
A General Design of Stochastic Circuit and Its Synthesis
Zheng Zhao and Weikang Qian

University of Michigan-Shanghai Jiao Tong University Joint Institute
Shanghai Jiao Tong University, Shanghai, China

Email: {zzhao.ee, qianwk}@sjtu.edu.cn

Abstract—Stochastic computing (SC) is an unconventional paradigm to
realize arithmetic computation, where real values are encoded as stochastic
bit streams. Compared with conventional computation on binary radix
encoding, SC can perform arithmetic computation with very simple circuits.
It also has strong tolerance to soft errors. In this paper, we introduce a
general design of combinational circuit for stochastic computing, together
with its analysis. We further show a synthesis method that can implement
arbitrary arithmetic functions with the proposed design. The experimental
results demonstrated that compared with the previous methods, our approach
produces a circuit with much smaller area and delay.

I. INTRODUCTION

With the continued scaling of CMOS technology, reliability has
become a paramount concern in designing VLSI circuits as they are
inevitably subject to greater process, voltage, and thermal variations [1].
A potential remedy to this problem is to implement computation using
the stochastic computing (SC) paradigm [2], which is known to have
strong tolerance to bit flip errors [3].

SC is an unconventional way to realize arithmetic computation by
digital circuits. The major difference between SC and traditional binary
computing is that SC represents numbers by the probability of 1s in
stochastic bit streams. For example, the stream A in Fig. 1 contains four
1s out of the total 8 bits, so the value encoded by the stream A is 4

8
.

The change of encoding leads to changes in the circuit design. Under
the stochastic computing paradigm, many arithmetic functions can be
realized with very simple circuits. As an example, multiplication can be
realized by a single AND gate, as shown in Fig. 1, since the probability
of obtaining a one at the output of an AND gate equals the product of
the probabilities of obtaining a one at its inputs.

Fig. 1: An AND gate performs multiplication on real values encoded by
stochastic bit streams.

SC is highly tolerant to bit flip errors. Since it uses a uniform-weight
encoding, a single bit flip happened anywhere in the stream does not
affect the encoded value significantly. SC has been successfully applied
to a number of applications, such as image processing [4], [5], error-
correcting coding [6], control [7], and artificial neural networks [8]. For
a comprehensive survey of SC, the readers are referred to [9].

In the earlier works on SC, a number of stochastic circuits are designed
manually, but they are restricted to basic computation units such as adder
and multiplier [10]. In order to implement more general computation with
SC, a few methods for synthesizing stochastic circuits were proposed
recently. These methods can be classified into two categories, based on
whether the circuit is combinational or sequential.

In [11], the authors proposed a special combinational circuit to
implement polynomial computation. Their approach transforms a target
univariate function into a so-called Bernstein polynomial. Then it uses an
adder to implement each Bernstein term, and a multiplexer to generate
the coefficient associated with each term. In [12], the authors introduced a
method based on spectral transform to synthesize combinational circuits
for stochastic computing. They applied the inverse Fourier transform to
obtain the Boolean function for the given stochastic computation. Their
methods significantly saves the area of the stochastic circuit.

A few other works considered synthesizing sequential circuits for
stochastic computing [13]–[15]. The main idea of these works is to
realize the target function as a linear combination of the steady state
distribution functions of a finite state machine. Although realizing SC
with sequential circuits can save the cost of stochastic number generation,
their output bit streams are not a perfect random bit stream, which
degrades the accuracy of successive computation.

In this paper, we consider implementing SC with a combinational
circuit. We first introduce a general design. Then, we present a method
to realize arbitrary arithmetic computation with the proposed design.
Given a target function, it turns out that there are many combinational
circuits with different Boolean functions that can realize the target in the
stochastic domain. We propose effective heuristics to synthesize a low-
cost combinational circuit. The experimental results demonstrated that
compared with the previous methods, our approach produces a circuit
with much smaller area and delay.

The main contributions of this paper are as follows:
• We introduce a general combinational design for SC, which only

makes an assumption on the necessary input probabilities without
any additional assumption on the underlying combinational circuit.
We analyze the general behavior of the design in the stochastic
domain.

• We propose a comprehensive methodology to synthesize a stochastic
circuit for realizing an arbitrary target arithmetic function. We
start by converting the target function into a special form that
can be realized by the proposed design. However, there are many
choices of Boolean functions that can realize the converted function
in the stochastic domain. We demonstrate the characteristics of
these candidate Boolean functions and present effective heuristics
to determine a good choice that can lead to a combinational circuit
with small area and delay.

The remainder of this paper is organized as follows. In Section II,
we introduce the general design and analyze the computation it can
implement. In Section III, we present the methodology to synthesize
a special type of polynomial, namely, the multi-linear polynomial. In
Section IV, we present our solution to synthesize a general polynomial.
In Section V, we demonstrate the effectiveness of our method through
the experimental results. Finally, we conclude the paper in Section VI.

