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Abstract—Mounting concerns over variability, defects, and noise motivate a new approach for digital circuitry: stochastic logic, that is

to say, logic that operates on probabilistic signals and so can cope with errors and uncertainty. Techniques for probabilistic analysis of

circuits and systems are well established. We advocate a strategy for synthesis. In prior work, we described a methodology for

synthesizing stochastic logic, that is to say logic that operates on probabilistic bit streams. In this paper, we apply the concept of

stochastic logic to a reconfigurable architecture that implements processing operations on a datapath. We analyze cost as well as the

sources of error: approximation, quantization, and random fluctuations. We study the effectiveness of the architecture on a collection of

benchmarks for image processing. The stochastic architecture requires less area than conventional hardware implementations.

Moreover, it is much more tolerant of soft errors (bit flips) than these deterministic implementations. This fault tolerance scales

gracefully to very large numbers of errors.

Index Terms—Stochastic logic, reconfigurable hardware, fault-tolerant computation.
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1 INTRODUCTION

THE successful design paradigm for integrated circuits
has been rigidly hierarchical, with sharp boundaries

between different levels of abstraction. From the logic level
up, the precise Boolean functionality of the system is fixed
and deterministic. This abstraction is costly: variability and
uncertainty at the circuit level must be compensated for by
better physical design. With increased scaling of semicon-
ductor devices, soft errors caused by ionizing radiation are
a major concern, particularly for circuits operating in harsh
environments such as space. Existing methods mitigate
against bit-flips with system-level techniques like error-
correcting codes and modular redundancy.

Randomness, however, is a valuable resource in computa-
tion. A broad class of algorithms in areas such as crypto-
graphy and communication can be formulated with lower
complexity if physical sources of randomness are available
[1], [2]. Applications that entail the simulation of random
physical phenomena, such as computational biology and
quantum physics, also hinge upon randomness (or good
pseudorandomness) [3].

We advocate a novel view for computation, called
stochastic logic. Instead of designing circuits that transform
definite inputs into definite outputs—say Boolean, integer, or
floating-point values into the same—we synthesize circuits
that conceptually transform probability values into prob-
ability values. The approach is applicable for randomized
algorithms. It is also applicable for data intensive applications
such as signal processing where small fluctuations can be
tolerated but large errors are catastrophic. In such contexts,

our approach offers savings in computational resources and
provides significantly better fault tolerance.

1.1 Stochastic Logic

In prior work, we described a methodology for synthesizing
stochastic logic [4]. Operations at the logic level are
performed on randomized values in serial streams or on
parallel “bundles” of wires. When serially streaming, the
signals are probabilistic in time, as illustrated in Fig. 1a; in
parallel, they are probabilistic in space, as illustrated in Fig. 1b.

The bit streams or wire bundles are digital, carrying zeros
and ones; they are processed by ordinary logic gates, such as
AND and OR. However, the signal is conveyed through the
statistical distribution of the logical values. With physical
uncertainty, the fractional numbers correspond to the
probability of occurrence of a logical one versus a logical
zero. In this way, computations in the deterministic Boolean
domain are transformed into probabilistic computations in
the real domain. In the serial representation, a real number x
in the unit interval (i.e., 0 � x � 1) corresponds to a bit
stream XðtÞ of length N , t ¼ 1; 2; . . . ; N . In the parallel
representation, it corresponds to the bits on a bundle of
N wires. The probability that each bit in the stream or on the
bundle is one is P ðX ¼ 1Þ ¼ x.

Throughout this paper, we illustrate our method with
serial bit streams. However, our approach is equally
applicable to parallel wire bundles. Indeed, we have
advocated stochastic logic as a framework for synthesis of
technologies such as nanowire crossbar arrays [5].

Our synthesis strategy is to cast logical computations as
arithmetic operations in the probabilistic domain and
implement these directly as stochastic operations on data-
paths. Two simple arithmetic operations—multiplication
and scaled addition—are illustrated in Fig. 2.

. Multiplication. Consider a two-input AND gate,
shown in Fig. 2a. Suppose that its inputs are two
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independent bit streams X1 and X2. Its output is a
bit stream Y , where

y ¼ P ðY ¼ 1Þ ¼ P ðX1 ¼ 1 and X2 ¼ 1Þ
¼ P ðX1 ¼ 1ÞP ðX2 ¼ 1Þ ¼ x1x2:

Thus, the AND gate computes the product of the

two input probability values.
. Scaled Addition. Consider a two-input multiplexer,

shown in Fig. 2b. Suppose that its inputs are two
independent stochastic bit streams X1 and X2 and its
selecting input is a stochastic bit stream S. Its output
is a bit stream Y , where

y ¼ P ðY ¼ 1Þ
¼ P ðS ¼ 1ÞP ðX1 ¼ 1Þ þ P ðS ¼ 0ÞP ðX2 ¼ 1Þ
¼ sx1 þ ð1� sÞx2:

(Note that throughout the paper, multiplication and

addition represent arithmetic operations, not Boolean

AND and OR.) Thus, the multiplexer computes the

scaled addition of the two input probability values.

More complex functions such as division, the Taylor

expansion of the exponential function, and the square root

function can also be implemented with only a dozen or so

gates each using the stochastic methodology. Prior work

established specific constructs for such operations [6], [7],

[8]. We tackle the problem more broadly: we propose a

synthesis methodology for stochastic computation.
The stochastic approach offers the advantage that

complex operations can be performed with very simple

logic. Of course, the method entails redundancy in the

encoding of signal values. Signal values are fractional

values corresponding to the probability of logical one. If the

resolution of a computation is required to be 2�M , then the

length or width of the bit stream should be 2M bits. This is a

significant trade-off in time (for a serial encoding) or in
space (for a parallel encoding).

