, and C using the bipolar coding format,

respectively (i.e., a = 2PA − 1, b = 2PB − 1, and c =
2PC − 1), we can rewrite (6) as

c+ 1

2
=

a+ 1

2
· b+ 1

2

+ (1− a+ 1

2
) · (1− b+ 1

2
).

(7)

Simplifying equation (7), we have c = a · b.

2.3 FSM-based SCEs
Combinational logic can only implement polynomial func-

tions of a specific form – namely those that map the unit

interval to the unit interval [10]. Non-polynomial functions

can be approximated by combinational logic, for instance

with MacLaurin expansions [9]. However, highly non-

linear functions such as exponentiation and tanh cannot be

approximated effectively with this approach. As discussed

in Section 2.2.1, the limitation stems from the fact that

combinational logic can only implement scaled addition in

the stochastic paradigm. The implementation of polynomi-

als with coefficients not in the unit interval is sometimes

not possible and is generally not straightforward [11].

Gaines [1] described the use of an ADaptive DIgital

Element (ADDIE) for generating of arbitrary functions.

The ADDIE is based on a saturating counter, that is, a

counter which will not increment beyond its maximum

state value or decrement below its minimum state value.

In the ADDIE, the state of the counter is controlled in a

closed loop fashion. The problem is that ADDIE requires

the output of the counter to be converted into a stochastic bit

stream in order to implement the closed loop feedback [1].

This is inefficient and hardware intensive.

S0 SN-G-1 SN-G SN-1
……
……
……

X

X
_

X

X X X

S1
X

X
_

SN-2
X……

……
……

X

Y=0Y=1
X
_

X
_

X
_

X
_

X
_

X
_

Fig. 6. State transition diagram of the FSM-based
stochastic exponentiation function.

-1 -0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

X

Y

Original exponentiation function
FSM approximation

Fig. 7. Simulation result of the FSM-based stochastic
exponentiation function.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

X

Y

Original tanh function
FSM approximation

Fig. 8. Simulation result of the FSM-based stochastic
tanh function.

S0 S2 SN-3 SN-1
……
……
……

X

X
_

X

X X X

S1
X

SN-2
X

X
_

X
_

X
_

X
_

X
_

X
_

Fig. 9. A generic linear state transition diagram.

In 2001, Brown and Card [14] presented two FSM-

based constructs. The first one is called the stochastic

exponentiation (SExp) function, with the state transition

diagram shown in Fig. 6. This configuration approximates

an exponentiation function stochastically as follows,

y ≈
{
e−2Gx, 0 ≤ x ≤ 1,

1, −1 ≤ x < 0,
(8)

where x is the bipolar encoding of the input bit stream X
and y is the unipolar encoding of the output bit stream Y .

The simulation result based on N = 16, G = 2 is shown

in Fig. 7.

The second one is called the stochastic tanh (STanh)

function. We show the state transition diagram in Fig. 1.

This configuration approximates a tanh function stochasti-

cally as follows,

y ≈ e
N
2 x − e−

N
2 x

e
N
2 x + e−

N
2 x

, (9)

where x is the bipolar encoding of the input bit stream X
and y is also the bipolar encoding of the output bit stream

Y . The simulation result based on N = 8 is shown in

Fig. 8.

Note that both of these FSM-based constructs use the

linear state transition pattern shown in Fig. 9. This linear

FSM is similar to Gaines’ ADDIE. The difference is that

this linear FSM does not use a closed loop [1], [14];

accordingly this construct is much more efficient. In the

next section, we will introduce three fundamental properties

of linear FSM-based stochastic computing elements.

3 PROPERTIES OF THE LINEAR FSM
The state machine shown in Fig. 9 contains a set of

states, S0, S1, · · · , SN−1, arranged in a linear form (i.e.,

a saturating counter) [14]. It has a total of N states, where

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 5

N is a positive integer. We usually set N = 2K , where K
is also a positive integer, since the maximum number of

states that can be implemented by K D-Flip-Flops (DFFs)

is 2K . X is the input of this state machine. The output Y (not

shown in Fig. 9) of this state machine is only determined by

the current state. We assume that the input X is a Bernoulli

sequence (i.e., a stochastic bit stream).

The system can be modeled as a time-homogeneous

irreducible and aperiodic Markov chain and will have one

single stable hyperstate [1]. We define the probability that

each bit in the input stream X is one to be PX , the

probability that each bit in the corresponding output stream

Y is one to be PY , and in the steady state the probability

that the current state is Si(0 ≤ i ≤ N − 1) under the

input probability PX to be Pi(PX). The individual state

probability Pi(PX) in the hyperstate must sum to unity, and

the probability of transitioning from state Si−1 to state Si

must equal the probability of transitioning from state Si to

state Si−1. Thus, we have

Pi(PX) · (1− PX) = Pi−1(PX) · PX , (10)

N−1∑
i=0

Pi(PX) = 1, (11)

PY =
N−1∑
i=0

si · Pi(PX), (12)

where si in (12) only has two choices of values, 0 or 1,

and specifies the output Y of the system when the current

state is Si, i.e., if the current state is Si, then the output

Y = si. Based on (10) and (11), Pi(PX) can be computed

as follows,

Pi(PX) =
(PX

1−PX
)i

N−1∑
j=0

(PX

1−PX
)j
. (13)

Furthermore, based on different intervals of PX , Pi(PX) can

also be computed as follows,

Pi(PX) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
PX

1−PX
)i·(1−2PX

1−PX
)

1−(
PX

1−PX
)N

, 0 ≤ PX < 0.5,

1
N , PX = 0.5,

(
1−PX
PX

)N−1−i·(2PX−1

PX
)

1−(
1−PX
PX

)N
, 0.5 < PX ≤ 1.

(14)

If we define

t(PX) =
0.5− |PX − 0.5|
0.5 + |PX − 0.5| , (15)

equation (14) can be rewritten as follows,

Pi(PX) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ti(PX)·(1−t(PX))

1−tN
(PX)

, 0 ≤ PX < 0.5,

1
N , PX = 0.5,

tN−1−i
(PX)

·(1−t(PX))

1−tN
(PX)

, 0.5 < PX ≤ 1.