II. A GENERAL DESIGN OF STOCHASTIC CIRCUIT

We aim at designing a stochastic circuit that can compute an arithmetic
function f(x1, . . . , xn), i.e., the output probability of the circuit is
f(x1, . . . , xn). We consider combinational circuits in this work. Clearly,
there must be some inputs that take the variable probabilities xi’s to be a
one. We assume that these input stochastic bit streams are generated using
some standard modules in stochasitc computing, e.g., the randomizer
unit shown in [3], and hence, are not the concern of this work. To
add more freedom to the function we can realize, we also need some
constant input probabilities. The constant probability we can obtain most
easily is 1

2
. For example, each output bit of a linear feedback shift

register can be viewed as a random Boolean variable with probability
of 1

2
[16]. Thus, our proposed design is a combinational circuit with

m + n inputs, X1, X2, . . . , Xn and Y1, Y2, . . . , Ym. Each Xi takes a
variable probability 0 ≤ xi ≤ 1, and each Yi takes a probability of 1/2.
The proposed design is shown in Fig. 2. We assume that all the input
probabilities are independent.

The first question is what kind of function can be realized by the above
design. The following theorem gives the answer.



Fig. 2: Proposed general design.

Theorem 1
The proposed design shown in Fig. 2 can implement a function of the form

f(x1, . . . , xn) =
∑

(a1,...,an)
∈{0,1}n

g(a1, . . . , an)

2m

n∏
j=1

xj
aj (1− xj)

1−aj . (1)

where 0 ≤ g(a1, . . . , an) ≤ 2m is an integer dependent on the the
combination (a1, . . . , an) ∈ {0, 1}n. �

Note that the function f in Eq. (1) is a sum of 2n terms. For example,
if n = 2 and m = 3, the proposed design can implement a function of
the form

f(x1, x2) =
g(0, 0)

8
(1− x1)(1− x2) +

g(0, 1)

8
(1− x1)x2

+
g(1, 0)

8
x1(1− x2) +

g(1, 1)

8
x1x2,

where g(0, 0), g(0, 1), g(1, 0), g(1, 1) are integers in the range [0, 8].
Theorem 1 can be proved as follows. Suppose that the Boolean

function realized by the circuit is F (X1, . . . , Xn, Y1, . . . , Ym). We
define the on set of a Boolean function to be the set of input com-
binations that let the function evaluate to 1. The output probability of
the combinational circuit is equal to the sum of the probabilities that
(X1, . . . , Xn, Y1, . . . , Ym) takes the input combinations in the on set of
the function F , i.e.,

P (F = 1) =
∑

(a1,...,an,b1,...,bm)∈{0,1}m+n:
F (a1,...,an,b1,...,bm)=1

P (X1=a1,...,Xn=an,
Y1=b1,...,Ym=bm)

=
∑

(a1,...,an)∈{0,1}n

∑
(b1,...,bm)∈{0,1}m:

F (a1,...,an,b1,...,bm)=1

P (X1=a1,...,Xn=an,
Y1=b1,...,Ym=bm)

(2)

With Xi (1 ≤ i ≤ n) as a random Boolean variable that has
probability xi to be 1, the probability that Xi = 0 is (1 − xi)
and the probability that Xi = 1 is xi. Thus, the probability that
Xi = ai ∈ {0, 1} can be written as xai

i (1− xi)
(1−ai).

Since Yi (1 ≤ i ≤ m) is a random Boolean variable that has
probability 0.5 to be 1, the probability of X1 = a1, . . . , Xn = an,
Y1 = b1, . . . , Ym = bm is

1

2m

n∏
j=1

xj
aj (1− xj)

1−aj . (3)

Note that the above probability does not depend on the values of
b1, . . . , bm.

Given any (a1, . . . , an) ∈ {0, 1}n, define g(a1, . . . , an) to be
the number of combinations (b1, . . . , bm) ∈ {0, 1}m that let
F (a1, . . . , an, b1, . . . , bm) = 1. Clearly, 0 ≤ g(a1, . . . , an) ≤ 2m.
Then, for any given (a1, . . . , an) ∈ {0, 1}n, we have∑

(b1,...,bm)∈{0,1}m:
F (a1,...,an,b1,...,bm)=1

P (X1=a1,...,Xn=an,
Y1=b1,...,Yn=bm)

=
g(a1, . . . , an)

2m

n∏
j=1

xj
aj (1− xj)

1−aj .

(4)

Putting Eq. (4) into Eq. (2), we obtain

P (F = 1) =
∑

(a1,...,an)∈{0,1}n

g(a1, . . . , an)

2m

n∏
j=1

xj
aj (1− xj)

1−aj .

This concludes the proof.

From the above proof, we can see that the value g(a1, . . . , an) in
Eq. (1) equals the number of combinations (b1, . . . , bm) ∈ {0, 1}m
that let F (a1, . . . , an, b1, . . . , bm) = 1. Thus, we can implement any
function of the form shown in Eq. (2) by properly setting the Boolean
function F .