1.2 Fault Tolerance

The advantage of the stochastic architecture in terms of
resources is that it tolerates faults gracefully. Compare a
stochastic encoding to a standard binary radix encoding,
say with M bits representing fractional values between 0
and 1. Suppose that the environment is noisy; bit flips
occur and these afflict all the bits with equal probability.
With a binary radix encoding, suppose that the most
significant bit of the data gets flipped. This causes
a relative error of 2M�1=2M ¼ 1=2. In contrast, with a
stochastic encoding, the data are represented as the
fractional weight on a bit stream of length 2M . Thus, a
single bit flip only changes the input value by 1=2M ,
which is small in comparison.

Fig. 3 illustrates the fault tolerance that our approach
provides. The circuit in Fig. 3a is a stochastic implementa-
tion while the circuit in Fig. 3b is a conventional
implementation. Both circuits compute the function:

y ¼ x1x2sþ x3ð1� sÞ:

Consider the stochastic implementation. Suppose that the
inputs are x1 ¼ 4=8, x2 ¼ 6=8, x3 ¼ 7=8, and s ¼ 2=8. The
corresponding bit streams are shown above the wires.
Suppose that the environment is noisy and bit flips occur at
a rate of 10 percent; this will result in approximately three bit
flips for the stream lengths shown. A random choice of three
bit flips is shown in Fig. 3a. The modified streams are shown
below the wires. With these bit flips, the output value
changes but by a relatively small amount: from 6=8 to 5=8.

In contrast, Fig. 3b shows a conventional implementation
of the function with multiplication and addition modules
operating on a binary radix representation: the real numbers
x1 ¼ 4=8, x2 ¼ 6=8, x3 ¼ 7=8, and s ¼ 2=8 are encoded as
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Fig. 2. Stochastic implementation of arithmetic operations: (a) Multiplication; (b) Scaled addition.

Fig. 1. Stochastic encoding: (a) A stochastic bit stream; (b) A stochastic wire bundle. A real value x in ½0; 1� is represented as a bit stream or a
bundle X. For each bit in the bit stream or bundle, the probability that it is 1 is P ðX ¼ 1Þ ¼ x.



ð0:100Þ2, ð0:110Þ2, ð0:111Þ2, and ð0:010Þ2, respectively. The
correct result is y ¼ ð0:110Þ2, which equals 6=8. In the same
situation as above, with a 10 percent rate of bit flips,
approximately one bit will get flipped. Suppose that,
unfortunately, this is the most significant bit of x3. As a
result, x3 changes to ð0:011Þ2 ¼ 3=8 and the output y becomes
ð0:0112Þ ¼ 3=8. This is a much larger error than we expect
with the stochastic implementation.

1.3 Related Work and Context

The topic of computing reliably with unreliable components
dates back to von Neumann and Shannon [9], [10].
Techniques such as modular redundancy and majority
voting are widely used for fault tolerance. Error correcting
codes are applied for memory subsystems and communica-
tion links, both on-chip and off-chip.

Probabilistic methods are ubiquitous in circuit and
system design. Generally, they are applied with the aim
of characterizing uncertainty. For instance, statistical timing
analysis is used to obtain tighter performance bounds [11]
and also applied in transistor sizing to maximize yield [12].
Many flavors of probabilistic design have been proposed for
integrated circuits. For instance, [13] presents a design
methodology based on Markov random fields geared
toward nanotechnology; [14] presents a methodology based
on probabilistic CMOS, with a focus on energy efficiency.

There has a promising recent effort to design so-called
stochastic processors [15]. The strategy in that work is to

deliberately underdesign the hardware, such that it is
allowed to produce errors, and to implement error tolerance
through software mechanisms. As much as possible, the
burden of error tolerance is pushed all the way to the
application layer. The approach permits aggressive power
reduction in the hardware design. It is particularly suitable
for high-performance computing applications, such as
Monte Carlo simulations, that naturally tolerate errors.

On the one hand, our work is more narrowly circum-
scribed: we present a specific architectural design for
datapath computations. On the other hand, our contribution
is a significant departure from existing methods, predicated
on a new logic-level synthesis methodology. We design
processing modules that compute in terms of statistical
distributions. The modules process serial or parallel streams
that are random at the bit level. In the aggregate, the
computation is robust and accurate since the results depend
only on the statistics and not on specific bit values. The
computation is “analog” in character, cast in terms of real-
valued probabilities, but it is implemented with digital
components. The strategy is orthogonal to specific hard-
ware-based methods for error tolerance, such as error-
coding of memory subsystems [16]. It is also compatible
with application layer and other software-based methods
for error tolerance.

In [4], we presented a methodology for synthesizing
arbitrary polynomial functions with stochastic logic. We
also extended the method to the computation of arbitrary
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Fig. 3. A comparison of the fault tolerance of stochastic logic to that of conventional logic. The original bit sequence is shown above each
wire. A bit flip is indicated with a solid rectangle. The modified bit sequence resulting from the bit flip is shown below each wire and
indicated with a dotted rectangle. (a) Stochastic implementation of the function y ¼ x1x2sþ x3ð1� sÞ. (b) Conventional implementation of the
function y ¼ x1x2sþ x3ð1� sÞ, using binary radix multiplier, adder, and subtractor units.



continuous functions through nonpolynomial approxima-
tions [17]. In [18], we considered the complementary
problem of generating probabilistic signals for stochastic
computation. We described a method for transforming
arbitrary sources of randomness into the requisite prob-
ability values, entirely through combinational logic.

