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Abstract

A novel approach is proposed for parallel computation in flexible multibody dynamics, based on a sub-domain
decomposition technique. In this approach, the computational domain is divided into non-overlapping sub-
domains and kinematic constraints are used to enforce the continuity of the displacement field over the entire
structure. These kinematic constraints are enforced via fields of Lagrange multipliers that act at the interface
between the sub-domains and can be interpreted as the interface connection forces. The proposed approach
relies on a novel strategies for the enforcement of the kinematic constraints at the interface between sub-domains.
The traditional approach ? is to use global Lagrange multipliers to enforce all constraints. In the proposed
approach, all constraints are enforced using local Lagrange multipliers and an interface mesh is defined as a
byproduct. Furthermore, an augmented Lagrangian formulation is used in conjunction with with the local
Lagrange multipliers. The penalty terms stemming from the augmented Lagrangian formulation provide a
natural conditioning of the interface problem expressed in terms of the local Lagrange multipliers. In fact, as
the penalty factor increases, the condition number of the interface problem flexibility matrix tends to unity.
This advantage, however, comes at the expense of the solution of a large sized coarse mesh problem. To solve
this latter problem, it is shown that the use of local Lagrange multipliers leads to an interface problem that
can itself be decomposed into non-overlapping sub-domains. This contrasts with the traditional approaches for
which this is not possible. Clearly, the proposed approach leads to a hierarchical decomposition of the problem,
in which each decomposition leads to an new interface problem, of ever decreasing size. At the end, the overall
problem can be solved without resorting to iterative solvers, achieving great computation efficiency and stability.

Examples of application of the procedure will be presented for flexible multibody systems.
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Chapter 1

Analysis of motion

1.1 General motion of a rigid body

Figure 1.1 depicts a rigid body defined in its reference configuration by frame Fy = [A, & = (€01, €02, €03)]- The
position vector of point A with respect to point O is denoted r,. Let rp be the position vector of a material
point P of the rigid body with respect to inertial frame F! = [O,Z = (71,72,73)]. The position vector of the

same material point with respect to point A is denoted sp. Hence, rp =1y + sp.

The rigid body now undergoes an arbitrary

motion that brings it to a final configuration de-
Reference

fined by frame F = [A, € = (é1,€2,€3)]. Let B~ configuration

and R be the rotation tensors that bring basis 7

to & and basis & to &£, respectively. Consider-

ing fig. 1.1, the following vector relationship is

Final

easily established, configuration

up =u-+Sp—sp, (1.1)

) . . . Figure 1.1: General motion of a rigid body.
where S p is the position vector of material point

P with respect to point A in the final configuration. Let s} = §0T§P and S} = (ﬁﬁo)Tﬁp denote the

components of vector sp in basis & and of vector Sp in basis £, respectively.

Because the body is assumed to be rigid, the components of vector sp in & are identical to those of Sp in
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&, i.e., 85 =S}, and hence, Sp = Rsp. Equation (1.1) now becomes
up=u+ (R—1I)sp. (1.2)

This relationship describes the displacement of a material point P of the rigid body in terms of u, the displace-
ment of its reference point, and tensor R that defines its orientation. Note that the choice of reference point A

is arbitrary, and hence, eq. (1.2) is not an intrinsic relationship.

To obtain a more general expression of the displacement field, the following question can be asked: is
it possible to find a material point of the rigid body, say point Q, whose displacement is parallel to 72, the
axis defining rotation tensor R? If point Q exist, its relative position vector, s,, must satisfy the following
relationship

ug =u+ (B—1)sq = dn. (1.3)

Constant d can be evaluated by taking the scalar product this equation by 7’ to find d = 2”7 u. It then follows
that

(B—Dsq=dn—u= (nn" —I)u (1.4)

Using well-known identities, this equation can be written as 7 [2sin¢/2 G s, —nu] = 0. The bracketed
must be parallel to unit vector n, which implies 2sin¢/2 G s — nu = fn, where 3 is an arbitrary constant.
The location of point Q is now readily found as

