Trade-off Adjustment of Fractional Order Low-pass Filter for Vibration Suppression Control of Torsional System

Chengbin Ma¹, Yoichi Hori²

¹Department of Electrical Engineering, the University of Tokyo, Tokyo, Japan
ma@horilab.iis.u-tokyo.ac.jp

²Institute of Industrial Science, the University of Tokyo, Tokyo, Japan
hori@iis.u-tokyo.ac.jp

Abstract — This paper proposes a fractional order low-pass filter \(\frac{1}{(Ts+1)^{\alpha}} \) for adjusting the trade-off between stability margin loss and the strength of vibration suppression, in which order \(\alpha \) can not only be integer but also be any real number. The necessity of this trade-off adjustment is common and natural in oscillatory system’s control. For such kind of systems, classical PI control with fractional order low-pass filter \(\frac{1}{(Ts+1)^{\alpha}} \) could be a general solution. As a novel approach, by letting the order \(\alpha \) of low-pass filter \(\frac{1}{(Ts+1)^{\alpha}} \) be fractional, control system’s frequency response can be adjusted easily. This superiority of Fractional Order Control (FOC) leads to a clear-cut design that is desired in engineering applications. The trade-off in oscillatory system control can be adjusted directly through FOC approach. In this paper, torsional system’s speed control is used as a case study for an experimental verification of FOC’s theoretical superiority. For implementation of fractional order low-pass filter, broken-line approximation method is applied. Design process and experimental results demonstrate that a “simple & clear-cut design” can be achieved by introducing FOC concept.

1 Introduction

The concept of Fractional Order Control (FOC) means controlled systems and/or controllers are described by fractional order differential equations. Expanding derivatives and integrals to fractional orders has a firm and long standing theoretical foundation. Leibniz mentioned this concept in a letter to L’Hôpital over three hundred years ago in 1695 and the earliest more or less systematic studies have been made in the beginning and middle of the 19th century by Liouville, Holmgren and Riemann [9], [12]. As one of its applications in control engineering, FOC was introduced by Tustin for the position control of massive objects half a century ago, where actuator saturation requires sufficient
phase margin around and below the critical point [14]. Some pioneering works were also
done in 60’s [6]. However the FOC concept was not widely incorporated into control
engineering mainly due to the conceptually difficult idea of taking fractional order, the
existence of so few physical applications and the limited computational power available
at that time [1].

In the last few decades, researchers pointed out that fractional order differential equa-
tions could model various materials more adequately than integer order ones and provide
an excellent tool for describing dynamic processes [15]. The fractional order models need
fractional order controllers for more effective control of the dynamic systems [13]. At the
same time, letting control order be fractional can give a straightforward way to adjust con-
trol system’s frequency response. This great flexibility makes it possible to design more
robust control system with less control parameters. The superiorities of FOC in modeling
and control design motivated renewed interest in various applications of FOC [5], [10],
[11]. With the rapid development of computer performances, modeling and realization of
the FOC systems also became possible and much easier than before.

Despite FOC’s promising aspects in control modeling and design, FOC research is still
at its primary stage. Parallel to the development of FOC theories, applying FOC to various
control problems is also crucially important and should be one of top priority issues. The
authors believe that designing FOC systems should be clear-cut and there is no reason
that we don’t make good use of extremely well developed classical Integer Order Control
(IOC) theories.

Based on these basic considerations, in this paper, the authors introduce a fractional
order version of low-pass filter $\frac{1}{(Ts + 1)^\alpha}$ to achieve a clear-cut adjustment of the trade-off
between stability margin loss and the strength of vibration suppression in speed control
of torsional systems. The necessity of this trade-off adjustment is common and natural
in oscillatory system’s control [2]. For such kind of systems, classical PI control with
fractional order low-pass filter $\frac{1}{(Ts + 1)^\alpha}$ can be a general solution. This paper contributes
to the verification of the above hypothesis on an experimental basis.