(16)

In this section, we introduce three fundamental properties

of the linear FSMs used in stochastic computing. These

properties can be proved using the above equation.

3.1 Property 1

Pi(PX) and PN−1−i(PX) are symmetric about PX =
0.5. In other words, Pi(PX) = PN−1−i(1−PX).

3.2 Property 2

As N → ∞ (i.e., N is “large enough”),

• PY will be mainly determined by the configu-

ration of the states from S0 to SN/2−1 when

PX ∈ [0, 0.5);
• PY will be mainly determined by the configu-

ration of the states from SN/2 to SN−1 when

PX ∈ (0.5, 1].

In other words, we can rewrite (12) as follows,

PY

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

≈
N/2−1∑
i=0

si · Pi(PX), 0 ≤ PX < 0.5,

=
N−1∑
i=0

si
N , PX = 0.5,

≈
N−1∑
i=N/2

si · Pi(PX), 0.5 < PX ≤ 1.

3.3 Property 3

For the configuration

PY =
N−1∑
i=0

si · Pi(PX),

• if we set si = sN−1−i, for i = 0, 1, · · · , N
2 − 1,

PY will be symmetric about the line PX = 0.5;

• if we set si = 1 − sN−1−i, for i = 0, 1, · · · ,
N
2 − 1, PY will be symmetric about the point

(PX , PY) = (0.5, 0.5).

In other words,

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 6

• if si = sN−1−i, for i = 0, 1, · · · , N
2 −1, PY (PX) =

PY (1−PX);

• if si = 1 − sN−1−i, for i = 0, 1, · · · , N
2 − 1,

PY (PX) = 1− PY (1−PX).

Based on these properties, we present four linear FSM-

based constructs for computing complex functions in the

next section.

4 THE LINEAR FSM-BASED SCES

In this section, we present and analyze FSM-based stochas-

tic computation elements (SCEs) for the STanh function,

the SExp function, the stochastic ExpAbs (SExpAbs) func-

tion, and the stochastic Abs (SAbs) function. The constructs

for the STanh and SExp functions were presented by Brown

and Card [14]; they provided no proof of correctness, only

empirical validation. The constructs for the SExpAbs and

SAbs functions are new. We prove the correctness of all

four constructs.

4.1 Stochastic Tanh Function (STanh)
Brown and Card [14] proposed the STanh function to

implement sigmoid nonlinear mapping with stochastic com-

puting. They set si in (12) as follows,

si =

{
0, 0 ≤ i ≤ N

2 − 1,

1, N
2 ≤ i ≤ N − 1.

(17)

This configuration is shown in Fig. 1, and equation (9)

is the corresponding approximate transfer function. We will

prove (9) based on the configuration in (17) as follows.

Proof: Based on the configuration in (17), we have

PY =
N−1∑
i=N/2

Pi(PX). (18)

If we substitute Pi(PX) in (18) with (13), we have

PY =

N−1∑
i=N/2

(PX

1−PX
)i

N−1∑
k=0

(PX

1−PX
)k

=
(PX

1−PX
)

N
2 − (PX

1−PX
)N

1− (PX

1−PX
)N

=
(PX

1−PX
)

N
2 · (1− (PX

1−PX
)

N
2)

(1 + (PX

1−PX
)

N
2) · (1− (PX

1−PX
)

N
2)

=
(PX

1−PX
)

N
2

1 + (PX

1−PX
)

N
2

.

(19)

If we substitute PX and PY in (19) with their corresponding

bipolar coding format x and y, we have

y + 1

2
=

(1+x
1−x)

N
2

1 + (1+x
1−x)

N
2

. (20)

Simplifying (20), we have,

y =
(1+x
1−x)

N
2 − 1

(1+x
1−x)

N
2 + 1

. (21)

By using Taylor’s expansion, we have

1 + x ≈ ex,

1− x ≈ e−x.

Thus, we can rewrite (21) as follows,

y =
(e2x)

N
2 − 1

(e2x)
N
2 + 1

=
e

N
2 x − e−

N
2 x

e
N
2 x + e−

N
2 x

. �

4.2 Stochastic Exponentiation Function (SExp)
The SExp function is configured by setting the parameters

si in (12) as follows,

si =

{
1, 0 ≤ i ≤ N −G− 1,

0, N −G ≤ i ≤ N − 1,
(22)

where G is a positive integer and G 	 N . We have

shown this configuration in Fig. 6, and equation (8) is the

corresponding approximate transfer function. We will prove

(8) as follows.

Proof: Based on the configuration in (22), we have

PY =
N−G−1∑

i=0

Pi(PX). (23)

If we substitute Pi(PX) in (23) with (16), we have

PY =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N−G−1∑
i=0

ti(PX)·(1−t(PX))

1−tN
(PX)

, 0 ≤ PX < 0.5,

N−G
N , PX = 0.5,

N−G−1∑
i=0

tN−1−i
(PX)

·(1−t(PX))

1−tN
(PX)

, 0.5 < PX ≤ 1.

(24)

Based on Property 2, and because G 	 N , we can rewrite

(24) as follows,

PY ≈

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N/2−1∑
i=0

ti(PX)·(1−t(PX))

1−tN
(PX)

, 0 < PX ≤ 0.5,

1, PX = 0.5,

N−G−1∑
i=N/2

tN−1−i
(PX)

·(1−t(PX))

1−tN
(PX)

, 0.5 < PX ≤ 1.

(1). When PX < 0.5, t(PX) =
PX

1−PX
< 1. When N is large

enough, we have

N/2−1∑
i=0

ti(PX) · (1− t(PX))

1− tN(PX)

=
1− t

N/2
(PX)

1− tN(PX)

≈ 1.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 7

S0 SG SN-G SN-1
……
……
……

X

X
_

X
_

X

X
_

X

X
_

X

X
_

X

SG-1
X

X
_

X
_

X……
……
……

X

X
_

Y=0Y=0

……
……
……

X

X
_
SN-G-1

Y=1

Fig. 10. State transition diagram of the SExpAbs
function.

(2). When PX > 0.5, t(PX) = 1−PX

PX
. When N is large

enough, we have

N−G−1∑
i=N/2

tN−1−i
(PX) · (1− t(PX))

1− tN(PX)

=
tG(PX) − t

N/2
(PX)

1− tN(PX)

≈ tG(PX).

