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Abstract—Computation performed on stochastic bit streams is less
efficient than that based on a binary radix because of its long latency.
However, for certain complex arithmetic operations, computation on
stochastic bit streams can consume less energy and tolerate more
soft errors. In addition, the latency issue could be solved by using a
faster clock frequency or in combination with a parallel processing
approach. To take advantage of this computing technique, previous
work proposed a combinational logic-based reconfigurable architecture
to perform complex arithmetic operations on stochastic streams of bits.
In this paper, we enhance and extend this reconfigurable architecture
using sequential logic. Compared to the previous approach, the proposed
reconfigurable architecture takes less hardware area and consumes less
energy, while achieving the same performance in terms of processing
time and fault-tolerance.

I. INTRODUCTION

Almost all modern computers use binary radix encoding to rep-
resent numeric values. It is a positional notation with a radix of 2,
and an extremely compact encoding. For example, M symbols can
represent 2M different numeric values. Another encoding scheme,
which we call a stochastic encoding scheme [1], represents a numeric
value x in the unit interval (i.e., 0 ≤ x ≤ 1) by a bit stream X , in
which the probability of a one is x. For example, “0.5” could be
represented by a bit stream “10001101”, in which the probability of
a one is “0.5.”
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Fig. 1. Binary radix encoding to stochastic bit stream converter [2]. The
comparator outputs a one if the random number generated by the LFSR is
less than the constant value; it outputs a zero otherwise.

By using a linear feedback shift register (LFSR) and a comparator,
we can convert a value from its binary radix encoding to its stochastic
encoding. As shown in Fig. 1, assuming that we want to represent
x (0 ≤ x ≤ 1) with an L-bit stochastic stream, we set the LFSR to
generate random numbers in the range [0, L), and set the constant
value to L ·x. Based on this configuration, the probability of each bit
being one in the generated stochastic bit stream is x. For example, if
we want to represent a probability “0.5” with an 8-bit stream, we set
the LFSR to generate random numbers in the range [0, 8), and set the
constant value to 8× 0.5 = 4. A counter, which counts the number
of ones in the stochastic bit stream, can be used to convert the value
from its stochastic encoding to its binary radix encoding [2], which
is the number of ones divided by the length of the bit stream.

Basic arithmetic operations can be implemented with very simple
digital logic circuits with the stochastic encoding scheme [1], [3].
For example, as shown in Fig. 2, multiplication can be implemented

using a single AND gate. In this figure, the two inputs A and B
are independent stochastic bit streams. If we define a = P (A = 1),
b = P (B = 1), and c = P (C = 1), based on the logic function of
the AND gate, we will have P (C = 1) = P (A = 1) · P (B = 1),
i.e., c = a · b.
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Fig. 2. Multiplication with stochastic encoding. Here the inputs are both
4/8. The output is 4/8× 4/8 = 2/8, as expected.

It can be seen that the stochastic encoding is a uniform encoding
scheme. This is because an M -bit stream can represent only M
different numeric values with this encoding scheme. In other words,
assuming that a value is represented by M bits using binary radix
encoding, we need 2M bits to represent the same value using
stochastic encoding. As a result, for those basic operations such as
multiplication and addition, computation on stochastic bit streams
could have a long latency and consume more energy.

In previous work, Brown and Card [4], however, showed that
for certain complex operations, such as the exponentiation and
tanh functions, computation on stochastic bit streams consumes less
energy than computation on a binary radix, and the latency issue
could be solved by using a parallel processing approach or/and a
higher operational frequency thanks to its simple circuit structure [5],
[6], [7]. For example, in the applications of artificial neural networks
(ANNs) [8] and image processing [9], [10], we can process multiple
neurons or pixels at the same time. In addition, researchers also
demonstrated that computation on bit streams can tolerate a large
number of soft errors [11] compared to computation on binary
radix. Qian et al. [2] illustrated the fault-tolerance of computation
on stochastic bit streams using the example of the gamma correction
function used in image processing. The experimental results showed
that, when soft errors are injected at a rate of 15%, the image
generated by the computation using a binary radix is full of noisy
pixels, while the image generated by the computation on stochastic
bit streams is still recognizable.