![Figure 1: Experimental setup of the torsional system](image)

2 The Testing Bench

The testing bench of torsional system is depicted in Figure 1, which is a typical oscillatory
system. Two flywheels are connected with a long torsional shaft; while driving force is
transmitted from driving servomotor to the shaft by gears with gear ratio 1:2. Some
system parameters are adjustable, such as gear inertia, load inertia, shaft elastic coefficient
and gear backlash angle. The encoders and tacho-generators are used as position and rotation speed sensors.

The simplest model of the testing bench with gear backlash is three-inertia model, as depicted in Figure 2 and Figure 3, where J_m, J_g and J_l are driving motor, gear (driving flywheels) and load inertias, K_s shaft elastic coefficient, ω_m and ω_l motor and load rotation speeds, T_m input torque and T_l disturbance torque. The gear backlash non-linearity is described by the classical dead zone models in which the shaft is modeled as a pure spring with zero damping [8]. Frictions between components are neglected due to their small values. Parameters of the experimental torsional system are shown in Table. 1 with a backlash angle δ of $\pm0.6\text{deg}$. Open-loop transfer function from T_m to ω_m is in the following form:

$$P_{3m}(s) = \frac{(s^2 + \omega_{o1}^2)(s^2 + \omega_{o2}^2)}{J_m s(s^2 + \omega_{h1}^2)(s^2 + \omega_{h2}^2)}$$

(1)

where ω_{o1} and ω_{o2} are resonance frequencies while ω_{h1} and ω_{h2} are anti-resonance frequencies. ω_{o1} and ω_{h1} correspond to torsion vibration mode; while ω_{o2} and ω_{h2} correspond to gear backlash vibration mode (see Figure 4).

<table>
<thead>
<tr>
<th>J_m (Kgm2)</th>
<th>J_g (Kgm2)</th>
<th>J_l (Kgm2)</th>
<th>K_g (Nm/rad)</th>
<th>K_s (Nm/rad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0007</td>
<td>0.0034</td>
<td>0.0029</td>
<td>3000</td>
<td>198.49</td>
</tr>
</tbody>
</table>

Table 1: Parameters of the three-inertia system
3 Necessity of Trade-off adjustment

As mentioned by Ma and Hori (2004), a well designed set-point-I PI controller can give a satisfactory performance for speed control in nominal case (see Figure 5 and Figure 6). The PI controller is designed by Coefficient Diagram Method (CDM) with $K_i = 119.78$ and $K_p = 1.6187$ [3] [7].

For nominal three-inertia model $P_{3m}(s)$, the close-loop transfer function of integer order PI control system from ω_r to ω_m is

$$ G_{\text{close}}(s) = \frac{C_I(s)P_{3m}(s)}{1 + C_I(s)P_{3m}(s) + C_P(s)P_{3m}(s)} \quad (2) $$

where $C_I(s)$ is I controller and $C_P(s)$ is P controller in minor loop; therefore $G_{\text{close}}(s)$ is stable if and only if $G_I = C_I(s)P_{3m}(s) + C_P(s)P_{3m}(s)$ has positive gain margin and phase margin. At the same time, for torsional system’s speed control, suppressing vibration caused by the gear backlash must be concerned.

As depicted in Figure 7, the PI speed control system has enough stability margin; while in order to recover some vibration performance, additional factors with negative slope and phase-lag are needed. However introducing these factors will simultaneously lead to phase margin loss. Namely, there exists a trade-off between stability margin loss and the strength of vibration suppression in the testing torsional system’s speed control.
4 Fractional order Filter

In order to achieve a proper controller, which is neither conservative nor aggressive, redesigning the PI controller or applying other control methods can be options; while in this paper, a fractional order low-pass filter \(\frac{1}{(Ts+1)^\alpha} \) is introduced (see Figure 8). The trade-off between stability margin loss and the strength of vibration suppression can be adjusted easily by choosing proper fractional order \(\alpha \) only, as depicted in Figure 9. \(T \) will give control system enough large band width for a fast time response. Here considering the frequency range of torsion vibration mode, \(T \) is taken as 0.005(=1/200).