Eq. (1) can be generalized into the form

f(x1, . . . , xn) =
∑

(a1,...,an)
∈{0,1}n

h(a1, . . . , an)

n∏
j=1

xj
aj (1− xj)

1−aj , (5)

where each h(a1, . . . , an) is a real number. Since each product
term

∏n
j=1 xj

aj (1 − xj)
1−aj corresponds to a binary combination

(a1, . . . , an), we call the above form a binary combination polynomial
(BCP). We call h(a1, . . . , an) the coefficient of the BCP.

III. SYNTHESIS OF MULTI-LINEAR POLYNOMIAL

We can see that the proposed stochastic circuit implements a special
type of BCP, of which the coefficients are of the form g

2m
, where 0 ≤

g ≤ 2m is an integer.
A further question is that given an arbitrary arithmetic function, how

we can synthesize the combinational circuit in Fig. 2 so that the stochastic
circuit implements the target function.

In what follows, we will only consider how to realize polynomial
computation with the proposed stochastic circuit. There are two reasons
for this. First, as shown in Eq. (1), the proposed stochastic circuit
implements polynomial computation. Second, we can approximate any
function closely as a multivariate polynomial, for example, by Taylor
expansion. In this section, we will show how we can synthesize a
stochastic circuit to realize a special type of polynomial, i.e., multi-linear
polynomial. We will show our method to synthesize general polynomials
in the next section.

Definition 1
A multi-linear polynomial (MLP) of n variables is of the form

f(x1, . . . , xn) =
∑

(a1,...,an)∈{0,1}n
c(a1, . . . , an)

n∏
j=1

xj
aj ,

where each c(a1, . . . , an) is a real value. We call c(a1, . . . , an) the
coefficient of the MLP. �

For example, a bivariate MLP is of the form

f(x1, x2) = c(0, 0) + c(0, 1)x2 + c(1, 0)x1 + c(1, 1)x1x2.

Since the inputs to the stochastic circuit represent probability values, in
what follows, we further assume that the function arguments x1, . . . , xn

are in the unit interval. Otherwise, we will first perform a linear transform
on the input arguments to scale them into the unit interval.

Our method for synthesizing MLP includes two steps: determining the
coefficients of BCP and synthesizing the circuit.

A. Determine the Coefficients of BCP

Given an MLP, the first step is to transform it into a BCP, since our
proposed design computes a BCP.

The first question is: given an arbitrary MLP, can it always be
transformed into a BCP? The answer is yes according to the following
theorem.

Theorem 2
Given any MLP, it can be uniquely mapped to a BCP. �

A sketch of the proof is shown as follows. A BCP shown in Eq. (5)
is a linear combination of 2n polynomials

∏n
j=1 xj

aj (1 − xj)
1−aj ,

(a1, . . . , an) ∈ {0, 1}n. To show that any multi-linear polynomial
can be uniquely mapped to a BCP, we only need to prove that the
above 2n polynomials form a basis of the vector space of n-variable
multi-linear polynomials. Since the dimension of the vector space of n-
variable multi-linear polynomials is 2n, (of which a well-known basis
is {
∏n

j=1 xj
aj : (a1, . . . , an) ∈ {0, 1}n}), we only need to prove that

the basis of the 2n terms are linearly independent. This can be further



proved by mathematical induction over n. The details are omitted due
to the space limit.

To determine the coefficient h(a1, . . . , an) of a BCP mapped from an
MLP for any combination (a1, . . . , an) ∈ {0, 1}n, we can simply set
x1 = a1, · · · , xn = an in Eq. (5). This gives us

h(a1, . . . , an) = f(a1, . . . , an). (6)

For example, suppose that a bivariate MLP is

f(x1, x2) = c1x1x2 + c2x1 + c3x2 + c4

Its equivalent BCP has the form shown in Eq. (5), i.e.,

f(x1, x2) = h(0, 0)(1− x1)(1− x2) + h(0, 1)(1− x1)x2

+ h(1, 0)x1(1− x2) + h(1, 1)x1x2,

Then we can obtain coefficients h’s as follows

h(0, 0) = f(0, 0) = c4,

h(0, 1) = f(0, 1) = c3 + c4,

h(1, 0) = f(1, 0) = c2 + c4,

h(1, 1) = f(1, 1) = c1 + c2 + c3 + c4.

Not all BCPs can be implemented by the proposed stochastic circuit.
One requirement from Eq. (1) is that all the coefficients of the BCP must
be in the unit interval. If some coefficients of the BCP are outside the
unit interval, we need to further perform a linear transform on them.

Specifically, suppose that r and s are the minimum and the maximum
of all the 2n coefficients of a BCP. We transform each coefficient
h(a1, . . . , an) into h′(a1, . . . , an) as

h′(a1, . . . , an) =
h(a1, . . . , an)− r

s− r
.