To take advantage of this computing technique for those complex
operations, Qian et al. [2] proposed a reconfigurable architecture us-
ing combinational logic. The kernel of their architecture is a general-
ized multiplexing circuit, which can synthesize a given target function
stochastically based on the theory of Bernstein polynomials [12].
We find that sequential logic can also synthesize the given target
function stochastically. If we redesign the stochastic reconfigurable
architecture using sequential logic, the hardware area and the energy
consumption will be significantly reduced, and the performance (in



terms of processing time and fault-tolerance) will still be the same. In
this paper, our contributions are: 1) we develop a general approach to
synthesize a finite-state machine (FSM) to implement the given target
function stochastically; 2) we use this FSM to enhance the stochastic
reconfigurable architecture to significantly reduce the hardware area
and energy consumption.

The remainder of the paper is organized as follows. Section II
briefly reviews the related work. Section III introduces how to synthe-
size functions stochastically using the FSM. Section IV demonstrates
the proposed stochastic reconfigurable architecture based on the FSM.
Section V shows the experimental results. Conclusions are drawn in
Section VI.

II. RELATED WORK

Logical computation on stochastic bit streams dates back to the
1960s. In an early set of papers, researchers proposed designs to im-
plement basic arithmetic operations such as addition, multiplication,
and division on stochastic bit streams [1]. The implementations of
more sophisticated functions, such as the tanh and exponentiation
functions, have also been proposed [4]. Logical computation on
stochastic bit streams finds applications in many different areas,
including artificial neural networks (ANNs), communication, control,
and image processing [4], [13], [14], [10]. Many earlier works
applied logical computation on stochastic bit streams to implement
ANNs [15]. In ANNs, we usually require a large number of adders
and multipliers. Conventional implementations of adders and mul-
tipliers based on binary radix are very costly in area. However, a
stochastic implementation of these basic operations is very hardware-
efficient, which makes the realization of large scale ANNs possible.
Recently, logical computation on stochastic bit streams has also been
applied in communication to implement low-density parity-check
(LDPC) decoders [13], in control to implement proportional-integral
(PI) controller [14], and in image processing for functions such as
edge detection, median filtering, and contrast stretching [10].

In 2011, Qian et al. [2] proposed a reconfigurable architecture
for performing polynomial computation on stochastic bit streams.
This architecture, as shown in Fig. 3, is composed of three parts:
the Randomizer, the ReSC Unit, and the De-Randomizer. CX and
CZi (0 ≤ i ≤ n, where n is the highest degree of the polynomial
this architecture can compute) are the inputs. CY is the output.
These values are represented using binary radix. The architecture
is reconfigurable in the sense that it can be used to compute different
functions CY = f(CX) by setting appropriate values for the
coefficients CZi (0 ≤ i ≤ n) [2].
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Fig. 3. A reconfigurable stochastic computing architecture based on
combinational logic (i.e., the ReSC Unit is implemented using an adder
and a multiplexer) [2].

Their Randomizer uses the circuit shown in Fig. 1 to convert
the numerical values CX and CZi to stochastic bit streams Xk
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Fig. 4. ReSC Unit implementing the Bernstein polynomial f(x) =
2
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6
8
B3,3(x) at x = 0.5. Stochastic bit

streams x1, x2 and x3 encode the value x = 0.5. Stochastic bit streams
z0, z1, z2 and z3 encode the corresponding Bernstein coefficients [2].