Because x = 2PX −1 and PX > 0.5, we can rewrite t(PX)

in (15) as follows,

t(PX) =
1− |x|
1 + |x| =

1− x

1 + x
.

By using Taylor’s expansion, we have

1 + x ≈ ex, 1− x ≈ e−x,

Thus,

t(PX) =
1− x

1 + x
≈ e−x

ex
= e−2x,

and

tG(PX) ≈ e−2Gx. �

4.3 SExp with an Absolute Value (SExpAbs)
This SCE can be implemented by setting si as follows,

si =

{
1, G ≤ i ≤ N −G− 1,

0, i < G or i > N −G− 1.
(25)

We also show this configuration in Fig. 10. The approx-

imate transfer function in this configuration is

PY = e−2G|x|, (26)

where x is the bipolar coding of PX , i.e., x = 2PX − 1.

Proof: (1). When PX > 0.5 (i.e., x > 0), the configuration

from sN/2 to sN−1 is the same as in (22). Based on Prop-

erty 2, the configuration in (25) has the same approximate

function as in (22) when PX > 0.5. Thus, we have

PY = e−2Gx. (27)

(2). When PX < 0.5 (i.e., x < 0), because si = sN−1−i,

based on Property 3, PY is symmetric about PX = 0.5,

i.e., PY is symmetric about x = 0. Thus, we have

PY = e2Gx. (28)

As a result, based on (27) and (28), we obtain (26). Note

that, since G 	 N , when PX = 0.5 (i.e., x = 0), based

on (16), PY = (N − 2G+ 1)/N ≈ 1. �

S0 S3 S5 S7
X

X
_

X
_

X

X
_

X

X
_

X

X
_

X

S2
X

X
_

X
_

XX

X
_

Y=1

S4
Y=1

S1 S6
Y=0 Y=1 Y=0 Y=0 Y=1 Y=0

Fig. 11. State transition diagram of the SAbs function.

4.4 Stochastic Absolute Value Function (SAbs)
This SCE can be implemented by setting si as follows,

• When 0 ≤ i ≤ N/2− 1,

si =

{
1, i is even,
0, i is odd;

(29)

• When N/2 ≤ i ≤ N − 1,

si =

{
1, i is odd,
0, i is even.

(30)

We also show the configuration based on a 8-state FSM

(i.e., N = 8) in Fig. 11. If we define x as the bipolar coding

of PX and y as the bipolar coding of PY . The approximate

transfer function in this configuration is

y = |x|. (31)

Proof: Based on the configuration in (29) and (30), we have

PY =

N/4−1∑
i=0

P2i(PX) +

N/2−1∑
i=N/4

P(2i+1)(PX). (32)

(1). When PX < 0.5, based on Property 2, we have

PY ≈
N/4−1∑
i=0

P2i(PX). (33)

If we substitute P2i(PX) in (33) with (16), we have

N/4−1∑
i=0

P2i(PX) =

N/4−1∑
i=0

t2i(PX) · (1− t(PX))

1− tN(PX)

=
1− t

N/2
(PX)

1− tN(PX)

· 1− t(PX)

1− t2(PX)

≈ 1− t(PX)

1− t2(PX)

=
1

1 + t(PX)
.

(34)

If we substitute t(PX) in (34) with (15), we have

1

1 + t(PX)
= 1− PX .

i.e., PY ≈ 1− PX . Thus,

y = 2PY − 1 = 2(1− PX)− 1 = −x.

(2). When PX > 0.5, because si = sN−1−i, based on

Property 3, PY is symmetric about PX = 0.5, i.e., PY ≈
1− (1− PX) = PX . Thus,

y = 2PY − 1 = 2PX − 1 = x.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 8

(3). When PX = 0.5, based on (14), Pi(PX) = 1
N . If we

substitute Pi(PX) in (32) with 1
N , we have

PY =

N/4−1∑
i=0

1

N
+

N/2−1∑
i=N/4

1

N
= 0.5,

i.e., y = 0.

As a result, we have

y =

⎧⎪⎨
⎪⎩
−x, −1 ≤ x < 0,
0, x = 0,
x, 0 < x ≤ 1,

i.e., y = |x|. �

5 ERROR ANALYSIS

By its nature, the paradigm of computing on stochastic bit

streams introduces errors and uncertainty. As discussed in

[11], there are three primary sources of errors:

1) the error due to the approximation of the desired

function (ea),

2) the quantization error (eq), and

3) the error due to random fluctuations (er).

We analyze each of these three errors for the FSM-based

SCEs in this section.

5.1 Error Due to the Function Approximation
Based on the analysis from Section 4, it can be seen that

the approximation error of the linear FSM-based SCEs

compared to the desired functions depends on the number

of states. The more states we use to implement the FSM,

the less approximation error we have. Brown and Card [14]

showed simulation results with 8, 16, and 32-state in linear

FSMs for the STanh function and the SExp function. Here

we show the simulation results using different numbers of

states for the two new FSM-based SCEs, namely SExpAbs

and SAbs.

The approximation results of the SExpAbs function

based on 8, 16, 32, and 64-state linear FSMs are shown in

Fig. 12. It can be seen that the main distortion is located at

x = 0 (i.e., PX = 0.5). By using more states, this distortion

can be reduced.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Original Function
8-State FSM Approximation
16-State FSM Approximation
32-State FSM Approximation
64-State FSM Approximation

Fig. 12. Simulation results of the SExpAbs function
(G = 2 in (26)).

The approximation results of the SAbs function based on

8, 16, 32, and 64-state linear FSMs are shown in Fig. 13.

It can be seen that the main distortion is again located at

x = 0 (i.e., PX = 0.5). By using more states, this distortion

again can be reduced.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

Original Function
8-State FSM Approximation
16-State FSM Approximation
32-State FSM Approximation
64-State FSM Approximation

Fig. 13. Simulation results of the SAbs function.

We list the approximation errors for each of the FSM-

based SCEs versus different numbers of states in Table 1.