1.4 Overview

In this paper, we apply the concept of stochastic logic to a
reconfigurable architecture that implements processing
operations on a datapath. We analyze cost as well as the
sources of error: approximation, quantization, and random
fluctuations. We study the effectiveness of the architecture
on a collection of benchmarks for image processing. The
stochastic architecture requires less area than conventional
hardware implementations. Moreover, it is much more
tolerant of soft errors (bit flips) than these deterministic
implementations. This fault tolerance scales gracefully to
very large numbers of errors.

The rest of the paper is structured as follows: Section 2
discusses the synthesis of stochastic logic. Section 3 presents
our reconfigurable architecture. Section 4 analyzes the
sources of error in stochastic computation. Section 5
describes our implementation of the architecture. Section 6
provides experimental results. Section 7 presents conclu-
sions and future directions of research.

2 SYNTHESIZING STOCHASTIC LOGIC

2.1 Synthesizing Polynomials

By definition, the computation of polynomial functions
entails multiplications and additions. These can be im-
plemented with the stochastic constructs described in
Section 1.1. However, the method fails for polynomials
with coefficients less than zero or greater than one, e.g.,
1:2x� 1:2x2, since we cannot represent such coefficients
with stochastic bit streams.

In [4], we proposed a method for implementing arbitrary
polynomials, including those with coefficients less than
zero or greater than one. As long as the polynomial maps
values from the unit interval to values in the unit interval,
then no matter how large the coefficients are, we can
synthesize stochastic logic that implements it. The proce-
dure begins by transforming a power-form polynomial into
a Bernstein polynomial [19]. A Bernstein polynomial of
degree n is of the form

BðxÞ ¼
Xn
i¼0

biBi;nðxÞ; ð1Þ

where each real number bi is a coefficient, called a Bernstein
coefficient, and each Bi;nðxÞði ¼ 0; 1; . . . ; nÞ is a Bernstein
basis polynomial of the form

Bi;nðxÞ ¼
n

i

� �
xið1� xÞn�i: ð2Þ

A power-form polynomial of degree n can be transformed
into a Bernstein polynomial of degree not less than n.
Moreover, if a power-form polynomial maps the unit
interval onto itself, we can convert it into a Bernstein
polynomial with coefficients that are all in the unit interval.

A Bernstein polynomial with all coefficients in the unit
interval can be implemented stochastically by a generalized
multiplexing circuit, shown in Fig. 4. The circuit consists of
an adder block and a multiplexer block. The inputs to the
adder are an input set fx1; . . . ; xng. The data inputs to
the multiplexer are z0; . . . ; zn. The outputs of the adder are
the selecting inputs to the multiplexer block. Thus, the
output of the multiplexer y is set to be zi (0 � i � n), where i
equals the binary number computed by the adder; this is the
number of ones in the input set fx1; . . . ; xng.

The stochastic input bit streams are set as follows:

. The inputs x1; . . . ; xn are independent stochastic bit
streams X1; . . . ; Xn representing the probabilities
P ðXi ¼ 1Þ ¼ x 2 ½0; 1�, for 1 � i � n.

. The inputs z0; . . . ; zn are independent stochastic bit
streams Z0; . . . ; Zn representing the probabilities
P ðZi ¼ 1Þ ¼ bi 2 ½0; 1�, for 0 � i � n, where the bi’s
are the Bernstein coefficients.

The output of the circuit is a stochastic bit stream Y in
which the probability of a bit being one equals the Bernstein
polynomial BðxÞ ¼

Pn
i¼0 biBi;nðxÞ. We discuss generating

and interpreting such input and output bit streams in
Sections 3.2 and 3.3.

Example 1. The polynomial f1ðxÞ ¼ 1
4þ 9

8 x� 15
8 x

2 þ 5
4x

3

maps the unit interval onto itself. It can be converted
into a Bernstein polynomial of degree 3:

f1ðxÞ ¼
2

8
B0;3ðxÞ þ

5

8
B1;3ðxÞ þ

3

8
B2;3ðxÞ þ

6

8
B3;3ðxÞ:

Notice that all the coefficients are in the unit interval. The
stochastic logic that implements this Bernstein polynomial
is shown in Fig. 5. Assume that the original polynomial is
evaluated at x ¼ 0:5. The stochastic bit streams of inputs
x1, x2, and x3 are independent and each represents the
probability value x ¼ 0:5. The stochastic bit streams of
inputs z0; . . . ; z3 represent probabilities b0 ¼ 2

8 , b1 ¼ 5
8 ,

b2 ¼ 3
8 , and b3 ¼ 6

8 . As expected, the stochastic logic
computes the correct output value: f1ð0:5Þ ¼ 0:5.

2.2 Synthesizing Nonpolynomial Functions

It was proved in [4] that stochastic logic can only
implement polynomial functions. In real applications, of
course, we often encounter nonpolynomial functions, such
as trigonometric functions. A method was proposed in [17]
to synthesize arbitrary functions by approximating them
via Bernstein polynomial. Indeed, given a continuous
function fðxÞ of degree n as the target, a set of real

96 IEEE TRANSACTIONS ON COMPUTERS, VOL. 60, NO. 1, JANUARY 2011

Fig. 4. A generalized multiplexing circuit implementing the Bernstein
polynomial y ¼ BðxÞ ¼

Pn
i¼0 biBi;nðxÞ with 0 � bi � 1, for i ¼ 0; 1; . . . ; n.



coefficients b0; b1; . . . ; bn in the interval ½0; 1� is sought to
minimize the objective function

Z 1

0

fðxÞ �
Xn
i¼0

biBi;nðxÞ
 !2

dx: ð3Þ

By expanding (3), an equivalent objective function can
be obtained:

fðbbÞ ¼ 1

2
bbTHHbbþ ccT bb; ð4Þ

where

bb ¼ ½b0; . . . ; bn�T ;

cc ¼ �
Z 1

0

fðxÞB0;nðxÞ dx; . . . ;�
Z 1

0

fðxÞBn;nðxÞ dx

� �T
;

HH ¼

R 1
0 B0;nðxÞB0;nðxÞ dx . . .