Then, all the h′(a1, . . . , an)’s are in the unit interval.
Now the target polynomial is

f ′(x1, . . . , xn) =
∑

(a1,...,an)
∈{0,1}n

h′(a1, . . . , an)

n∏
j=1

xj
aj (1− xj)

1−aj ,

which can be implemented using the proposed stochastic circuit. The
original computation can be recovered from the stochastic computing
result as f(x1, . . . , xn) = (s− r)f ′(x1, . . . , xn) + r.

Finally, since the coefficients of a BCP implemented by the proposed
stochastic circuit are of the form g

2m
, we need to approximate each coef-

ficient h′(a1, . . . , an) by the closest value of the form g
2m

. Technically,
we use an iterative method to decide m. Given a precision requirement
prec, we start m from 1, and check if the closest possible g

2m
, where

g ∈ {0, 1, . . . , 2m}, can satisfy the precision requirement. If this turns
out to be true, we stop with the current m; otherwise, we increase m
by 1 until the requirement is met. Theoretically, the largest m to reach a
precision prec is dlog2

1
prec
e. Yet, the iterative method can sometimes

find a smaller m, and hence, smaller circuit complexity to satisfy the
requirement.

B. Synthesize the Circuit
After the previous step, we finally obtain a BCP of the form

shown in Eq. (1). In order to realize that BCP, we only need to
select a Boolean function F satisfying that for any (a1, . . . , an) ∈
{0, 1}n, the number of combinations (b1, . . . , bm) ∈ {0, 1}m that
let F (a1, . . . , an, b1, . . . , bm) = 1 is g(a1, . . . , an). There are many
Boolean functions that could satisfy this requirement. However, different
functions lead to circuits of different areas.

Example 1
Suppose that we want to implement the function f(x1, x2) = 1

2
(x1 +x2)

using the proposed stochastic circuit. If we choose n = 2 and m = 1, we
can obtain

g(0, 0)/2 = f(0, 0) = 0, g(0, 1)/2 = f(0, 1) = 1/2,

g(1, 0)/2 = f(1, 0) = 1/2, g(1, 1)/2 = f(1, 1) = 1

Thus, we have

g(0, 0) = 0, g(0, 1) = 1, g(1, 0) = 1, g(1, 1) = 2.

This means that the numbers of b ∈ {0, 1} that let F (0, 0, b) = 1, that
let F (0, 1, b) = 1, that let F (1, 0, b) = 1, and that let F (1, 1, b) = 1 are
0, 1, 1, and 2, respectively. Thus, we have F (0, 0, 0) = F (0, 0, 1) = 0
and F (1, 1, 0) = F (1, 1, 1) = 1. However, there is freedom in determin-
ing which of b ∈ {0, 1} lets F (0, 1, b) = 1 and which of b ∈ {0, 1} lets
F (1, 0, b) = 1. If we choose F (0, 1, 1) = 1 and F (1, 0, 1) = 1, then
the Boolean function represented in a simplified sum-of-product (SOP)
form is F = x1y1 + x2y1 + x1x2. If we choose F (0, 1, 0) = 1 and
F (1, 0, 1) = 1, then the F can be represented as F = x1y1 + x2ȳ1. If
we measure the circuit area in terms of the number of literals, clearly, the
latter choice produces a smaller circuit. �

Among the many choices of Boolean function, we want to find one
that leads to a circuit with minimized area. We formulate the synthesis
problem as follows.

Given 2n integers g(a1, . . . , an), where 0 ≤ g(a1, . . . , an) ≤
2m for all (a1, . . . , an) ∈ {0, 1}n, synthesize a cir-
cuit with optimized area that implements a Boolean function
F (X1, . . . , Xn, Y1, . . . , Ym) satisfying that for any (a1, . . . , an) ∈
{0, 1}n, the number of combinations (b1, . . . , bm) ∈ {0, 1}m that
let F (a1, . . . , an, b1, . . . , bm) = 1 is g(a1, . . . , an).

Finding an optimal solution to the above problem is a hard problem.
In this section, we present a heuristic to construct a Boolean function
that can be realized by a small circuit.

Define M(a1, . . . , an, b1, . . . , bm) to be the minterm corresponding
to the combination (a1, . . . , an, b1, . . . , bm). Define S(a1, . . . , an) to
be the set of minterms

{M(a1, . . . , an, b1, . . . , bm) : (b1, . . . , bm) ∈ {0, 1}m}.

We need to select g(a1, . . . , an) minterms out of the set S(a1, . . . , an)
to compose the function F . Our basic strategy is to select these minterms
so that they can be covered by as few cubes as possible. Here, a cube
means a product of literals, e.g., X1X2 is a cube.

Clearly, for each combination (a1, . . . , an) such that g(a1, . . . , an) =
2m, we have to pick all the minterms in the set S(a1, . . . , an); for
each combination (a1, . . . , an) such that g(a1, . . . , an) = 0, we pick no
minterms in the set S(a1, . . . , an).