The approximation error is computed using a standard least

squares (2-norm) distance:

ea =

∫ 1

0

(T (PX)−
N−1∑
i=0

si · Pi(PX))
2 · dPX ,

where T (PX) is the original function, and
N−1∑
i=0

si · Pi(PX)

is the corresponding FSM-based approximation.

TABLE 1
Approximation errors (ea) of the four FSM-based

SCEs versus different numbers of states.

Number of States
The FSM-based SCEs 8 16 32 64

STanh 0.00% 0.00% 0.00% 0.00%

SExp 0.38% 0.07% 0.03% 0.02%

SExpAbs 1.48% 0.22% 0.07% 0.05%

SAbs 0.03% 0.00% 0.00% 0.00%

For many fault-tolerant applications, 10−3 would be

considered an acceptable error rate [11]. As a result, in

our subsequent experiments we choose the 8-state FSM

to approximate the STanh function, the 16-state FSM to

approximate the SExp function, the 32-state FSM to ap-

proximate the SExpAbs function, and the 8-state FSM to

approximate the SAbs function.

5.2 Quantization Error

To analyze the quantization error, we follow the approach

of Qian et al. [11]. In stochastic computing, we round an

arbitrary value p (0 ≤ p ≤ 1) to the closest number p′

in the set of discrete probabilities we can generate S =
{0, 1

M , · · · , 1}, where M is the maximal integer value that

can be generated by a random number generator shown in

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 9

Fig. 2. Let L be the length of the stochastic bit stream.

In order to supply good randomness, we need to choose

M ≥ L [11]. Thus, the quantization error, eq , for p is

eq = |p− p′| ≤ 1

2M
≤ 1

2L
.

Due to the effect of quantization, we actually compute

N−1∑
i=0

si · Pi(P
′
X),

instead of the FSM-based approximation

N−1∑
i=0

si · Pi(PX),

where P
′
X is the closest number to PX in the set S. Thus,

the quantization error is

eq = |
N−1∑
i=0

si · Pi(P
′
X) −

N−1∑
i=0

si · Pi(PX)|.

We define ΔPX = P
′
X − PX , and using a first order

approximation, the error due to quantization is

eq ≈ |
N−1∑
i=0

si ·
dPi(PX)

dPX
ΔPX |. (35)

Computing (35) is complex, and the result depends on si,

i.e., the configuration of the FSM. Because
N−1∑
i=0

si ·Pi(PX)

approximates the desired function T (PX) closely, we can

approximate eq by using T (PX):

eq ≈ |dT (PX)

dPX
ΔPX |.

By applying the upper bound for both |dT (PX)
dPX

| and ΔPX ,

we can derive the maximum quantization error for each of

the four FSM-based SCEs, which is listed in Table 2.

TABLE 2
The maximum quantization errors (eq) of the four

FSM-based SCEs.

The FSM-based SCEs Quantization error eq

STanh N /2L

SExp 4G/L

SExpAbs 4G/L

SAbs 1/L

From Table 2, it can be seen that increasing L will

reduce the quantization error, which is consistent with our

intuition.

5.3 Error Due to Random Fluctuations
The output bit stream Y (γ) (γ = 1, 2, · · · , L, where L is

the length of the stochastic bit streams) of the FSM-based

SCEs has probability

p′ =
N−1∑
i=0

si · Pi(P ′
X),

that each bit is one. By using a counter, we can translate

this stochastic bit stream Y (γ) to a deterministic value y,

where

y =
1

L

L∑
γ=1

Y (γ).

It is easily seen that the expected value of y is E[y] = p′.
However, the realization of y is not, in general, exactly

equal to p′ due to random fluctuations in the bit streams.

The error can be measured by the variance as

V ar[y] = V ar

[
1

L

L∑
γ=1

Y (γ)

]
=

1

L2

L∑
γ=1

V ar[Y (γ)]

=
p′(1− p′)

L
.

Since V ar[y] = E[(y − E[y])2] = E[(y − p′)2], the error

due to random fluctuation is

er = |y − p′| ≈
√

p′(1− p′)
L

.

Thus, the error due to random fluctuations is inversely pro-

portional to
√
L, and increasing the length of the stochastic

bit stream will reduce this error.

5.4 Summary of Error Analysis
The overall error, e, is bounded by the sum of the afore-

mentioned three error components, i.e.,

e = ea + eq + er.

We evaluate each of the four FSM-based SCEs for different

lengths of stochastic bit streams on 16 points: 1/16, 2/16,

3/16, · · · , 15/16, 1. For each length, we repeat the simula-

tion 1000 times and average the errors over all simulations.

The final result is shown in Table 3. Note that for each SCE,

we use the minimum number of states required to make the

approximation error ea less than 10−3. Compared to the

results from Table 1, we conclude that the overall error is

mainly due to quantization and random fluctuations.

6 EXPERIMENTAL EVALUATION

In our experiments, we first consider an image edge detec-

tion algorithm as a case study demonstrating how one might

use the proposed SAbs function in practical applications (a

similar implementation can be found in Li and Lilja [13]).

Other SCEs, such as the STanh and SExp functions, had

been introduced by Brown and Card [15] for implementing

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 10

Original Image Deterministic Implementation Stochastic Implementation

Fig. 14. Comparison of the deterministic and stochastic implementations of the image edge detection algorithm.
The leftmost image is the original image, i.e., the input for both the deterministic and stochastic implementations
of the algorithm. The middle one is the output of the deterministic implementation. The rightmost one is the
output of the stochastic implementation. It can be seen that the difference between the two outputs is trivial.

TABLE 3
The average overall errors (e) of the four FSM-based

SCEs versus different lengths of stochastic bit
streams.

Length of Stochastic Bit Streams (L)

The FSM-based SCEs 256 512 1024 2048

STanh (8-state) 3.71% 2.54% 1.73% 1.26%

SExp (16-state) 3.97% 2.39% 1.95% 1.88%

SExpAbs (32-state) 11.10% 6.44% 4.02% 3.22%

SAbs (8-state) 2.65% 2.00% 1.63% 1.42%

a soft competitive learning algorithm in artificial neural

networks. The SExpAbs function had been introduced by Li

and Lilja [12] for implementing a kernel density estimation-

based image segmentation algorithm.