(1 ≤ k ≤ n) and Zi (0 ≤ i ≤ n). Their De-Randomizer
is implemented using a counter, which converts the resulting bit
streams to binary radix encoded values. The ReSC Unit, which
processes the stochastic bit streams, is the kernel of the architecture.
It is a generalized multiplexing circuit which implements Bernstein
polynomials [12] with coefficients in the unit interval. This circuit can
be used to approximate arbitrary continuous functions. For example,
The polynomial

f(x) =
1

4
+

9

8
x− 15

8
x2 +

5

4
x3,

can be converted into a Bernstein polynomial of degree 3:

f(x) =
2

8
B0,3(x) +

5

8
B1,3(x) +

3

8
B2,3(x) +

6

8
B3,3(x), (1)

where each Bi,3(x) (i = 0, 1, . . . , 3) is a Bernstein basis polynomial
of the form Bi,3(x) =

(
3
i

)
xi(1 − x)3−i. A Bernstein polynomial,

B(x) =
∑n
i=0 biBi,n(x), with all coefficients bi in the unit interval,

can be implemented stochastically by the ReSC Unit shown in Fig. 3.
An illustration of how equation (1) is implemented by the ReSC Unit
is shown in Fig. 4.

The ReSC Unit consists of an adder block and a multiplexer block.
The inputs to the adder are an input set {x1, . . . , xn}. The data
inputs to the multiplexer are z0, . . . , zn. The outputs of the adder
are the selecting inputs to the multiplexer block. At every clock
cycle, if the number of ones in the input set {x1, . . . , xn} equals i
(0 ≤ i ≤ n), then the binary number computed by the adder is i and
the output of the multiplexer y is set to zi. The inputs x1, . . . , xn are
fed with independent stochastic bit streams X1, . . . , Xn representing
the probabilities P (Xi = 1) = x ∈ [0, 1], for 1 ≤ i ≤ n. The
inputs z0, . . . , zn are fed with independent stochastic bit streams
Z0, . . . , Zn representing the probabilities P (Zi = 1) = bi ∈ [0, 1],
for 0 ≤ i ≤ n, where the bi’s are the Bernstein coefficients.
The output of the circuit is a stochastic bit stream Y in which
the probability of a bit being one equals the Bernstein polynomial
B(t) =

∑n
i=0 biBi,n(t) evaluated at t = x.

It can be seen from Fig. 3 that the entire architecture consists of
(2n+ 1) LFSRs, (2n+ 1) comparators, an n-bit adder, an (n+ 1)-
channel multiplexer, and a counter (note that n is the highest degree
of the polynomial that this architecture can compute). In this paper,
we redesign the ReSC Unit using sequential logic to significantly
reduce the circuit complexity for the Randomizer. The details are
discussed in the following sections.

III. SYNTHESIZING FUNCTIONS USING AN FSM

We propose a new circuit shown in Fig. 6 to implement a given
target function T (PX) stochastically. It has the same function as the
ReSC Unit introduced previously. Thus, this circuit can substitute for
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Fig. 6. The new FSM-based circuit for synthesizing target functions
stochastically.

the ReSC Unit in the reconfigurable architecture shown in Fig. 3,
and the hardware cost of the new architecture can be significantly
reduced. The new architecture will be introduced in Section IV and
its system block diagram can be found in Fig. 9. In this section, we
discuss how to use the circuit shown in Fig. 6 to synthesize the given
target function T (PX).

Fig. 5 shows the state transition diagram of the FSM in Fig. 6. It
has two inputs X and K. Its output is the current state number. For
example, if the current state of the FSM is Si (0 ≤ i ≤ N−1), then
the output of the FSM is i. Note that although the output of the FSM
looks like an up/down counter, its state transition is quite different
from a conventional up/down counter. The output of the FSM is
connected to the selection bits of the multiplexer “MUX”, which has
N data inputs (w0, w1, · · · , wN−1). Note that if the current state of
the FSM is Si, then the “MUX” will choose its i-th data input wi as
the output Y .

Assuming that X , K, and wi are all stochastic bit streams, the
output Y is also a stochastic bit stream. We define PX , PK , Pwi ,
and PY to be the probabilities of ones in X , K, wi, and Y ,
respectively. The synthesis goal is to compute Pwi and PK to make
PY approximate the given target function T (PX). More specifically,
we define the approximation error ε as follows,

ε =

∫ 1

0

(T (PX)− PY )2 · d(PX). (2)

The synthesis goal is to compute Pwi and PK to minimize ε
subject to the constraints that 0 ≤ Pwi ≤ 1 and 0 ≤ PK ≤ 1. In the
following sections, we discuss how to obtain these parameters.