Now consider the remaining combinations (a1, . . . , an)’s such that
0 < g(a1, . . . , an) < 2m. Based on the binary representation of each
g(a1, . . . , an), we can represent it as a sum of powers of two,

g(a1, . . . , an) =

r−1∑
k=0

2ik ,

where r is the number of ones in the binary representation of
g(a1, . . . , an) and 0 ≤ i0 ≤ i1 ≤ · · · ≤ ir−1 ≤ m− 1 are integers. For
example, we can represent g = 11 as g = 23 + 21 + 20.

The idea of our heuristic is to pick r cubes to cover g(a1, . . . , an)
minterms from each set S(a1, . . . , an), with the k-th (0 ≤ k ≤ r − 1)
cube covering 2ik minterms. To ensure that these r cubes cover
g(a1, . . . , an) minterms, we require these cubes to be pairwise disjoint,
i.e., they share no common minterms pairwise. Furthermore, we want to
increase the chance that the cubes selected for different (a1, . . . , an)’s
can be combined into a larger one. Thus, we require that for those
combinations (a1, . . . , an) that have a cube of size 2k, their cubes of
size 2k cover the same set of (b1, . . . , bm)’s.

To achieve this, for each combination (a1, . . . , an), if g(a1, . . . , an)
contains a power of two, 2k, then the corresponding cube of size 2k

picked are composed of 2k minterms from the set S(a1, . . . , an) with
b1 = · · · = bm−k−1 = 1, bm−k = 0. With this approach, a cube of size
2m−1 is composed of the first 2m−1 minterms in the set S(a1, . . . , an)
(i.e., they are minterms with b1 = 0), a cube of size 2m−2 is composed
of the next 2m−2 minterms in the set (i.e., they are minterms with b1 =
1, b2 = 0), and so on.

It is not hard to see that the cubes picked for each combination
(a1, . . . , an) are pairwise disjoint and the cubes of size 2k belong-
ing to different combinations (a1, . . . , an)’s cover the same set of
(b1, . . . , bm)’s, which makes it possible to combine these cubes into
larger ones.



IV. SYNTHESIS OF GENERAL POLYNOMIAL

In this section, we present our method of synthesizing the proposed
stochastic circuit to implement a general polynomial. The first step of
our method transforms the target polynomial into an initial BCP. As we
will show in Section IV-B, different from the MLP case, there are a
number of BCPs that are equivalent to a general polynomial. The next
step determines an optimal BCP and then synthesizes the circuit.

A. Transform the Target Polynomial into an Initial BCP

Given a general polynomial f(x1, . . . , xn), we first transform it into
an initial BCP. To do this, we first transform it into an MLP. A simple
way is to replace each xi

r term in the polynomial by a product of r
new variables xi,1, xi,2, . . . , xi,r , which takes the same value as xi. For
example, suppose that the target polynomial is

f = c1x
2
1 + c2x

2
2 + c3x1x2 + c4x1 + c5x2 + c6.

In order to convert it into an MLP, we replace the product x2
1 by a

product of two variables x1,1 and x1,2, the product x2
2 by a product of

two variables x2,1 and x2,2, and so on. The resulting polynomial is

f = c1x1,1x1,2 + c2x2,1x2,2 + c3x1,1x2,1 + c4x1,1 + c5x2,1 + c6,

which is an MLP on four variables x1,1, x1,2, x2,1, x2,2. The original
polynomial computation can be obtained by setting x1,1 = x1,2 = x1

and x2,1 = x2,2 = x2.
Once the MLP is determined, we can further obtain its equivalent BCP

and the g values using the method shown in Section III-A. We denote
the initial g values as g0.

B. Synthesize the Circuit

In the case of general polynomial, we have flexibility in determining
the BCP as the synthesis target. The initial BCP is just one of them.
For example, consider a target univariate polynomial f0(x1) of degree
2. It is transformed into an initial BCP by the procedure shown in the
previous section:

f(x1,1, x1,2) =
g0(0, 0)

2m
(1− x1,1)(1− x1,2)

+
g0(0, 1)

2m
(1− x1,1)x1,2

+
g0(1, 0)

2m
x1,1(1− x1,2) +

g0(1, 1)

2m
x1,1x1,2.

However, since in realizing the original polynomial, we set x1,1 =
x1,2 = x1, thus the product terms (1−x1,1)x1,2 and x1,1(1−x1,2) can
be treated as equivalent. Thus, we could choose another BCP

f∗(x1,1, x1,2) =
g0(0, 0)

2m
(1− x1,1)(1− x1,2)

+
g∗(0, 1)

2m
(1− x1,1)x1,2

+
g∗(1, 0)

2m
x1,1(1− x1,2) +

g0(1, 1)

2m
x1,1x1,2

as the synthesis target, as long as g∗(0, 1) + g∗(1, 0) = g0(0, 1) +
g0(1, 0).

