Modeling, Design, and Control of Hybrid Energy Systems and Wireless Power Transfer systems

Chengbin Ma, Ph.D.
Assistant Professor
Univ. of Michigan-SJTU Joint Institute,
Shanghai Jiao Tong University (SJTU),
Shanghai, P. R. China

IEEE International Workshop on Design Automation for Cyber-Physical Systems (CPSDA)
June 5th, 2016, Austin, TX USA
Outline

- Introduction
- Quantitative Analysis of HESS
- Energy Management of HESS
- Control/Design of WPT Systems
- Conclusions
1. Battery / Energy Management
2. Wireless Power Transfer
3. Electric Vehicle Dynamics
4. Motion/Motor Control
New Challenges

Control of

- Speed
- Precision
- Efficiency

Synergy
Flexibility
Scalability
Reliability

Control of Motion

Energy

DC System
- Wind power generator
- Solar panel
- Solar collector
- Inveter
- Converter
- Electrolysis
- Heat
- Hydrogen
- Super Capacitor
- Battery

AC Grid
- Fuel Cell
- Fuel Cell EV
- Plug-in EV
- Converter
- AC Grid

Power density (W/kg)

10 hours
10
1 hour
1 second

Energy density (Wh/kg)

0.01
1000
100
10

Conventional battery
1000
0.03 second

 Ultracapacitors
Outline

- Introduction
- Quantitative Analysis of HESS
- Energy Management of HESS
- Control/Design of WPT Systems
- Conclusions
Battery-Ultracapacitor Test System
ESR-based Efficiency Analysis

- Equivalent-Series-Resistance circuit Model:

\[
R_d^* = \frac{P_{loss,d}}{i_d^2} \\
R_b^* = \frac{P_{loss,b}}{i_d^2} \approx \frac{i_b^2 R_s}{1 - d_s} \\
R_u^* = \frac{P_{loss,u}}{i_u^2} \approx R_{sc}
\]
Even for a high energy efficiency, ultracapacitors should provide most of dynamic load current.

\[
E_{loss} = -I_{l, dp}I_{l, dn}(R_b^* + R_{d, r}^* + R_u^*)
= -I_{l, dp}I_{l, dn}R_u^* T + I_{l, a}^2 (R_b^* + R_{d, r}^*) T + I_{l, a}V_F T,
\]

\[
K = \frac{R_b^* + R_{d, r}^*}{R_u^*},
\]

Efficiencies of Four Systems

a) Battery-only System

\[\eta_{ba} = 1 - \frac{I_{l,a}^2 R_{b1} + I_{l,dp} I_{l,dn} R_{b1}}{V_{o,b1} I_{l,a}} \]

b) Passive HESS

\[\eta_{ps} = 1 - \frac{I_{l,a}^2 R_{b1} + I_{l,dp} I_{l,dn} R_{p}^*}{V_{o,b1} I_{l,a}} \]

c) Battery Semi-active HESS

\[\eta_{bs} = \frac{\int_0^T (V_{o,u1} - i_{u,bs} R_{u1}) i_l dt}{\int_0^T (V_{o,u1} i_{u,bs} + V_{o,b2} i_{b,bs}) dt} \]

d) Capacitor Semi-active System

\[\eta_{cs} = \frac{\int_0^T (V_{o,b1} - i_{b,cs} R_{b1}) i_l dt}{\int_0^T (V_{o,u2} i_{u,cs} + V_{o,b1} i_{b,cs}) dt} \]

Comparison of Efficiencies

- Under various average and dynamic load currents ($I_{l,d}$, $I_{l,dp}$, $I_{l,dn}$), battery SOC (SOC_b) and efficiencies of dc-dc converter (η_d).

Expectation and Standard Deviation of Efficiencies.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$E(y)$</td>
<td>0.8980</td>
<td>0.9419</td>
<td>0.8897</td>
<td>0.9146</td>
</tr>
<tr>
<td>$\sigma(y)$</td>
<td>0.0377</td>
<td>0.0150</td>
<td>0.0335</td>
<td>0.0265</td>
</tr>
</tbody>
</table>

First order Sobol’ indice

Second order Sobol’ indice
Battery Ageing Test

Temperature: 45 deg.