In addition, we compare the stochastic implementations

to deterministic implementations of the four functions in

terms of hardware area and fault tolerance. Lastly, we

discuss real-time processing and latency issues of stochastic

computing for image processing applications.

6.1 Image Edge Detection Case Study
Image edge detection is a fundamental tool in digital image

processing and computer vision, which aims at identifying

points in a digital image at which the image brightness has

discontinuities [20]. The simplest approach is to use central

differences:

N(x, y) =
1

2
(|M(x+ 1, y)−M(x− 1, y)|)

+
1

2
(|M(x, y + 1)−M(x, y − 1)|) ,

(36)

where M(x, y) is the pixel value at location (x, y) of the

original image and N(x, y) is the pixel value at location

(x, y) of the processed image. To implement Equation (36)

stochastically, we need to use one scaled addition (refer

to Section 2.2.1), two scaled subtractions (refer to Sec-

tion 2.2.2), and two SAbs functions (refer to Section 4.4).

The circuit of the stochastic implementation of Equation

(36) is shown in Fig. 15, in which PMx+1,y
is the probability

MUX 100.5

10
0.5

MUX

PMx, y+1

1 0 0.5

PMx, y-1PMx-1, yPMx+1, y

PNx, y

SAbs SAbs

MUX

Fig. 15. The stochastic implementation of an image
edge detection algorithm based on Equation (36).

of ones in the stochastic bit stream which is converted from

the pixel value M(x+1, y), i.e., PMx+1,y
= M(x+1,y)

256 . The

probabilities PMx−1,y
, PMx,y−1

, and PMx,y+1
are converted

similarly. Based on this circuit, we have

PNx,y
=

1

4

∣∣PMx+1,y
− PMx−1,y

∣∣
+

1

4

∣∣PMx,y+1 − PMx,y−1

∣∣+ 1

2
=

N(x, y)

512
+

1

2
.

Thus, by counting the number of ones in the output bit

stream, we can convert it back to N(x, y). The simulation

results of this algorithm based on both the deterministic im-

plementation and the stochastic implementation are shown

in Fig. 14. It can be seen that the one using the stochastic

implementation has almost the same result as the one using

the deterministic implementation.

6.2 Comparison with Binary Radix
6.2.1 Hardware Area Comparison
For a comparison with a conventional binary radix imple-

mentation, we need to evaluate the cost of conventional

adders and multipliers. Of course, there are a wide variety

of conventional implementation types, tailored for many

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 11

TABLE 4
The area and delay of the stochastic implementations and the deterministic implementations of the four

functions. Delay values of the stochastic implementations stand for the overall delay. Critical path delay of the
stochastic implementations can be obtained by dividing 2M .

Stochastic Implementation Deterministic Implementation

Functions Area Delay Area-Delay Product Area-Delay Product

Tanh 35 3 × 2M 105 × 2M (10M2 − 4M − 9) · (12M − 11) · 6
Exp 75 4 × 2M 300 × 2M (10M2 − 4M − 9) · (12M − 11) · 5
ExpAbs 126 4 × 2M 504 × 2M (10M2 − 4M − 9) · (12M − 11) · 5 + 9M2

Abs 40 3 × 2M 120 × 2M 9M2

TABLE 5
Relative errors of the stochastic implementations and the deterministic implementations of the four functions

versus different error ratios ε in the input data.

Tanh Exp ExpAbs Abs
Rel. Error of Rel. Error of Rel. Error of Rel. Error of

Error Stoch. Deter. Stoch. Deter. Stoch. Deter. Stoch. Deter.

Ratio Impl. Impl. Impl. Impl. Impl. Impl. Impl. Impl.

ε (%) (%) (%) (%) (%) (%) (%) (%)

0 1.73 0.00 1.95 0.00 4.02 0.00 1.63 0.00

0.001 1.93 0.52 2.17 0.35 4.21 0.67 1.65 0.43

0.002 2.21 1.23 2.25 0.79 4.27 1.58 1.69 0.62

0.005 2.23 2.42 2.33 2.11 4.32 3.19 1.73 1.62

0.01 2.26 5.36 2.37 3.47 4.39 4.89 1.92 4.10

0.02 2.35 9.36 2.42 7.43 4.46 8.32 2.36 6.01

0.05 2.69 19.68 2.46 14.50 5.06 15.78 3.91 15.44

0.1 3.83 34.95 2.97 25.36 7.21 26.83 6.55 29.56

different purposes. Some of them require very little area

but have high latency. Others require huge area, but offer

better performance [21]. We evaluate the hardware cost

using the area-delay product [11]. Using this metric, the

performance of nearly all multiplier and adder circuits

are similar. Sophisticated adders and multipliers, such as

Kogge-Stone adders and Wallace Tree multipliers, were

developed for additions and multiplications on wide datap-

aths. Such architectures are not well suited for computations

on narrow datapaths. For accuracies of M ≤ 10, where M
is the number of bits used to represent a numerical value in

binary radix, the overhead of such sophisticated structures

outweighs their benefits.

For our studies we chose an M -bit multiplier based on

the logic design of the ISCAS’85 circuit C6288, given in

the benchmark as 16 bits [22]. We use this circuit because

its structure is regular. The C6288 is built with carry-save
adders. It consists of 240 full- and half-adder cells arranged

in a 15×16 matrix. Each full adder is realized by 9 NOR

gates. Incorporating the M -bit multiplier and optimizing

it, the circuit requires 10M2 − 4M − 9 gates; these are

inverters, fanin-2 AND gates, fanin-2 OR gates, and fanin-

2 NOR gates. The critical path of the circuit passes through

12M − 11 logic gates [9].

We use the Maclaurin polynomial [9] approximation for

the deterministic implementations of the four functions. We

need a polynomial of degree 6 to approximate the tanh

function, and a polynomial of degree 5 to approximate both

the exponentiation function and the one with absolute value

to achieve the same level of approximation errors as those

of the corresponding stochastic implementations shown in

Table 1. The corresponding Maclaurin polynomials are

computed using adders and multipliers. We show the cor-

responding area-delay products of the deterministic imple-

mentations of the four functions in Table 4. To evaluate the

area-delay product of the circuit which computes absolute

value, we assume it has the same area-delay product of a

full adder (the area is 9M gates, and the delay is M gates).