In the general situation, suppose that the degree of xi in the target
polynomial is di ≥ 1 (i = 1, . . . , n). Define d =

∑n
i=1 di. By the

procedure of introducing new variables shown in Section IV-A, the BCP
has d variables x1,1, . . . , x1,d1 , . . . , xn,1, . . . , xn,dn , where the variables
xi,1, . . . , xi,di all equal a common variable xi (for each i = 1, . . . , n).
Each product term in the BCP is of the form

n∏
j=1

dj∏
k=1

x
aj,k

j,k (1− xj,k)1−aj,k ,

where (a1,1, . . . , a1,d1 , . . . , an,1, . . . , an,dn) ∈ {0, 1}d. Since xi,1 =
· · · = xi,di = xi, we can see that two product terms

n∏
j=1

dj∏
k=1

x
aj,k

j,k (1− xj,k)1−aj,k

TABLE I: Example of equivalence classes.

a1,1 a1,2 a2,1 a2,2 Class Class ID
0 0 0 0 I(0, 0) 0
0 0 0 1 I(0, 1) 1
0 0 1 0 I(0, 1) 1
0 0 1 1 I(0, 2) 2
0 1 0 0 I(1, 0) 3
0 1 0 1 I(1, 1) 4
0 1 1 0 I(1, 1) 4
0 1 1 1 I(1, 2) 5
1 0 0 0 I(1, 0) 3
1 0 0 1 I(1, 1) 4
1 0 1 0 I(1, 1) 4
1 0 1 1 I(1, 2) 5
1 1 0 0 I(2, 0) 6
1 1 0 1 I(2, 1) 7
1 1 1 0 I(2, 1) 7
1 1 1 1 I(2, 2) 8

and
n∏

j=1

dj∏
k=1

x
bj,k
j,k (1− xj,k)1−bj,k

are equivalent if and only if for each j = 1, . . . , n,
∑dj

k=1 aj,k =∑dj
k=1 bj,k.
Based on the above equivalence relation, we can partition the

set of combinations {0, 1}d into a number of equivalence classes
I(s1, . . . , sn), 0 ≤ s1 ≤ d1, . . . , 0 ≤ sn ≤ dn, where

I(s1, . . . , sn) = {(a1,1, . . . , an,dn) ∈ {0, 1}d :
dj∑
k=1

aj,k = sj , for each j = 1, . . . , n}.

It is clear that two product terms are equivalent if and only if
their corresponding combinations (a1,1, . . . , an,dn) belong to the same
equivalence class.

For example, consider the case where n = 2, d1 = 2, and d2 = 2.
The set of combinations {0, 1}4 can be partitioned into 9 equivalence
classes as shown in Table I. The combinations in the same equivalence
class lead to equivalent product terms. For instance, the combinations
(0, 1, 0, 1), (0, 1, 1, 0), (1, 0, 0, 1), and (1, 0, 1, 0) all belong to the class
I(1, 1), they produce the same product term x1(1− x1)x2(1− x2).

A sufficient condition that a BCP can generate the original polynomial
is that its g value should satisfy that∑

(a1,1,...,an,dn )

∈I(s1,...,sn)

g(a1,1, . . . , an,dn)

=
∑

(a1,1,...,an,dn )

∈I(s1,...,sn)

g0(a1,1, . . . , an,dn)
4
= G(s1, . . . , sn),

for all 0 ≤ s1 ≤ d1, . . . , 0 ≤ sn ≤ dn,

(7)

where g0 is the g value of the initial BCP and G(s1, . . . , sn) denotes
the sum of g0’s over all the combinations in the set I(s1, . . . , sn).

To obtain a circuit with small area, we need to properly choose g
values which satisfy Eq. (7). A natural idea is to distribute the value
G(s1, . . . , sn) evenly among all combinations in the set I(s1, . . . , sn).

A better strategy is to unevenly distribute G(s1, . . . , sn). Define
k = bG(s1, . . . , sn)/2mc. The strategy sets the g values for the first
k combinations in the set I(s1, . . . , sn) to 2m, the g value for the
(k + 1)-th combination to (G(s1, . . . , sn) − 2mk), and the g values
for the remaining combinations in the set I(s1, . . . , sn) to 0. This
strategy essentially chooses the largest feasible cube for each of the
first k combinations in the set I(s1, . . . , sn). Our experimental results
in Section V showed that this approach produces much smaller circuits
than the even distribution strategy.

Once the g values for the BCP are determined, we apply the heuristic
shown in Section III-B to synthesize the combinational circuit.



V. EXPERIMENTAL RESULTS

We conducted three sets of experiments to demonstrate the effective-
ness of the proposed method. In the experiments, we used Espresso [17]
to compute the number of literals, and ABC [18] to obtain the area and
delay of the combinational circuits. We used the standard script resyn2
to perform multi-level synthesis, and MCNC generic standard cell library
to map the circuits. We only considered polynomials with small degree
in our experiments as they are sufficient for the precision requirement of
many applications using SC [9], [12]. As our algorithm needs to build the
truth table, the runtime of our algorithm is an exponential function on m
and n. However, the runtime is tolerable in practice, since for practical
applications of SC, n, the degree of polynomial, and m, determined by
the computation precision, are usually small.