R 1
0 B0;nðxÞBn;nðxÞ dxR 1

0 B1;nðxÞB0;nðxÞ dx . . .
R 1

0 B1;nðxÞBn;nðxÞ dx

..

. . .
. ..

.R 1
0 Bn;nðxÞB0;nðxÞ dx . . .

R 1
0 Bn;nðxÞBn;nðxÞ dx

2
666664

3
777775:

This optimization problem is, in fact, a constrained
quadratic programming problem. Its solution can be
obtained using standard techniques. Once we obtain
the requisite Bernstein coefficients, we can implement the
polynomial approximation as a Bernstein computation with
the generalized multiplexing circuit described in Section 2.1.

Example 2 (Gamma Correction). The gamma correction
function is a nonlinear operation used to code and decode
luminance and tristimulus values in video and still-image
systems. It is defined by a power-law expression

Vout ¼ V
�

in;

where Vin is normalized between zero and one [20]. We
apply a value of � ¼ 0:45, which is the value used in
most TV cameras.

Consider the nonpolynomial function

f2ðxÞ ¼ x0:45:

We approximate this function by a Bernstein polynomial
of degree 6. By solving the constrained quadratic optimi-
zation problem, we obtain the Bernstein coefficients:

b0 ¼ 0:0955; b1 ¼ 0:7207; b2 ¼ 0:3476; b3 ¼ 0:9988;

b4 ¼ 0:7017; b5 ¼ 0:9695; b6 ¼ 0:9939:

In a strict mathematical sense, stochastic logic can only
implement functions that map the unit interval into the
unit interval. However, with scaling, stochastic logic can
implement functions that map any finite interval into any
finite interval. For example, the functions used in grayscale
image processing are defined on the interval ½0; 255� with
the same output range. If we want to implement such a
function y ¼ fðtÞ, we can instead implement the function
y ¼ gðtÞ ¼ 1

256 fð256tÞ. Note that the new function gðtÞ is
defined on the unit interval and its output is also on the
unit interval.

3 THE STOCHASTIC ARCHITECTURE

We present a novel Reconfigurable architecture based on
Stochastic logiC: the ReSC architecture. As illustrated in
Fig. 6, it is composed of three parts: the Randomizer Unit
generates stochastic bit streams; the ReSC Unit processes
these bit streams; and the De-Randomizer Unit converts the
resulting bit streams to output values. The architecture is
reconfigurable in the sense that it can be used to compute
different functions by setting appropriate values of
constant registers.

3.1 The ReSC Unit

The ReSC Unit is the kernel of the architecture. It is the
generalized multiplexing circuit described in Section 2.1,
which implements Bernstein polynomials with coefficients
in the unit interval. As described in Section 2.2, we can use
it to approximate arbitrary continuous functions.

The probability x of the independent stochastic bit
streams xi is controlled by the binary number Cx in a
constant register, as illustrated in Fig. 6. The constant
register is a part of the Randomizer Unit, discussed below.
Similarly, stochastic bit streams z0; . . . ; zn representing a
specified set of coefficients can be produced by configuring
the binary numbers Czi ’s in constant registers.

3.2 The Randomizer Unit

The Randomizer Unit is shown in Fig. 7. To generate a
stochastic bit stream, a random number generator produces
a number R in each clock cycle. If R is strictly less than the
number C stored in the corresponding constant number
register, then the comparator generates a one; otherwise, it
generates a zero.

In our implementation, we use linear feedback shift
registers (LFSRs). Assume that an LFSR has L bits.
Accordingly, it generates repeating pseudorandom num-
bers with a period of 2L � 1. We choose L so that
2L � 1 � N , where N is the length of the input random bit
stream. This guarantees good randomness of the input bit
streams. The set of random numbers that can be generated
by such an LFSR is f1; 2; . . . ; 2L � 1g, and the probability
that R equals a specific k in the set is

P ðR ¼ kÞ ¼ 1

2L � 1
: ð5Þ

Given a constant integer 1 � C � 2L, the comparator
generates a one with probability
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Fig. 5. Stochastic logic implementing the Bernstein polynomial f1ðxÞ ¼
2
8B0;3ðxÞ þ 5

8B1;3ðxÞ þ 3
8B2;3ðxÞ þ 6

8B3;3ðxÞ at x ¼ 0:5. Stochastic bit
streams x1; x2, and x3 encode the value x ¼ 0:5. Stochastic bit streams
z0; z1; z2, and z3 encode the corresponding Bernstein coefficients.



P ðR < CÞ ¼
XC�1

k¼1

P ðR ¼ kÞ ¼ C � 1

2L � 1
: ð6Þ

Thus, the set of probability values that can be generated by
the Randomizer Unit is

S ¼ 0;
1

2L � 1
; . . . ; 1

� �
: ð7Þ

Given an arbitrary value 0 � p � 1, we round it to the
closest number p0 in S. Hence, C is determined by p as

C ¼ roundðpð2L � 1ÞÞ þ 1; ð8Þ
where the function roundðxÞ equals the integer nearest to x.
The value p is quantized to

p0 ¼ roundðpð2L � 1ÞÞ
2L � 1

: ð9Þ

In our stochastic implementation, we require different
input random bit streams to be independent. Therefore,
LFSRs for generating different input random bit streams are
configured to have different feedback functions.