A. Understanding the FSM

Before we introduce the detailed approach for computing Pwi and
PK , it is necessary to understand the state transition diagram of the
FSM shown in Fig. 5. Given a current state Si, the next state of the
FSM will be

• Si+1 if X = 1 and 0 ≤ i ≤ N
2
− 1;

• Si−1 if (X,K) = (0, 1) and 1 ≤ i ≤ N
2
− 1;

• Si+1 if (X,K) = (1, 1) and N
2
≤ i ≤ N − 2;

• Si−1 if X = 0 and N
2
≤ i ≤ N − 1;

• Si in any other cases.
If the inputs X and K are stochastic bit streams with fixed prob-
abilities, then the random state transition will eventually reach an
equilibrium state, where the probability of transitioning from state Si
to its adjacent state Si+1, will equal the probability of transitioning
from state Si+1 to state Si. Thus, we have



Pi · PX = Pi+1 · (1− PX) · PK , 0 ≤ i ≤ N
2
− 2,

PN
2
−1 · PX = PN

2
· (1− PX),

Pi · PX · PK = Pi+1 · (1− PX), N
2
≤ i ≤ N − 2,

(3)

where Pi is the probability that the current state is Si in the
equilibrium state (or the probability that the current output is i). PX
and PK have been already defined in the beginning of this section.
Note that the individual state probability Pi must sum to unity over
all Si, i.e.,

N−1∑
i=0

Pi = 1. (4)

Using (3) and (4), we can write Pi in terms of PX and PK as

Pi =


(

PX
1−PX

)i·P−i
K

α
, 0 ≤ i ≤ N

2
− 1,

(
PX

1−PX
)i·P i+1−N

K

α
, N

2
≤ i ≤ N − 1,

(5)

where α =

N
2
−1∑

i=0

( PX
1−PX

)i · P−i
K +

N−1∑
i=N

2

( PX
1−PX

)i · P i+1−N
K .

Note that based on the circuit shown in Fig. 6, PY is a function of
Pi and Pwi (we have defined PY and Pwi in the beginning of this
section):

PY =

N−1∑
i=0

Pwi · Pi. (6)

In the next two sections, we will demonstrate how to use (6) to
compute Pwi and PK to synthesize the given target function T (PX).

B. Compute Pwi

By expanding (2), we can rewrite ε as

ε =

∫ 1

0

T (PX)2 · d(PX)− 2

∫ 1

0

T (PX) · PY · d(PX)

+

∫ 1

0

P 2
Y · d(PX).
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Fig. 7. An illustration showing how the circuit shown in Fig. 6 works based on specific stochastic bit streams of inputs X , K, and wi (0 ≤ i ≤ 7). The
FSM has 8 states. Its state transition has been shown in Fig. 5, and we assume the initial state is S0. The stochastic bit stream of output Y is generated based
on the input bit streams and the corresponding logic circuit.

The first term
∫ 1

0
T (PX)2 · d(PX) is a constant because T (PX) is

given. Thus minimizing ε is equivalent to minimizing the following
objective function ϕ:

ϕ =

∫ 1

0

P 2
Y · d(PX)− 2

∫ 1

0

T (PX) · PY · d(PX). (7)

We notice that computing Pwi to minimize ϕ is a typical con-
strained quadratic programming problem, if PK is a constant. When
we set PK to a constant, the integral of Pi on PX is also a constant.
The solution of Pwi can be obtained using standard techniques [16].
The detailed process for a similar problem has been illustrated by Li
et al. in [17], [18]. PK can be solved using a numerical approach,
which will be discussed in the next section.

C. Compute PK
As we stated in the previous section, PK is first set to a constant.

Then we compute Pwi using quadratic programming [16] to minimize
ε (or the equivalent ϕ). Note that all the values between 0 and 1 (with
a step 0.001) will be used to set PK in the synthesis process. More
specifically, we first set PK to 0.001, and compute the corresponding
Pwi and ε. Next, we set PK to 0.002, and compute the corresponding
Pwi and ε, and so on. Finally, we set PK to 1, and compute the
corresponding Pwi and ε. Among these 1000 results, we select the
minimum ε, and the corresponding PK and Pwi .