A. Synthesis of Multi-linear Polynomials

The first set of experiments compares our method with one of the
state-of-the-art methods [12] in synthesizing multi-linear polynomials.
We experimented with different numbers of variables Xi’s and Yi’s,
denoted by n and m, respectively. As shown in Fig. 3, the horizontal
axis is for n, ranging from 4 to 10. Different curves the in the figure
correspond to different m’s, ranging from 4 to 11. The points for m =
10, n = 11 are not plotted due to the long synthesis time of Espresso.

For each (n,m) pair, we generated 100 random MLPs as the target
functions. For each target function, we applied both the prior method
and our method to synthesize the corresponding combinational circuit.
We calculated the geometric means of the area, delay, and number of
literals for both methods. The ratios of the means of our method to the
means of the prior one are shown in Fig. 3 as the vertical coordinates.
We can see that compared with the previous method [12], ours achieves
much smaller circuit area and much fewer number of literals, together
with smaller circuit delay. As n or m increases, the savings on the area
and the number of literals grows.

B. Optimality Study
To study the effectiveness of our heuristic of constructing Boolean

functions shown in Section III-B, we performed the second set of
experiments, where a complete search over all the possible Boolean
functions was conducted for a target MLP. As the number of possible
Boolean functions grows exponentially with m and n (upper bounded
by
(

2m

2m−1

)2n
), we only considered target polynomials of small sizes,

of which the number of possible Boolean functions is practical for a
complete search.

We randomly chose 6 such polynomials, which are listed in Table II.
Column 2 to 5 show the basic statistics of these polynomials: the numbers
of variables Xi’s (n), the numbers of Yi’s (m), the sets of corresponding
g’s (ordered by the binary combinations), and the numbers of possible
Boolean functions (#choices).

For each test case, we enumerated all the possible Boolean functions.
The minimum and geometric mean of the area, delay, and number of
literals over all the choices are listed in Column 6 to 8, and Column
9 to 11, respectively. The results of our method are shown in column
12 to 17. The ranks of our solutions among all the solutions are also
listed. For example, for case1, the area, delay, and number of literals
of our solution are ranked top 4.17%, 3.90% and 8.33% among all the
solutions, respectively. As can be seen, although our method does not
guarantee to provide the optimal solution for these test cases, it is able
to achieve a reasonably good one.

C. Synthesis of General Polynomials
The third set of experiments compares the uneven distribution of

G heuristic with the even distribution of G heuristic discussed in
Section IV-B in synthesizing general polynomials (rather than an MLP).
As a representative, we considered general univariate polynomial.

The experiment setup is similar as the first experiment, except that
in this study we generated 100 univariate polynomials randomly and n
refers to the degree of those univariate polynomials. For each target
function, we applied both heuristics to synthesize the corresponding
combinational circuit, and computed the geometric means of the area,
delay and number of literals. The ratios of the means of the uneven
distribution to those of the even distribution are plotted in Fig. 4. Besides

those randomly generated functions, we also synthesized two benchmark
functions: f(x) = cos(x) and gamma correction function f(x) = x0.45,
which is commonly used in image processing [19]. We also obtained
the ratios of the synthesis results by the uneven distribution to those by
the even distribution. The ratios for f(x) = cos(x) and f(x) = x0.45

are plotted in Fig. 5 and 6, respectively. The results shows that the
uneven distribution heuristic generates much better circuits than the even
distribution heuristic in terms of area, delay, and number of literals.

VI. CONCLUSION

In this work, we propose a general combinational design for stochastic
computing and its associated synthesis method for realizing an arbitrary
arithmetic function. We demonstrate the flexibility in choosing the
Boolean functions to realize the target function, and present effective
heuristics to determine a good choice to reduce the circuit area. The
experimental results showed that compared with the previous method,
our method generates a stochastic circuit with smaller area and delay.

ACKNOWLEDGEMENT

This work is supported by National Natural Science Foundation of
China (NSFC) under Grant No. 61204042 and 61472243. The authors
would like to thank Mr. Armin Alaghi and Prof. John Hayes from
University of Michigan for their help on the experiments.

REFERENCES

[1] S. Borkar, T. Karnik, and V. De, “Design and reliability challenges in
nanometer technologies,” in Design Automation Conference, 2004, p. 75.

[2] B. Gaines, “Stochastic computing systems,” in Advances in Information
Systems Science. Plenum, 1969, vol. 2, ch. 2, pp. 37–172.

[3] W. Qian, X. Li, M. Riedel, K. Bazargan, and D. Lilja, “An architecture
for fault-tolerant computation with stochastic logic,” IEEE Transactions on
Computers, vol. 60, no. 1, pp. 93–105, 2011.

[4] P. Li and D. J. Lilja, “Using stochastic computing to implement digital image
processing algorithms,” in International Conference on Computer Design,
2011, pp. 154–161.

[5] A. Alaghi, C. Li, and J. Hayes, “Stochastic circuits for real-time image-
processing applications,” in Design Automation Conference, 2013, pp. 1–6.