Dynamic Discharging

Mod. Constant Discharging

Constant Discharging

Calendar Life

No.1 Cell

No.2 Cell

No.3 Cell

No.4 Cell

60% SOC

Dynamic Systems Control Laboratory, UM-SJTU Joint Institute
Experimental Setup

Four battery cells inside the environment chamber

LabVIEW program to control and record data

Three sets of power supply and electronic load.

Environment chamber
Quantitative Results

- **Realistic case with optimized size of SCs**
 - The capacity loss of the battery at 1/3 and 1C rate caused by cycling can be reduced by 28.6% and 29.0% respectively, compared with the case with no ultracapacitors.

- **Ideal case with infinite size of SCs**
 - The capacity loss of the battery at 1/3 and 1C rate caused by cycling can be reduced by 36.3% and 39.3% respectively, compared with the case with no supercapacitors.
 - The resistance increase of the battery can be reduced by at least 50%, compared with the case with no ultracapacitors.

Outline

- Introduction
- Quantitative Analysis of HESS
- Energy Management of HESS
- Control/Design of WPT Systems
- Conclusions
Control of Networked Energy Systems

- Flexibility, Fault-tolerance, Scalability, Reliability
- Intelligent “Plug & Play” in a dynamic environment.

Multi-agent Interaction Modeling

Strategic Interaction Analysis

Technical Committee (TC) on "Energy Storage " (TCES)

Dynamic Systems Control Laboratory, UM-SJTU Joint Institute
Non-Cooperative Current Control Game

- Three energy devices act as agents to play a game:
 - Engine-generator: lower the **fuel consumption**;
 - Battery pack: extend the **cycle life**;
 - UC pack: maintain the **charge/discharge capability**.
- Ultracapacitor is an assistive energy storage device.
- Two degree-of-freedom: battery and generator.
The preferences of the engine-generator (EG) unit, the battery and UC packs, are quantified by their respective utility functions.

The currents at the Nash equilibrium provide a solution that balances the different preferences of the players.

Utility Functions and Nash Equilibrium

- **EG unit and UC pack**
 \[
 u_{g,c} = w_{g,fuel}[1 - a(i_g - I_{g,opt})^2] \\
 + w_{c,eng}[1 - d(i_c - i_{c,fit})^2],
 \]

- **Bat. and UC packs**
 \[
 u_{b,c} = w_{b,ave}[1 - b(i_b - i_{b,ave})^2] \\
 + w_{b,dif}[1 - c(i_b - i_{b,l})^2] \\
 + w'_{c,eng}[1 - d(i_c - i_{c,fit})^2]
 \]
Test bench

- Host PC
- Power Supply
- Electronic Load
- NI CompactRIO
- Battery Pack
- UC Pack

Power Supply (24 V DC)
DC-DC Converter (Battery)
DC-DC Converter (UC)

While loop (Eng.- Gen. Unit)
- i_f
- i_g, opt
- v_c

While loop (Bat. Pack)
- i_t
- $i_{b, ave}$
- $i_{b, 1}$
- v_c

Dynamic Systems Control Laboratory, UM-SJTU Joint Institute
Results under Real Test Cycles

Fault Tolerance in Energy Management

- Game theory-based energy management is expected to be superior in fault tolerance.
- The control strategy can be reconfigured when failure happens.
Other Ongoing Directions

- Battery management system: hardware, states estimation, and control algorithms
- Energy flow modeling and control between electric vehicles and smartgrids.