As we mentioned in the previous section, we implement

the four FSM-based SCEs with the minimum number of

states to make the approximation error less than 10−3, i.e.,

we implement the STanh function with an 8-state FSM, the

SExp function with a 16-state FSM, the SExpAbs function

with a 32-state FSM, and the SAbs function with an 8-

state FSM. The corresponding configurations have been

introduced in Section 4. Table 4 also shows the area-

delay products of the stochastic implementations of the four

functions. Each circuit of the stochastic implementations is

composed of the seven basic types of logic gates: inverters,

fanin-2 AND gates, fanin-2 NAND gates, fanin-2 OR gates,

fanin-2 NOR gates, fanin-2 XOR gates, and fanin-2 XNOR

gates. The DFF is implemented with 6 fanin-2 NAND gates.

When characterizing the area and delay, we assume that the

operation of each fanin-2 logic gate requires unit area and

unit delay. Note that if we assume M is the number of

bits used to represent a numerical value in a binary radix,

in order to get the same resolution for computation on

stochastic bit streams, we need a 2M -bit stream to represent

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 12

the same value.

From Table 4, we can see that, except the SAbs function,

the area-delay product of the stochastic implementation is

less than that of the deterministic implementation when

M ≤ 10. Although the stochastic implementation of

the SAbs function has larger area-delay product than the

corresponding deterministic implementation, this SCE is a

necessary component for some applications, such as the

stochastic implementation of an edge detection algorithm in

digital image processing, and the overall hardware cost is

still less than that of the deterministic implementation [13].

In fact, both Qian et al. [11] and Brown et al. [14] had

shown that, when M ≤ 10, computation on stochastic

bit streams has better performance than those based on

binary radix using adders and multipliers in terms of area-

delay product. Furthermore, since the energy consumed by

computation is generally proportional to the product of the

circuit area and the computation delay, the stochastic im-

plementation also has an advantage in energy consumption.

Note that stochastic computation is usually applied to those

applications that do not require a high resolution, typically

with an M in the range from 8 to 10. For example, in image

processing applications [11], [13], M is normally set to 8;

in artificial neural network applications [14], M is normally

set to 10. Thus, for most applications of stochastic com-

putation, the stochastic implementation has an advantage

both in area-delay product and energy consumption [11],

[14]. In addition, computing on stochastic bit streams offers

tunable precision—as the length of the stochastic bit stream

increases, the precision of the value represented by it also

increases. Thus, without hardware redesign, we have the

flexibility to trade-off precision and computation time.

6.2.2 Fault-Tolerance Comparison
To make comparisons on fault-tolerance, we compare the

performance of the deterministic implementations versus

the stochastic implementations of the four functions when

the input data is corrupted with noise. Suppose that the

input data of a deterministic implementation is represented

using M = 10 bits. In order to achieve the same resolution,

the bit stream of a stochastic implementation contains

2M = 1024 bits. We choose the error ratio ε of the input

data to be 0, 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, and 0.1,

as measured by the fraction of random bit flips that occur.

We evaluated each of the four functions on 16 points:

1/16, 2/16, 3/16, · · · , 15/16, 1. For each error ratio ε,
each function, and each evaluation point, we simulated both

the stochastic and the deterministic implementations 1000

times. We averaged the relative errors over all simulations.

Finally, for each error ratio ε, we averaged the relative

errors over all evaluation points. Table 5 shows the average

relative error of the stochastic implementations and the

deterministic implementations for the four functions versus

different error ratios ε. We average the relative errors of

the four functions, and plot the results in Fig. 16 to give a

clear comparison.

When ε = 0, meaning that no noise is injected into

the input data, the deterministic implementation computes

0%

5%

10%

15%

20%

25%

30%

0 0.001 0.002 0.005 0.01 0.02 0.05 0.1

re
la

tiv
e

ev
al

ua
tio

n
er

ro
r

error ratio of input data

stoc. impl. deter. impl.

Fig. 16. The average of the relative errors of the four
functions shown in Table 5.

without any error. However, due to the inherent variance,

the stochastic implementation produces a small relative er-

ror [11]. When ε > 0, the relative error of the deterministic

implementation blows up dramatically as ε increases. Even

for small values, the stochastic implementation performs

much better.

It is not surprising that the deterministic implementation

is so sensitive to errors, given that the representation used

is binary radix. In a noisy environment, bit flips affect

all the bits with equal probability. In the worst case, the

most significant bit gets flipped, resulting in an error of

2M−1/2M = 1/2 on the input value. In contrast, in a

stochastic implementation, the data is represented as the

fractional weight on a bit stream of length 2M . Thus, a

single bit flip only changes the input value by 1/2M , which

is minuscule in comparison [11].

6.3 Real-Time Processing and Latency Analysis

A potential drawback of logical computation on stochastic

bit streams is the long latency. In this section, we discuss

the latency issues and strategies for mitigating them. We

focus on stochastic real-time implementations of image

processing functions.

For practical image processing applications with real-

time constraints, the frequency of the clock is a critical

parameter. In a deterministic implementation, assuming that

one pixel can be processed per clock cycle, the required

clock frequency to meet the real-time constraint is: fc ≥
frame rate × image size. The corresponding stochastic

implementation requires a frequency of: fs ≥ frame rate

× image size × L, where L is the number of bits used

to represent a pixel value stochastically. Assuming each

pixel is represented using M bits in binary radix, then we

require L = 2M . The latency is normally defined as the

duration between the time a pixel is input into the system

and the time the result is produced. Thus the latency of the

deterministic implementation is 1/fc, and the latency of the

the stochastic implementation is L/fs.