D. An Example

In this section, we show how the circuit shown in Fig. 6 works
based on the example in Equation (1) in Section II (here we use PX
and T (PX) instead of x and f(x)).

Example: Use an 8-state FSM to synthesize:

T (PX) =
1

4
+

9

8
PX −

15

8
P 2
X +

5

4
P 3
X .

To implement this function stochastically using the circuit shown in
Fig. 6, we first need to compute PK and Pwi . Based on the proposed
synthesis approach, we obtain the parameters shown in Table I. The
minimum approximation error ε defined in Equation (2) is 6.0 ×
10−11.

TABLE I
PK AND Pwi FOR SYNTHESIZING THE POLYNOMIAL IN THE ABOVE

EXAMPLE USING AN 8-STATE FSM.

PK = 0.44

Pw0
= 0.25 Pw1

= 0.73 Pw2
= 0.16 Pw3

= 0.70

Pw4 = 0.30 Pw5 = 0.84 Pw6 = 0.26 Pw7 = 0.75
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Fig. 8. Simulation result of the example.

Fig. 7 illustrates how the circuit in Fig. 6 works for this example.
Assuming that the circuit starts working at clock cycle t0 and the
initial state of the FSM is S0 (note that the initial state has no
influence on the final results, it could be any one of the 8 states),
the output of the FSM at t0 is 0 (because its initial state is S0) and
the output of the multiplexer “MUX” at t0 is w0 = 0 (because its
selection input equals 0 at t0).

Because at t0, (X,K) = (0, 0) and the initial state is S0, in the
next clock cycle t1, the output of the FSM is still S0 based on the
state transition diagram shown in Fig. 5. The output of the “MUX”
at t1 is still w0, and w0 = 1 at t1.

In the next clock cycle t2, the state becomes S1 because (X,K) =
(1, 0) at the previous clock cycle t1, and the output of the “MUX” at
t2 becomes w1, which equals 0 at t2, and so on for the other clock
cycles.

Assume that we use 1024 bits to represent a value stochastically.
After 1024 clock cycles, if the probability of ones in X equals PX ,
the probability of ones in K equals 0.44, and the probability of ones
in wi equals Pwi , shown in Table I, then the probability of ones in



Y will be

PY ≈
1

4
+

9

8
PX −

15

8
P 2
X +

5

4
P 3
X .

Fig. 8 shows the simulation of this circuit with PX ranging from 0
to 1.

Another example is the linear gain function proposed by Brown
and Card [4]. If we set the corresponding target function, we will
get exactly the same results (i.e., Pwi = 0 if 0 ≤ i ≤ N

2
− 1; else

Pwi = 1). In addition, based on the expression of Pi in (5), we find
that an N -state FSM could be used to synthesize the polynomials
with a degree up to N − 1. Thus, the 8-state FSM can be used to
synthesize polynomials with a degree up to 7, which is high enough
for most applications. As a result, we use the 8-state FSM to construct
the proposed stochastic reconfigurable architecture.

IV. THE PROPOSED STOCHASTIC RECONFIGURABLE

ARCHITECTURE USING THE FSM

The proposed reconfigurable architecture using the FSM is shown
in Fig. 9. Similar to the original reconfigurable architecture shown in
Fig. 3, it is also composed of three parts: the Randomizer, the FSM
Unit, and the De-Randomizer. The inputs are CX , CK , and Cwi

(0 ≤ i ≤ 7). CY is the output. These values are represented using
binary radix. The architecture is reconfigurable in the sense that it
can be used to compute different functions CY = f(CX) by setting
appropriate values for the constants CK and Cwi (0 ≤ i ≤ 7).
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>
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……

>

CX

Cw0, Cw1, 
…, Cw7

The 8-State 
FSM

X D

De-Randomizer

Counter CY

K

LFSR-K

>CK

LFSR-W

Fig. 9. An FSM-based reconfigurable stochastic architecture.