3.3 The De-Randomizer Unit

The De-Randomizer Unit translates the result of the
stochastic computation, expressed as a randomized bit
stream, back to a deterministic value using a counter. We
set the length of the stochastic bit stream to be a power of
two, i.e., N ¼ 2M , where M is an integer. We choose the
number of bits of the counter to be M þ 1, so that we can

count all possible numbers of ones in the stream: from 0 to

2M ones. We treat the output of the counter as a binary

decimal number d ¼ ðcM:cM�1 . . . c0Þ2, where c0; c1; . . . ; cM
are the M þ 1 output bits of the counter.

Since each bit of the stream X has probability x of being

one, the mean value of the counter result d is

E½d� ¼ E ðcM . . . c0Þ2
2M

� �
¼ E 1

N

XN
�¼1

Xð�Þ
" #

¼ 1

N

XN
�¼1

E½Xð�Þ� ¼ x;
ð10Þ

which is the value represented by the bit stream X.
Compared to the kernel, the Randomizer and De-

Randomizer units are expensive in terms of the hardware

resources required. Indeed, they dominate the area cost of

the architecture. We note that in some applications, both

the Randomizer and De-Randomizer units could be

implemented directly through physical interfaces. For

instance, in sensor applications, analog voltage discrimi-

nating circuits might be used to transform real-valued

input and output values into and out of probabilistic bit

streams [21]. Also, random bit streams with specific

probabilities can be generated from fixed sources of

randomness through combinational logic. In [18], we

presented a method for synthesizing logic that generates

arbitrary sets of output probabilities from a small given set

of input probabilities.

4 THE ERROR ANALYSIS

By its very nature, stochastic logic introduces uncertainty

into the computation. There are three sources of errors.

1. The error due to the Bernstein approximation: Since
we use a Bernstein polynomial with coefficients in
the unit interval to approximate a function gðxÞ,
there is some approximation error
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Fig. 6. A reconfigurable stochastic computing architecture. Here the ReSC Unit implements the target function y ¼ 1
4þ 9

8x� 15
8 x

2 þ 5
4 x

3 at x ¼ 0:5.

Fig. 7. The Randomizer Unit.



e1 ¼ gðxÞ �
Xn
i¼0

bi;nBi;nðxÞ
�����

�����: ð11Þ

We could use the L2-norm to measure the
average error as

e1avg ¼
1

1� 0

Z 1

0

gðxÞ �
Xn
i¼0

bi;nBi;nðxÞ
 !2

dx

0
@

1
A

0:5

¼
Z 1

0

gðxÞ �
Xn
i¼0

bi;nBi;nðxÞ
 !2

dx

0
@

1
A0:5

:

ð12Þ
The average approximation error e1avg only

depends on the original function gðxÞ and the degree
of the Bernstein polynomial; e1avg decreases as n
increases. For all of the functions that we tested, a
Bernstein approximation of degree of 6 was suffi-
cient to reduce e1avg to below 10�3.1

2. The quantization error: As shown in Section 3.2,
given an arbitrary value 0 � p � 1, we round it to the
closest number p0 in S ¼ f0; 1

2L�1 ; . . . ; 1g and generate
the corresponding bit stream. Thus, the quantization
error for p is

jp� p0j � 1

2ð2L � 1Þ ; ð13Þ

where L is the number of bits of the LFSR.
Due to the effect of quantization, we will

compute
Pn

i¼0 b
0
i;nBi;nðx0Þ instead of the Bernstein

approximation
Pn

i¼0 bi;nBi;nðxÞ, where b0i;n and x0

are the closest numbers to bi;n and x, respectively,
in set S. Thus, the quantization error is

e2 ¼
Xn
i¼0

b0i;nBi;nðx0Þ �
Xn
i¼0

bi;nBi;nðxÞ
�����

�����: ð14Þ

Define �bi;n ¼ b0i;n � bi;n and �x ¼ x0 � x. Then,
using a first order approximation, the error due to
quantization is

e2 �
Xn
i¼0

Bi;nðxÞ�bi;n þ
Xn
i¼0

bi;n
dBi;nðxÞ

dx
�x

�����
�����

¼
Xn
i¼0

Bi;nðxÞ�bi;n þ n
Xn�1

i¼0

ðbiþ1;n � bi;nÞBi;n�1ðxÞ�x
�����

�����:
Notice that since 0 � bi;n � 1, we have jbiþ1;n �

bi;nj � 1. Combining this with the fact thatPn
i¼0 Bi;nðxÞ ¼ 1 and j�bi;nj; j�xj � 1

2ð2L�1Þ , we have

e2 �
1

2ð2L � 1Þ
Xn
i¼0

Bi;nðxÞ
�����

�����
þ n

2ð2L � 1Þ
Xn�1

i¼0

Bi;n�1ðxÞ
�����

����� ¼ nþ 1

2ð2L � 1Þ :
ð15Þ

Thus, the quantization error is inversely propor-
tional to 2L. We can mitigate this error by increasing
the number of bits L of the LFSR.

3. The error due to random fluctuations: Due to the
Bernstein approximation and the quantization effect,
the output bit stream Y ð�Þ ð� ¼ 1; 2; . . . ; NÞ has
probability p0 ¼

Pn
i¼0 b

0
i;nBi;nðx0Þ that each bit is

one. The De-Randomizer Unit returns the result

y ¼ 1

N

XN
�¼1

Y ð�Þ: ð16Þ

It is easily seen that E½y� ¼ p0. However, the
realization of y is not, in general, exactly equal to
p0. The error can be measured by the variation as

V ar½y� ¼ V ar 1

N

XN
�¼1

Y ð�Þ
" #

¼ 1

N2

XN
�¼1

V ar½Y ð�Þ�

¼ p
0ð1� p0Þ
N

:

ð17Þ

Since V ar½y� ¼ E½ðy� E½y�Þ2� ¼ E½ðy� p0Þ2�, the error
due to random fluctuations is

e3 ¼ jy� p0j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p0ð1� p0Þ

N

r
: ð18Þ

Thus, the error due to random fluctuations is
inversely proportional to

ffiffiffiffiffi
N
p

. Increasing the length
of the bit stream will decrease the error.