Assuming the video sequence is grayscale QCIF format

(176×144 pixels), the frame rate is 30 frame per second

(fps), and L = 28 = 256. Based on the above discus-

sion, we have fs ≈ 30 × 176 × 144 × 256 = 200MHz.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 13

Thus, running the stochastic implementation with a clock

frequency of 200MHz will meet the real-time constraint,

and the latency is 256/200 = 1.28μs. These results show that

for image processing applications, the real-time processing

and latency issues of the stochastic implementations can be

solved by running them at a higher operational frequency

than a conventional deterministic implementation. This is

because their circuits are extremely simple, and have shorter

critical paths. More specifically, the critical path of the

circuit shown in Fig. 15 is a NOT gate plus a two-input

multiplexer. For those high resolution and high frame rate

image processing applications, although we cannot increase

the clock of the stochastic implementations without bound,

the latency issue can be solved by parallel processing. In

this approach, multiple pixels can be processed stochas-

tically at the same time by duplicating the circuit of the

stochastic implementations in parallel. This approach trades

off silicon area with the number of clock cycles.

7 DISCUSSIONS AND CONCLUSIONS

The stochastic computing paradigm offers a novel view

of digital computation: instead of transforming definite

inputs into definite outputs, circuits transform probability

values into probability values; so, conceptually, real-valued

probabilities are both the inputs and the outputs. The

computation has a pseudo analog character, reminiscent

of computations performed by physical systems such as

electronics on continuously variable signals such as voltage.

Here the variable signal is the probability of obtaining a

one versus a zero in a stochastic yet digital bit stream. The

circuits can be built from ordinary digital electronics such

as CMOS. And yet they computed complex, continuous-

valued transfer functions.

Prior work has shown constructs for a variety of in-

teresting functions. Most intriguing among these are the

complex functions produced by linear finite-state machines:

exponentiation, tanh, and absolute value. Prior work has

focused on particular application domains, ranging from

neural networks to signal processing. The stochastic con-

structs were demonstrated and validated empirically. This

paper provides the mathematical foundation for the analysis

and synthesis of such circuits.

Because a stochastic representation is uniform, with all

bits weighted equally, it is highly tolerant of soft errors

(i.e., bit flips). Computation on stochastic bit streams offers

tunable precision: as the length of the stochastic bit stream

increases, the precision of the value represented by it also

increases. Thus, without hardware redesign, one has the

flexibility to trade off precision and computation time. In

contrast, with a conventional binary-radix implementation,

when a higher precision is required, the underlying hard-

ware must be redesigned.

A significant drawback of the paradigm is the long

latency of the computations. The accuracy depends on

the length of the bit streams; with long bit streams, each

operation requires many clock cycles to complete. However,

potentially the operations could be performed at a much

faster clock rate, mitigating the latency issue. This is be-

cause operations can be implemented with extremely simple

hardware in the stochastic paradigm. Note that the circuits

that we have shown all have very short critical paths. In

future work, we will perform a detailed circuit-level timing

analysis of all the stochastic constructs. In addition, parallel

processing can be also used to solve this issue, especially

for stochastic implementations of digital image processing

applications and artificial neural network applications. The

accuracy of the computation also depends on the quality of

the randomness. If the stochastic bit streams are not sta-

tistically independent, the accuracy will drop. Furthermore,

correlation is an issue in any circuit that has feedback or

reconvergent paths. If the circuit has multiple outputs, these

will have correlated probability values. In future work, we

will study how to design circuits with multiple outputs –

and so correlations in space. Also, we will study the impact

of feedback – and so correlations in time. Also, in future

work we will study the dynamic behavior of stochastic

constructs. We have observed that, using bit streams of

length L to represent the input values, the output values

of FSM-based stochastic constructs are always correct and

stable after L clock cycles, no matter what the initial state.

We will justify this claim mathematically.

ACKNOWLEDGMENTS
This work was supported in part by an National Science

Foundation (NSF) Career Award, NO. 0845650 and NSF

grant NO. CCF-1241987. Any opinions, findings and con-

clusions or recommendations expressed in this material are

those of the authors and do not necessarily reflect the

views of the NSF. Portions of this work were presented

in the 22nd IEEE International Conference on Application

– specific Systems, Architectures and Processors [12], and

in the 29th IEEE International Conference on Computer

Design [13].

REFERENCES
[1] B. R. Gaines, “Stochastic computing systems,” Advances in Infor-

mation System Science, Plenum, vol. 2, no. 2, pp. 37–172, 1969.
[2] J. Keane and L. Atlas, “Impulses and stochastic arithmetic for signal

processing,” in Acoustics, Speech, and Signal Processing, 2001.
Proceedings.(ICASSP’01). 2001 IEEE International Conference on,
vol. 2, pp. 1257–1260, IEEE, 2001.

[3] V. Gaudet and A. Rapley, “Iterative decoding using stochastic
computation,” Electronics Letters, vol. 39, no. 3, pp. 299–301, 2003.

[4] W. Gross, V. Gaudet, and A. Milner, “Stochastic implementation of
ldpc decoders,” in Signals, Systems and Computers, 2005. Confer-
ence Record of the Thirty-Ninth Asilomar Conference on, pp. 713–
717, IEEE, 2005.

[5] D. McNeill and H. Card, “Refractory pulse counting processes in
stochastic neural computers,” Neural Networks, IEEE Transactions
on, vol. 16, no. 2, pp. 505–508, 2005.

[6] H. Li, D. Zhang, and S. Foo, “A stochastic digital implementation of
a neural network controller for small wind turbine systems,” Power
Electronics, IEEE Transactions on, vol. 21, no. 5, pp. 1502–1507,
2006.

[7] M. Hori and M. Ueda, “Fpga implementation of a blind source
separation system based on stochastic computing,” in Soft Computing
in Industrial Applications, 2008. SMCia’08. IEEE Conference on,
pp. 182–187, IEEE, 2008.

[8] T. Onomi, T. Kondo, and K. Nakajima, “Implementation of high-
speed single flux-quantum up/down counter for the neural com-
putationusing stochastic logic,” Applied Superconductivity, IEEE
Transactions on, vol. 19, no. 3, pp. 626–629, 2009.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XXX 201X 14

[9] W. Qian and M. Riedel, “The synthesis of robust polynomial arith-
metic with stochastic logic,” in 45th ACM/IEEE Design Automation
Conference, DAC’08, pp. 648–653, 2008.

[10] W. Qian, M. D. Riedel, and I. Rosenberg, “Uniform approximation
and Bernstein polynomials with coefficients in the unit interval,”
European Journal of Combinatorics, vol. 32, pp. 448–463, 2011.