[6] S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and W. Gross,
“Majority-based tracking forecast memories for stochastic LDPC decoding,”
IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4883–4896,
2010.

[7] D. Zhang and H. Li, “A stochastic-based fpga controller for an induction
motor drive with integrated neural network algorithms,” IEEE Transactions
on Industrial Electronics, vol. 55, no. 2, pp. 551–561, 2008.

[8] B. Brown and H. Card, “Stochastic neural computation II: Soft competitive
learning,” IEEE Transactions on Computers, vol. 50, no. 9, pp. 906–920,
2001.

[9] A. Alaghi and J. Hayes, “Survey of stochastic computing,” ACM Transac-
tions on Embedded Computing Systems, vol. 12, no. 2s, pp. 92:1–92:19,
2013.

[10] B. Brown and H. Card, “Stochastic neural computation I: Computational
elements,” IEEE Transactions on Computers, vol. 50, no. 9, pp. 891–905,
2001.

[11] W. Qian and M. Riedel, “The synthesis of robust polynomial arithmetic with
stochastic logic,” in Design Automation Conference, 2008, pp. 648–653.

[12] A. Alaghi and J. Hayes, “A spectral transform approach to stochastic
circuits,” in International Conference on Computer Design, 2012, pp. 315–
321.

[13] P. Li, W. Qian, M. Riedel, K. Bazargan, and D. Lilja, “The synthesis of
linear finite state machine-based stochastic computational elements,” in Asia
and South Pacific Design Automation Conference, 2012, pp. 757–762.

[14] P. Li, D. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The synthesis of
complex arithmetic computation on stochastic bit streams using sequential
logic,” in International Conference on Computer-Aided Design, 2012, pp.
480–487.

[15] N. Saraf, K. Bazargan, D. Lilja, and M. Riedel, “Stochastic functions using
sequential logic,” in International Conference on Computer Design, 2013,
pp. 507–510.

[16] J. Alspector, J. Gannett, S. Haber, M. Parker, and R. Chu, “A VLSI-
efficient technique for generating multiple uncorrelated noise sources and
its application to stochastic neural networks,” IEEE Transactions on Circuits
and Systems, vol. 38, no. 1, pp. 109–123, 1991.

[17] R. Rudell, “Multiple-valued logic minimization for pla synthesis,” Technical
Report, University of. California, Electronics Research Laboratory, Berkeley,
1986.

[18] “Berkeley logic synthesis and verification group, ABC: A sys-
tem for sequential synthesis and verification, release 20140530.”
http://www.eecs.berkeley.edu/ alanmi/abc/.

[19] D. Lee, R. Cheung, and J. Villasenor, “A flexible architecture for precise
gamma correction,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 15, no. 4, pp. 474–478, 2007.



TABLE II: Comparison of the Boolean function chosen by the heuristic proposed in Section III-B with all the feasible choices.

case no. statistics min geomean ours
n m g(a1, . . . , an) #choices area delay lit. area delay lit. area rank(%) delay rank(%) lit. rank(%)

1 2 2 2 1 1 3 384 10 3.20 8 18.06 4.44 13.18 13 4.17 3.90 3.65 12 8.33
2 2 2 3 2 2 3 576 10 3.10 7 18.30 4.42 12.83 11 0.35 4.00 12.50 7 0.00
3 2 3 1 7 1 7 4096 9 3.00 7 23.26 5.10 17.11 10 0.10 3.50 0.34 7 0.00
4 2 3 7 2 1 5 100352 16 3.20 15 32.19 5.44 24.65 22 1.38 5.10 23.21 16 0.38
5 3 2 3 2 3 3 4 1 1 3 24576 18 4.00 13 37.37 5.82 26.15 24 0.93 5.00 3.77 17 0.49
6 3 2 1 2 2 3 1 2 4 4 13824 8 2.60 8 30.65 5.40 21.60 17 0.90 4.70 8.93 13 0.81

(a) (b) (c)
Fig. 3: The ratios of the synthesized results by our method to those by the prior method [12]: (a) the area ratio; (b) the delay ratio; (c) the ratio of the
number of literals.

(a) (b) (c)
Fig. 4: The ratios of the synthesized results by the uneven distribution heuristic to those by the even distribution heuristic The synthesis targets are 100

randomly generated polynomials. The data plotted are the geometric means. (a) the area ratio; (b) the delay ratio; (c) the ratio of the number of literals.

(a) (b) (c)
Fig. 5: The ratios of the synthesized results for the target function f(x) = cos(x) by the uneven distribution heuristic to those by the even distribution
heuristic: (a) the area ratio; (b) the delay ratio; (c) the ratio of the number of literals.

(a) (b) (c)
Fig. 6: The ratios of the synthesized results for the target function f(x) = x0.45 (i.e., the gamma correction function) by the uneven distribution heuristic
to those by the even distribution heuristic: (a) the area ratio; (b) the delay ratio; (c) the ratio of the number of literals.