![Figure 8: PI controller with fractional order low-pass filter](image)

\[
\omega_r + e \frac{K_i}{s} \frac{1}{(Ts+1)^\alpha} T_m
\]

\(\omega_m \)
5 Realization Method

Design control system by FOC approach is clear-cut. However, for realizing designed fractional order controller, it is not so. Due to fractional order systems’ infinite dimension, proper approximation by finite difference equation is needed. Since FOC system’s frequency response is actually exactly known. It is natural to approximate fractional order controllers by frequency domain approaches.

In this paper, a broken-line approximation method is introduced to approximate $\frac{1}{(Ts+1)^\alpha}$ in frequency range $[\omega_b, \omega_h]$, where $T = \frac{1}{\omega_b}$. ω_h is taken as 10^4 to give an enough frequency range for a good approximation. Let

$$\left(\frac{s\omega_b}{s\omega + 1}\right)^\alpha \approx \prod_{i=0}^{N-1} \frac{s\omega_i}{s\omega_i' + 1}$$

(3)

Based on Figure 10, two recursive factors ζ and η are introduced to calculate ω_i and ω_i':

$$\zeta = \frac{\omega_i'}{\omega_i}, \quad \eta = \frac{\omega_i+1}{\omega_i'}$$

(4)
Since
\[\omega_0 = \eta^{\frac{1}{2}} \omega_b, \quad \omega^{' N-1}_0 = \eta^{-\frac{1}{2}} \omega_h \]
(5)

Therefore
\[\zeta \eta = \left(\frac{\omega_b}{\omega_h} \right)^{\frac{1}{N}} \]
(6)

with
\[\omega_i = (\zeta \eta)^i \omega_0, \quad \omega_i^{' N} = \zeta (\zeta \eta)^i \omega_0 \]
(7)

The frequency-band fractional order controller has $-20\alpha dB/dec$ gain slope, while the integer order factors $1/\left(\frac{\omega}{\omega_i} + 1 \right)$ have $-20 dB/dec$ slope. For the same magnitude change Δ:
\[-20\alpha = \frac{\Delta}{\log\zeta + \log\eta}, \quad -20 = \frac{\Delta}{\log\zeta} \]
(8)

Thus
\[(\zeta \eta)^\alpha = \zeta \]
(9)

Therefore ζ and η can be expressed respectively by
\[\zeta = \left(\frac{\omega_h}{\omega_b} \right)^{\frac{1}{N}}, \quad \eta = \left(\frac{\omega_h}{\omega_b} \right)^{\frac{1-\alpha}{N}} \]
(10)

Finally
\[\omega_i = \left(\frac{\omega_h}{\omega_b} \right)^{\frac{i + \frac{1}{2} - \frac{2}{N}}{N}} \omega_b, \quad \omega_i^{' N} = \left(\frac{\omega_h}{\omega_b} \right)^{\frac{i + \frac{1}{2} + \frac{2}{N}}{N}} \omega_b \]
(11)

Figure 11 shows the Bode plots of ideal frequency-band case ($\alpha = 0.4$, $\omega_b = 200Hz$, $\omega_h = 1000Hz$) and its 1st-order, 2nd-order and 3rd-order approximations by broken-line approximation method. Even taking $N = 2$ can give a satisfactory accuracy in frequency domain. For digital implementation, the bilinear transformation method is used in this paper.
6 Experimental Results

As depicted in Figure 12, the experimental torsional system is controlled by a PC with 1.6GHz Pentium IV CPU and 512M memory. Control programs are written in RTLinux C threads which can be executed with strict timing requirement of control sampling time. A 12-bit AD/DA multi-functional board is used whose conversion time per channel is 10µsec.

Experiments are carried out with sampling time $T=0.001$ sec and 2nd-order broken-line approximation ($N = 2$). Two encoders (8000 pulse/rev) are used as rotation speed sensors with coarse quantization ±0.785 rad/sec.

Since the driving servomotor’s input torque command T_m has a limitation of maximum ±3.84 Nm, K_i is reduced to 18.032 by trial-and-error to avoid large over-shoot caused by the saturation. Firstly, integer order PI speed control experiment is carried out. As depicted in Figure 13 the PI control system can achieve satisfactory response when the backlash angle is adjusted to zero degree ($\delta = 0$); while persistent vibration occurs when gear backlash non-linearity exists (see $\delta = 0.6$ case).