The overall error is bounded by the sum of the above
three error components:

e ¼ jgðxÞ � yj � gðxÞ �
Xn
i¼0

bi;nBi;nðxÞ
�����

�����
þ
Xn
i¼0

bi;nBi;nðxÞ �
Xn
i¼0

b0i;nBi;nðx0Þ
�����

�����
þ
Xn
i¼0

b0i;nBi;nðx0Þ � y
�����

�����
¼ e1 þ e2 þ e3:

ð19Þ

Note that we choose the number of bits L of the LFSRs to
satisfy 2L � 1 � N in order to get nonrepeating random bit
streams. Therefore, we have

1

2L
<

1

N
� 1ffiffiffiffiffi

N
p :

Combining the above equation with (15) and (18), we can
see that in our implementation, the error due to random
fluctuations will dominate the quantization error. There-
fore, the overall error e is approximately bounded by the
sum of errors e1 and e3, i.e.,

e � e1 þ e3:

5 IMPLEMENTATION

The top-level block diagram of the system is illustrated in
Fig. 8. A MicroBlaze 32-bit soft RISC processor core is used
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1. For many applications, 10�3 would be considered a low error rate.
As discussed in Section 6, due to inherent stochastic variation, our
stochastic implementation has larger output errors than conventional
implementations when the input error rate is low. Thus, our system
targets noisy environments with relatively high input error rates—gen-
erally, larger than 0.01.



as the main processor. Our ReSC is configured as a
coprocessor, handled by the MicroBlaze. The MicroBlaze
talks to the ReSC unit through a Fast Simplex Link (FSL), an
FIFO-style connection bus system [22]. (The MicroBlaze is
the master; the ReSC unit is the slave.)

Consider the example of the gamma function, discussed
in Example 2. We approximate this function by a Bernstein
polynomial of degree 6 with coefficients:

b0 ¼ 0:0955; b1 ¼ 0:7207; b2 ¼ 0:3476; b3 ¼ 0:9988;

b4 ¼ 0:7017; b5 ¼ 0:9695; b6 ¼ 0:9939:

In our implementation, the LFSR has 10 bits. Thus, by (8),
the numbers that we load into the constant coefficient
registers are:

C0 ¼ 99; C1 ¼ 738; C2 ¼ 357; C3 ¼ 1;023;

C4 ¼ 719; C5 ¼ 993; C6 ¼ 1;018:

Fig. 9 illustrates how we specify C code to implement the
gamma correction function on the ReSC architecture. Such
code is compiled by the MicroBlaze C compiler. The
coefficients for the Bernstein computation are specified in

lines 4-7. These are loaded into registers in lines 9-12. A
stochastic bit stream is defined in lines 14-19. The
computation is executed on the ReSC coprocessor in line
22. The results are read in line 25.

6 EXPERIMENTAL RESULTS

We demonstrate the effectiveness of our method on a
collection of benchmarks for image processing. We discuss
one of these, the gamma correction function, in detail. Then,
we study the hardware cost and robustness of our
architecture on all the test cases.

6.1 A Case Study: Gamma Correction

We continue with our running example, the gamma
correction function of Example 2. We present an error
analysis and a hardware cost comparison for this function.

6.1.1 Error Analysis

Consider the three error components described in Section 4.

1. The error due to the Bernstein approximation.
Fig. 10 plots the error due to the Bernstein approx-
imation versus the degree of the approximation. The
error is measured by (12). It obviously shows that the
error decreases as the degree of the Bernstein
approximation increases. For a choice of degree
n ¼ 6, the error is approximately 4 � 10�3.

To get more insight into how the error due to the
Bernstein approximation changes with increasing
degrees, we apply the degree 3, 4, 5, and 6 Bernstein
approximations of the gamma correction function to
an image. The resulting images for different degrees
of Bernstein approximation are shown in Fig. 13.

2. The quantization error. Fig. 11 plots the quantiza-
tion error versus the number of bits L of the LFSR. In
the figure, the x-axis is 1=2L, where the range of L is
from 5 to 11. For different values of L; b0i and x0 in
(14) change according to (9). The quantization error
is measured by (14) with the Bernstein polynomial
chosen as the degree-6 Bernstein polynomial ap-
proximation of the gamma correction function. For
each value of L, we evaluate the quantization error
on 11 sample points x ¼ 0; 0:1; . . . ; 0:9; 1. The mean,
the mean plus the standard deviation, and the mean
minus the standard deviation of the errors are
plotted by a circle, a downward-pointing triangle,
and an upward-pointing triangle, respectively.
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Fig. 8. Overview of the architecture of the ReSC system.

Fig. 9. C code fragments for the gamma correction function, fðxÞ ¼ x0:45,
on the ReSC architecture.

Fig. 10. The Bernstein approximation error versus the degree of the
Bernstein approximation.



Clearly, the means of the quantization error are

located near a line, which means that the quantiza-

tion error is inversely proportional to 2L. Increasing

L will decrease the quantization error.
To get a better intuitive understanding of how

the quantization error changes with increasing
number of bits of the LFSR, we apply four different
quantizations of the degree-6 Bernstein approxima-
tions of the gamma correction function to an image.
These four different quantizations are based on
LFSRs with 3, 4, 5, and 6 bits, respectively. The
resulting images for different numbers of bits of the
LFSR approximation are shown in Fig. 14.