The Randomizer has the same function as shown in Fig. 3, which
converts the numerical values CX , CK and Cwi to the corresponding
stochastic bit streams. However, it takes much less hardware than the
combinational implementation. As we described in Section II, the
original Randomizer uses (2n+1) LFSRs and (2n+1) comparators
in total (n for CX , (n + 1) for CZi , as shown in Fig. 3), where n
is the degree of the target polynomial. In the proposed architecture,
the Randomizer uses only 3 LFSRs, 3 comparators, and an 8-channel
multiplexer. Because the LFSR is the most area consuming part in
the entire architecture, the Randomizer in the new architecture saves
(2n− 2) LFSRs compared to the original ReSC Unit.

The FSM Unit has a similar function as the ReSC Unit in the
original architecture. It contains only an 8-state FSM which is
implemented based on the state transition diagram shown in Fig. 5.
Note that if the current state of this FSM is Si (0 ≤ i ≤ 7), then

the MUX in the Randomizer will connect its i-th data input (i.e.,
Cwi ) to the output of the MUX, and will generate the corresponding
bit using the LFSR-W and the comparator. This implementation
essentially has the same behavior as the circuit shown in Fig. 6, which
needs n LFSRs and n comparators to generate n different stochastic
bit streams with probabilities of ones being Pw0 , Pw1 , · · · , Pwn−1 ,
respectively. We notice that at each clock cycle one of the n random
input bits to the MUX will be selected as the output of the circuit.
One way to implement this function is to choose the probability of the
output bit being one using the current state number. This is equivalent
to choosing the constant value in the Randomizer (shown in Fig. 1)
according to the current state number. Thus, we use the output of
the FSM to choose from the constant values Cw0 , Cw1 , · · · , Cwn−1 .
Note that in order to multiplex constant values of m bits, the MUX
in Fig. 9 stands for an 8-channel m-bit multiplexer.

The De-Randomizer is implemented using a binary counter, which
converts the resulting bit streams to output values. This is the same
as the original one shown in Fig. 3.

TABLE II
CK AND Cwi FOR COMPUTING THE POLYNOMIAL EXAMPLE.

CK = 448

Cw0
= 256 Cw1

= 748 Cw2
= 164 Cw3

= 717

Cw4 = 307 Cw5 = 860 Cw6 = 266 Cw7 = 768

To illustrate how this architecture works, we use the same example
introduced in Section III-D. A numerical value is represented by a
stochastic 1024-bit stream. We set the constants CK and Cwi based
on PK and Pwi given in Table I. The values of CK and Cwi are
shown in Table II, where we have CK = PK × 1024 and Cwi =
Pwi × 1024. This means that, using the circuit shown in Fig. 9, if
we set CK and Cwi (0 ≤ i ≤ 7) to the corresponding values shown
in Table II, CY will approximate the following function,

CY
1024

=
1

4
+

9

8
×
(
CX
1024

)
− 15

8
×
(
CX
1024

)2

+
5

4
×
(
CX
1024

)3

.

V. EXPERIMENTAL RESULTS

In this section, we compare the proposed stochastic reconfigurable
architecture to the one proposed by Qian et al. [2] in terms of the
hardware area and the fault-tolerance.

A. Hardware Area and Energy Consumption Comparison

It can be seen from Fig. 3 and Fig. 9 that the two architectures have
several basic units in common, such as the LFSR, the comparator, and
the counter. Since we use 1024 (i.e., 210) bits to represent a numerical
value stochastically, the bit width of these components is 10. We use
the Synopsys Design Compiler to evaluate the hardware area of these
basic components in terms of equivalent fanin-two NAND gates. We
find that a 10-bit LFSR takes 60 gates, a 10-bit comparator takes 30
gates, and a 10-bit counter takes 60 gates. In addition, an n-bit adder
takes at least 2n gates, and an n-bit multiplexer takes 3(n−1) gates.
The 8-state FSM takes 28 gates.