[11] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An archi-
tecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, pp. 93–105, January 2010.

[12] P. Li and D. J. Lilja, “A low power fault-tolerance architecture for
the kernel density estimation based image segmentation algorithm,”
in IEEE International Conference on Application - specific Systems,
Architectures and Processors, ASAP’11, 2011.

[13] P. Li and D. J. Lilja, “Using stochastic computing to implement
digital image processing algorithms,” in 29th IEEE International
Conference on Computer Design, ICCD’11, 2011.

[14] B. D. Brown and H. C. Card, “Stochastic neural computation I:
Computational elements,” IEEE Transactions on Computers, vol. 50,
pp. 891–905, September 2001.

[15] B. D. Brown and H. C. Card, “Stochastic neural computation II: Soft
competitive learning,” IEEE Transactions on Computers, vol. 50,
pp. 906–920, September 2001.

[16] P. Li, W. Qian, M. Riedel, K. Bazargan, and D. Lilja, “The syn-
thesis of linear finite state machine-based stochastic computational
elements,” in Design Automation Conference (ASP-DAC), 2012 17th
Asia and South Pacific, pp. 757 –762, jan. 2012.

[17] P. Li, D. J. Lilja, W. Qian, and K. Bazargan, “Using a two-
dimensional finite-state machine for stochastic computation,” in
International Workshop on Logic and Synthesis, IWLS’12, 2012.

[18] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The syn-
thesis of complex arithmetic computation on stochastic bit streams
using sequential logic,” in Computer-Aided Design, 2012. ICCAD
2012. IEEE/ACM International Conference on, IEEE, 2012.

[19] P. Li, W. Qian, and D. J. Lilja, “A stochastic reconfigurable ar-
chitecture for fault-tolerant computation with sequential logic,” in
Computer Design (ICCD), 2011 IEEE 30th International Conference
on, IEEE, 2012.

[20] R. C. Gonzalez and R. E. Woods, “Digital image processing, 3rd
edition,” Prentice Hall, 2008.

[21] B. Parhami, Computer arithmetic. Oxford university press, 2000.
[22] “ISCAS’85 C6288 16×16 multiplier,” in

http://www.eecs.umich.edu/˜jhayes/iscas/c6288.html.

PLACE
PHOTO
HERE

Peng Li received the BSci degree in Elec-
trical Engineering from North China Electric
Power University, Beijing, in 2005; the MEng
degree from the Institute of Microelectron-
ics, Tsinghua University, Beijing, in 2008.
He is currently pursuing the Ph.D. degree
in the Electrical and Computer Engineering
Department, University of Minnesota Twin
Cities, Minneapolis, MN. His main research
interests are in the area of VLSI design for
digital signal processing, stochastic comput-

ing, and high performance storage architecture.

PLACE
PHOTO
HERE

David J. Lilja received the BS degree in
Computer Engineering from Iowa State Uni-
versity in Ames, and the MS and PhD de-
grees in Electrical Engineering from the Uni-
versity of Illinois at Urbana-Champaign. He is
currently a Professor and Head of Electrical
and Computer Engineering at the University
of Minnesota in Minneapolis. He has worked
as a Development Engineer at Tandem Com-
puters Inc. and has chaired and served on
the program committees of numerous confer-

ences. He was elected a Fellow of the IEEE and the AAAS. His main
research interests include computer architecture, computer systems
performance analysis, and high-performance storage systems, with
a particular interest in the interaction of computer architecture with
software, compilers, and circuits.

PLACE
PHOTO
HERE

Weikang Qian received his Ph.D. degree
in Electrical Engineering at the University of
Minnesota in 2011 and his B.Eng. degree
in Automation at Tsinghua University, Bei-
jing, China in 2006. He has been an Assis-
tant Professor at the University of Michigan-
Shanghai Jiao Tong University Joint Institute
since 2011. He has research interests in the
fields of computer-aided design of integrated
circuits, circuit design for emerging technolo-
gies, and fault-tolerant computing. He is a

member of the IEEE.

PLACE
PHOTO
HERE

Marc D. Riedel received the BEng degree in
Electrical Engineering with a minor in Mathe-
matics from McGill University, and the MSc
and PhD degrees in Electrical Engineering
from Caltech. He is currently an Associate
Professor of Electrical and Computer Engi-
neering at the University of Minnesota. He
is also a member of the Graduate Faculty
in Biomedical Informatics and Computational
Biology. From 2004 to 2005, he was a Lec-
turer in Computation and Neural Systems at

Caltech. He has held positions at Marconi Canada, CAE Electronics,
Toshiba, and Fujitsu Research Labs. His PhD dissertation titled
“Cyclic Combinational Circuits” received the Charl H. Wilts Prize for
the Best Doctoral Research in Electrical Engineering at Caltech. His
paper “The Synthesis of Cyclic Combinational Circuits” received the
Best Paper Award at the Design Automation Conference. He is a
recipient of the US National Science Foundation (NSF) CAREER
Award. He is a Senior Member of the IEEE and the IEEE Computer
Society.

PLACE
PHOTO
HERE

Kia Bazargan received the BSci degree in
Computer Science from Sharif University,
Tehran, Iran, and the MS and PhD degrees
in Electrical and Computer engineering from
Northwestern University, Evanston, Illinois, in
1998 and 2000, respectively. He is currently
an Associate Professor with the Department
of Electrical and Computer Engineering, Uni-
versity of Minnesota, Minneapolis. He was
a guest coeditor of the ACM Transactions
on Embedded Computing Systems Special

Issue on Dynamically Adaptable Embedded Systems in 2003. He
has served on the technical program committee of a number of
IEEE/ACM-sponsored conferences (e.g., Field Programmable Gate
Array (FPGA), Field Programmable Logic (FPL), Design Automation
Conference (DAC), International Conference on Computer-Aided
Design (ICCAD), and Asia and South Pacific DAC). He was an
Associate Editor of the IEEE Transactions on CAD of Integrated
Circuits and systems from 2005-2012. He was a recipient of the US
National Science Foundation (NSF) Career Award in 2004. He is a
Senior Member of the IEEE and the IEEE Computer Society.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