Modeling
- EV Charging Model and Adaptive Correction
- Distributed Modeling of Energy Flow

Strategy
- Nash Equilibrium among EVs
- Stackelberg Equilibrium between EVs and Grids

Application
- Intelligent and Dynamic Management of Energy Flow
Outline

- Introduction
- Quantitative Analysis of HESS
- Energy Management of HESS
- Control/Design of WPT Systems
- Conclusions
System-level Optimizations/Control

- Optimal load tracking for high efficiency
- Robust design of system parameters
- Autonomous power distribution and control in multi-receiver systems

Power level: 20 W
System Efficiency: 84% ($k=0.1327$)
Optimal Load for High Efficiency

Optimal loads

PA → Pf → Lm → Rectifier → DC/DC converter → P_L → Load R_L
Improved Charging Efficiency

- Wireless charging efficiency improvement with a fixed coil relative position.

![Graph 1](image1)

Terminal voltage (V)

- **Without DC/DC:** η = 54.2%
- **With DC/DC:** η = 72.2%

Time (s)

18% ↑

![Graph 2](image2)

Terminal voltage (V)

- **Without DC/DC:** η = 28.1%
- **With DC/DC:** η = 71.5%

Time (s)

43.4% ↑

Batteries charging improvement using the cascaded boost-buck DC-DC converter.

Ultracapacitors charging improvement using the cascaded boost-buck DC-DC converter.

Experiment Setup

The experimental WPT system. (a) Overall system. (b) Relative position of coils. (c) Power sensor. (d) I/V sampling board. (e) Cascaded DC/DC converter.
Hill-climbing Tracking of Optimal Load

A varying load resistance

A varying coil position

Fig. 1 Tracking of optimal load resistances with a varying R_f.

Fig. 2 Tracking of optimal load resistances with a varying k.

Instead of active control, the system parameters are optimized to improve the robustness against a varying operating condition.

Robust Optimization and Design

$max \eta_{sys}^{nom}(x)

s.t. \alpha_{sys}(x) \leq \alpha_{sys}^{max},

max |D(x, P_{con}, P_{var}) - 0.5| \leq \beta_{D}^{max}.

Robustness Index

\alpha_{sys}(x) = \max_{P_{var}} \left| \frac{\eta_{sys}(x, P_{var}) - \eta_{sys}^{nom}(x)}{\eta_{sys}^{nom}(x)} \right|
Experimental Results

Variation in coil distance

Load=15 Ohm

Load=30 Ohm

Load=45 Ohm

Variation in load

d=15 cm

d=30 cm

d=45 cm

Multiple-Receiver WPT System

[Image of a multiple-receiver wireless power transfer system setup]

Diagram showing agent models for Transmitter, Receiver No. 1, Receiver No. 2, and Receiver No. 3. Each agent has a utility function (preference) and a physical model (behavior).

- **Transmitter** (leader)
- **Receiver No. 1** (follower)
- **Receiver No. 2** (follower)
- **Receiver No. 3** (follower)

Generalized Nash Equilibrium
- Receiver No. 1 (follower)
- Receiver No. 2 (follower)

Environment
- p_{1}
- p_{2}
- p_{total}
- p_{1}, p_{2}, p_{3}

Agent: Transmitter
- Utility Function (Preference)
- Physical Model (Behavior)

Agent: Receiver No. 1
- Utility Function (Preference)
- Physical Model (Behavior)

Agent: Receiver No. 2
- Utility Function (Preference)
- Physical Model (Behavior)

Agent: Receiver No. 3
- Utility Function (Preference)
- Physical Model (Behavior)
Outline

- Introduction
- Quantitative Analysis of HESS
- Energy Management of HESS
- Control/Design of WPT Systems
- Conclusions
Conclusions

- A fundamental transition is occurring from control of “motion” to control of “energy”.
- System-level analysis, optimization, and implementation of control are crucial.
- Major interests of DSC lab:
 - Battery management system: hardware and various algorithms
 - Modeling and control of networked energy systems (hybrid energy systems, alternative energy systems, vehicle-to-grid systems)
 - Optimal design and control of WPT systems (new sensor, tunable components, control and design methodology)
 - Autonomous power distribution among multiple receivers/devices
Thank You

Presented by Dr. Chengbin Ma
Email: chbma@sjtu.edu.cn
Web: http://umji.sjtu.edu.cn/faculty/chengbin-ma/
Lab: http://umji.sjtu.edu.cn/lab/dsc