3. The error due to random fluctuations. Fig. 12 plots
the error due to random fluctuations versus the
lengthN of the stochastic bit stream. In the figure, the
x-axis is 1=

ffiffiffiffiffi
N
p

, where N is chosen to be 2m, with
m ¼ 7; 8; . . . ; 13. The error is measured as the average
of 50 Monte Carlo simulations of the difference
between the stochastic computation result and the
quantized implementation of the degree-6 Bernstein
polynomial approximation of the gamma correction
function. To add the quantization effect, we choose
an LFSR of 10 bits. For each N , we evaluate the error
on 11 sample points x ¼ 0; 0:1; . . . ; 0:9; 1. The mean,
the mean plus the standard deviation, and the mean
minus the standard deviation of the errors are plotted
by a circle, a downward-pointing triangle, and an
upward-pointing triangle, respectively.

The figure clearly shows that the means of the
error due to random fluctuations are located near a
straight line. Thus, it confirms the fact that the error
due to random fluctuations is inversely proportional
to

ffiffiffiffiffi
N
p

. The error component could be decreased by
increasing the length of the stochastic bit stream.

To have a further impression on how the error due
to random fluctuations changes with increasing
length of the stochastic bit stream, we apply four
stochastic implementations of the gamma correction
with varying bit stream lengths to an image. The
lengths of the stochastic bit streams in these four
implementations are 128, 256, 512 and 1,024, respec-
tively. The four stochastic implementations are based
on Bernstein approximation of degree 6 and an LFSR
with 10 bits. The resulting images for different lengths
of the stochastic bit streams are shown in Fig. 15.

6.1.2 Hardware Cost Comparison

The most popular and straightforward implementation of
the gamma correction function is based on direct table
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Fig. 11. The quantization error versus 1=2L, where L is the number of
bits of the pseudorandom number generator. The circles, the downward-
pointing triangles, and the upward-pointing triangles represent the
means, the means plus the standard deviations, and the means minus
the standard deviations of the errors on the sample points
x ¼ 0; 0:1; . . . ; 0:9; 1, respectively.

Fig. 12. The error due to random fluctuations versus 1=
ffiffiffiffiffi
N
p

, where
N is the length of the stochastic bit stream. The circles, the
downward-pointing triangles, and the upward-pointing triangles
represent the means, the means plus the standard deviations, and
the means minus the standard deviations of the errors on sample
points x ¼ 0; 0:1; . . . ; 0:9; 1, respectively.

Fig. 14. The effect of different numbers of bits of the LFSR on the
gamma correction application. The numbers of bits of the LFSR are (a)
3; (b) 4; (c) 5; (d) 6.

Fig. 13. The effect of different Bernstein approximation degrees on the
gamma correction application. The degrees are (a) 3; (b) 4; (c) 5; (d) 6.



lookup. For example, for a display system that supports
8 bits of color depth per pixel, an 8-bit input/8-bit output
table is placed before or after the frame buffer. However,
this method is inefficient when more bits per pixel are
required. Indeed, for target devices such as medical
imaging displays and modern high-end LCDs, 10 to 12 bits
per pixel are common. Various methods are used to reduce
hardware costs. For example, Lee et al. presented a
piecewise linear polynomial (PLP) approximation [20].
They implemented their design on a Xilinx Virtex-4
XC4VLX100-12 FPGA. In order to make a fair comparison,
we present implementation results for the same platform.

Table 1 illustrates the hardware cost of the three
approaches. The area of the ReSC implementation includes
the Randomizer and De-Randomizer units. For the basic
8-bit gamma correction function, our ReSC approach
requires 2.4 times the hardware usage of the conventional
implementation. For larger number of bits, the hardware
usage of our approach increases by only small increments;
in contrast, the hardware usage of the conventional
implementation increases by a linear amount in the number
of bits. In all cases, our approach has better hardware usage
than the PLP approximation. Furthermore, our approach
provides fault tolerance while the other approaches do not.

6.1.3 Fault Tolerance

To evaluate the robustness of our method, we analyze the
effect of soft errors. These are simulated by independently
flipping the input bits for a given percentage of the
computing elements. For example, if five percent noise
was added to the circuit, this implies that five percent of the
total number of input bits are randomly chosen and flipped.
We compare the effect of soft errors on our implementation
to that on conventional implementations.

Fig. 16 shows the average percentage of error in the
output image for five different ratios of added noise. The
length of the stochastic stream is fixed at 1,024 bits. The
stochastic implementation beats the conventional method
by less than two percent, on average. However, in the
conventional implementation, bit flips afflict each bit of the

binary radix representation with equal probability. If the
most significant bit gets flipped, the error that occurs can be
quite large. The analysis of the error distribution is
presented in Table 2.

The images in Fig. 17 illustrate the fault tolerance of
stochastic computation. When soft errors are injected at the
rate of 15 percent, the image generated by the conventional
method is full of noisy pixels, while the image generated by
the stochastic method is still recognizable.

We note that the images become more gray as more error
is injected. The reason for this is that, with a stochastic
encoding, all errors bring the values closer to the center of
the unit interval, i.e., a value of 1=2. For example, consider
the situation that the gray level is from 0 to 255 and the
length of the stochastic bit stream is 255. Without noise, a
purely black pixel, i.e., one with a gray level of 0, is ideally
represented as a bit stream of all zeros. If errors are injected,
then some of the zeros in the bit stream become ones; the
pixel lightens as its gray level increases. Similarly, without
noise, a purely white pixel, i.e., one with a gray level of 255,
is ideally represented as a bit stream of all ones. If errors are
injected, then some of the ones in the bit stream become
zeros; the pixel darkens as its gray level decreases. For
pixels with other gray levels, the trend is similar: injecting
errors brings the gray level of pixels toward the midbright-
ness value of 128.