Assuming that the target polynomial has a degree of n, the
hardware area of the stochastic reconfigurable architecture proposed
by Qian et al. [2] depends on n. As we introduced in Fig. 3, its
Randomizer consists of 2n + 1 LFSRs and 2n + 1 comparators.
Its ReSC Unit consists of an n-bit adder and an (n + 1)-channel
multiplexer. Its De-Randomizer is implemented using a counter. As
a result, its total hardware area is (185n+ 150) gates.

In contrast, the hardware area of the proposed stochastic recon-
figurable architecture is independent of the degree of the target



polynomial as long as the degree is less than or equal to 7. Note that if
the degree is greater than 7, we need an FSM with more states, such
as a 16-state FSM, to implement the target polynomial. As shown
in Fig. 9, the Randomizer in the proposed architecture consists of 3
LFSRs, 3 comparators, and an 8-channel 10-bit multiplexer. Its FSM
Unit consists of the 8-state FSM. Its De-Randomizer is a counter.
As a result, its hardware area is only 568 gates. We summarize the
hardware area of these two architectures versus the degree of the
target polynomials in Table III. It can be seen that the proposed
architecture takes much less hardware area than the one proposed by
Qian et al. [2]. For example, when n = 7, it takes only 39% of the
area of the one proposed by Qian et al. [2].

Since both architectures compute on stochastic bit streams, they
have the same processing time for the same operations. We normally
evaluate the energy consumption by the product of the processing
time and the hardware area. However, because the proposed archi-
tecture takes much less hardware area while keeping the computation
time constant, it also consumes much less energy. Compared to
conventional hardware implementations based on a binary radix,
the proposed stochastic reconfigurable architecture has smaller area-
delay product as was shown previously when comparing the ReSC
architecture to implementations based on binary radix [2].

TABLE III
AREA COMPARISON FOR POLYNOMIALS OF DEGREES FROM 3 TO 7.

Degree n 3 4 5 6 7

Qian et. al [2] 705 890 1075 1260 1445

Proposed 568

B. Fault-Tolerance Comparison

We compare the performance of stochastic computation on polyno-
mial functions when the input data are corrupted with noise. Suppose
that the bit stream of a stochastic representation contains 210 = 1024
bits. We choose the error ratio λ of the input data to be 0, 0.001,
0.005, 0.01, 0.05, and 0.1, as measured by the fraction of random bit
flips that occur.

We randomly choose 10 polynomials of degree between 3 and
7 with coefficients in the unit interval. We evaluated each target
function on 10 points: 0.1, 0.2, 0.3, · · · , 0.9, 1. For each error ratio
λ, each target function, and each evaluation point, we simulated both
the combinational logic-based stochastic reconfigurable architecture
and the FSM-based stochastic reconfigurable architecture 1000 times.
We averaged the relative errors over all simulations. Finally, for each
error ratio λ, we averaged the relative errors over all evaluation points
and all target polynomials. Table IV shows the average relative error
of the two stochastic reconfigurable architectures versus different
error ratios λ. It can be seen that the two stochastic reconfigurable
architectures have almost the same performance in terms of fault-
tolerance (the difference is within 0.3%). This is because both of them
perform computation on stochastic bit streams, which can tolerate
more errors than those based on a binary radix [2] .

TABLE IV
RELATIVE ERROR FOR THE COMBINATIONAL LOGIC-BASED STOCHASTIC
RECONFIGURABLE ARCHITECTURE AND THE FSM-BASED STOCHASTIC
RECONFIGURABLE ARCHITECTURE VERSUS THE ERROR RATIO λ IN THE

INPUT DATA. THE DIFFERENCE IS WITHIN 0.3%.

Error ratio λ 0 0.001 0.005 0.01 0.05 0.1

ReSC (%) 2.63 2.62 2.73 3.01 7.54 13.8

FSM (%) 2.65 2.71 2.92 2.83 7.68 14.1

VI. CONCLUSION AND FUTURE WORK

This paper describes a reconfigurable architecture to perform
computation on stochastic bit streams using sequential logic. Com-
pared to the previous stochastic reconfigurable architecture based
on combinational logic, it has the same performance in terms of
fault-tolerance and processing time, but takes less hardware. Future
research will work on a general purpose stochastic processor.
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