Figure 14 depicts the experimental results with different α order filters. Vibration occurred in PI-only control is effectively suppressed by introducing fractional order low-pass filter $\frac{1}{(Ts+1)^\alpha}$. In those results, taking α as 0.2 gives best time response with improved
vibration suppression performance. For other higher α order cases, even the vibration is suppressed, their time responses are not such satisfied due to more phase margin loss. This observation gives that, by FOC approach, it is more clear-cut to adjust the trade-off between stability margin loss and strength of vibration suppression.

Figure 14: Experimental results with fractional order $\frac{1}{(Ts+1)^{\alpha}}$ filter

In order to verify whether the fractional order filter can give a continuous tuning of the trade-off, the time responses of $\alpha = 0.01$ and $\alpha = 0.99$ cases are also experimented. As depicted in Figure 15, the results show a good continuity. Attention should be paid toward the reasons for vibrations in two cases. Poor vibration suppression performance causes vibration in $\alpha = 0.01$ case; while nearly zero phase margin in $\alpha = 0.99$ case leads to the severe vibration with lower frequency and larger amplitude. Namely, the reason for the second case is due to its poor relative stability. A proper fractional order α can give a better trade-off between these two extreme cases. Figure 16 depicts experimental results with the 1st-order and 3rd-order approximation of broken-line method ($\alpha = 0.2$). Even taking 1st-order approximation can give a relatively good performance.

7 Conclusions

In this paper, a classical PI controller with fractional order low-pass filter $\frac{1}{(Ts+1)^{\alpha}}$ is proposed to give a straightforward trade-off adjustment between the control system’s stability margin loss and the strength of vibration suppression. In oscillatory system control, this kind of trade-off is a common problem. As shown in the above theoretical analysis and
experimental results, by introducing FOC concept, we can design control system in a clear-cut way since control system’s frequency response can be adjusted easily to desired shape with few control parameters. Namely, the tuning knob can be reduced significantly compared to high-order transfer functions obtained by classical IOC approaches.

At the same time, it can be seen using fractional order controller is a general method to trade off inconsistent control demands, which is not limited to the specific problem. “Simple & clear-cut design” can be achieved by expending controller’s order to fractional.

On the contrary to FOC control design, the implementation of fractional order controllers is not such direct. Some proper approximations are needed. However, as verified in experimental results, the implementation issue actually should not be problematic.
FOC is not an abstract concept, but a natural and powerful expansion of the well-developed IOC. Knowledge and design tools developed in IOC can still be made good use of in FOC research, as demonstrated in this paper. For example, upgrading traditional PID controller by introducing fractional order factors, such as fractional order \(I^{\alpha} \), \(D^{\beta} \) controllers or fractional order filters, could give a more effective control of complex dynamics. It is interesting to find that in the experiments the 1st-order approximation can also have a relative good performance (see Figure 16). This filter is actually a simple one order controller:

\[
0.45731 \frac{(s + 2091)}{(s + 956.4)}
\]

(12)

The authors do believe some well-designed IOC system might in fact be a unconscious approximation of FOC system. If this hypothesis can be established, FOC’s superiorities in control field would be further verified.

References

About the Authors

Chengbin Ma received the M. S. and Ph. D. degrees from the Department of Electrical Engineering, the University of Tokyo in September 2001 and September 2004 respectively. His doctoral research focused on fractional order control theory and applications to motion control. He is now working in Fanuc Ltd.

Yoichi Hori received the B.S., M.S. and Ph.D degrees in Electrical Engineering from the University of Tokyo in 1978, 1980 and 1983, respectively. In 1983, he joined the University of Tokyo, the Department of Electrical Engineering as a Research Associate. He later became an Assistant Professor, an Associate Professor, and in 2000 a Professor. In 2002, he moved to the Institute of Industrial Science, the University of Tokyo, as a Professor. His research fields are control theory and its industrial application to motion control, electric vehicle, and welfare system, etc. He is now a Vice President of IEE-Japan IAS and IEEE Fellow.