6.2 Test Cases

We evaluated our ReSC architecture on 10 test cases [23],
[24], [25]. These can be classified into three categories:
Gamma, RGB! XYZ, XYZ! RGB, XYZ! CIE-L{*}ab, and
CIE-L{*}ab! XYZ are popular color-space converter
functions in image processing; Geometric and Rotation
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TABLE 1
Hardware Comparisons for Three Implementations

of Gamma Correction: the Direct Lookup Table Method,
the Piecewise Linear Polynomial (PLP) Approximation Method,

and Our ReSC Method

Fig. 15. The effect of different lengths of the stochastic bit streams on
the gamma correction application. The lengths of the stochastic bit
streams are (a) 128; (b) 256; (c) 512; (d) 1,024.

Fig. 16. The result of average output error of conventional and ReSC
implementations.



are geometric models for processing two-dimensional
figures; and Example01 to Example03 are operations
used to generate 3D image data sets.

We first compare the hardware cost of conventional
deterministic digital implementations to that of stochastic
implementations. Next, we compare the performance of
conventional and stochastic implementations on noisy
input data.

6.2.1 Hardware Cost Comparison

To synthesize the ReSC implementation of each function, we
first obtained the requisite Bernstein coefficients for it from
the code written in Matlab. Next, we coded our reconfigur-
able ReSC architecture in Verilog, and then synthesized,
placed, and routed it with Xilinx ISE 9.1.03i on a Virtex-II
Pro XC2VP30-7-FF896 FPGA. Table 3 compares the hard-
ware usage of our ReSC implementations to conventional
hardware implementations. For the conventional hardware
implementations, the complicated functions, e.g., trigono-
metric functions, are based on the lookup table method. On
average, our ReSC implementation achieves a 40 percent
reduction of lookup table (LUT) usage. If the peripheral
Randomizer and De-Randomizer circuitry is excluded, then
our implementation achieves an 89 percent reduction of
hardware usage.

6.2.2 Fault Tolerance

To study the fault tolerance of our ReSC architecture, we
performed experiments injecting soft errors. This consisted of
flipping the input bits of a given percentage of the computing

elements in the circuit and evaluating the output. We

evaluated the output in terms of the average error in pixel

values. Table 4 shows the results for three different injected

noise ratios for conventional implementations compared to

our ReSC implementation of the test cases. The average

output error of the conventional implementation is about

twice that of the ReSC implementation.
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TABLE 2
Analysis of Error Distribution of the Gamma Correction Function

TABLE 3
Comparison of the Hardware Usage (in LUTs) of Conventional

Implementations to Our ReSC Implementations

TABLE 4
The Average Output Error of Our ReSC Implementation

Compared to Conventional Implementations for the
Color-Space Converter Functions

Fig. 17. Fault tolerance for the gamma correction function. The images in the top row are generated by a conventional implementation. The images in
the bottom row are generated by our stochastic ReSC implementation. Soft errors are injected at a rate of (a) 0 percent; (b) one percent;
(c) two percent; (d) five percent; (e) 10 percent; (f) 15 percent.



The ReSC approach produces dramatic results when the
magnitude of the error is analyzed. In Table 5, we consider
output errors that are larger than 20 percent. With a
10 percent soft error injection rate, the conventional
approach produces outputs that are more than 20 percent
off over 37 percent of the time, which is very high. In
contrast, our ReSC implementation never produces pixel
values with errors larger than 20 percent.

7 CONCLUSION

In a sense, the approach that we are advocating here is
simply a highly redundant, probabilistic encoding of data.
And yet, our synthesis methodology is a radical departure
from conventional approaches. By transforming computa-
tions from the deterministic Boolean domain into arithmetic
computations in the probabilistic domain, circuits can be
designed with very simple logic. Such stochastic circuits are
much more tolerant of errors. Since the accuracy depends
only on the statistical distributions of the random bit
streams, this fault tolerance scales gracefully to very large
numbers of errors.

Indeed, for data intensive applications where small
fluctuations can be tolerated but large errors are cata-
strophic, the advantage of our approach is dramatic. In our
experiments, we never observed errors above 20 percent
with noise injection levels of 10 percent, whereas in
conventional implementations such errors happened nearly
40 percent of the time. This fault tolerance is achieved with
little or no penalty in cost: synthesis trials show that our
stochastic architecture requires less area than conventional
hardware implementations.

Because of inherent errors due to random fluctuations, the
stochastic approach is best-suited for applications that do not
require high precision. A serial implementation of stochastic
logic, it should be noted, requires relatively many clock
cycles to achieve a given precision compared to a conven-
tional implementation: if the resolution of the computation is
required to be 2�M , then 2M clock cycles are needed to obtain
the results. However, our stochastic architecture can com-
pute complex functions such as polynomials directly. A
conventional hardware implementation typically would
implement the computation of such functions over many
clock cycles. Accordingly, in an area-delay comparison, the
stochastic approach often comes out favorably. Also, a
significant advantage of the stochastic architecture is that it
can be reconfigured to compute different functions: the

function that is computed is determined by the values loaded
into the coefficient registers.

In future work, we will develop stochastic implementa-
tions for more general classes of functions, such as the
multivariate functions needed for complex signal proces-
sing operations. Also, we will explore architectures that are
tailored to specific domains, such as applications that are
data-intensive yet probabilistic in nature and applications
that are not probabilistic in nature but can tolerate
fluctuations and errors.
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