__nG" B
5= Ying2t  2simg 2"

This represents the equation of a line passing through point Q and parallel to 7. The displacements of all points

on this line are along 7.
Point Q can be defined uniquely by requiring s, to be orthogonal to 7, i.e., ﬁTgQ = 0, and hence, § = 0.
The location of point Q (Angeles, 1997) now becomes

nG"
S = mﬂ (1.5)
By construction, the displacement of point Q is parallel to 7, see eq. (1.3). Combining eqgs. (1.2) and (1.3)

now yields

up =dn+ (B—I)(sp — s0)- (1.6)
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This relationship expresses the displacement of a material point P of the rigid body as a translation, dn, parallel

to axis 7, followed by a rotation about that same axis. The displacement
d=n"u, (1.7)

is the intrinsic displacement of the rigid body: all points of the rigid body undergo the same displacement, d,
followed by a rotation.
If the rigid body undergoes a general planar motion, u lies in the plane of the motion, and 7 is perpendicular

Ty = 0, the intrinsic displacement, d, of a rigid body in general planar motion always

this plane. Hence, d = n
vanishes. If the rigid body undergoes a pure translation, axis 7 is along the displacement u of all the points of
the body. The motion is then decomposed into a translation, dn, followed by a rotation of vanishing magnitude
about the same axis.

Equation (1.6) expresses the general motion of a rigid body as screw motion about axis 7. The pitch of the

screw, w, is defined as
2md

e

Mozzi-Chasles’ theorem due to Mozzi (1763) and Chasles (1830) states the results obtained here in a compact

w

(1.8)

manner.

Theorem 1.1 (Mozzi-Chasles’ theorem). The most general motion of a rigid body consists of a translation

along an axis followed by a rotation about the same axis.

The Mozzi-Chasles axis is defined by its orientation, 1, and the position of one of its points, sq,, given by
eq. (1.5). Alternatively, this axis can be defined by its Pliicker coordinates (Angeles, 1997, 1998)
nnG"

_ ] 2sing2" (1.9)

n

Qe

1.1.1 Intrinsic representation of motion

In fig. 1.1, the general motion of a rigid body has been described by two quantities: the displacement of one of its
material points and its rotation. Mathematically, these quantities are represented by vector u, the displacement
vector of material point A, and tensor R, which defines the rotation of the rigid body, respectively. Rotation
tensor R is an intrinsic quantity: it defines the rotation of the rigid body. In contrast, displacement vector u

is not an intrinsic quantity: it represents the displacement of an arbitrarily chosen material point of the rigid
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body. Had another reference point been selected, say point A’, a different displacement vector, say u’, would
have resulted.

Mozzi-Chasles’ theorem 1.1 states that a general rigid body motion consists of a translation along an axis
followed by a rotation about the same axis. This theorem provides an alternative means of representing motion,
which is fully defined by the magnitude of the translation, d, that of the rotation, ¢, and the axis along and
about which these motions are taking place.

This concept is illustrated in fig. 1.2, which depicts Mozzi-Chasles’ axis and the magnitudes of the translation
and rotation. Mozzi-Chasles’ axis is a line, which is most effectively represented by its Pliicker coordinates
evaluated with respect to point O, Q, . = (w,n), where 7 is the unit vector defining its orientation and

w = ron. Vector ry, is the position vector of an arbitrary point along Mozzi-Chasles’ axis with respect to point

0.
Mozzi-Chasles’ theorem 1.1 now implies that a general motion, M, is fully defined as follows
M= (d,p,w,n). (1.10)
The Pliicker coordinates of Mozzi-Chasles’ axis satisfy two constraints, ||72|| = 1 and 77w = 0. Consequently,

motion M is characterized by six parameters only, as expected.
The representation of motion depicted in fig. 1.2

make no use of the configuration of a particular Mozzi-Chasles' \el
rigid body. The reference and final configurations of
a specific rigid body undergoing the motion defined
by eq. (1.10) are given in dotted lines. Note that
the displacement of point A, an arbitrary material
point of the rigid body, does not enter the definition

of the motion defined by eq. (1.10), which now gives

an intrinsic definition of the motion.
Figure 1.2: Definition of a general motion based on

If the displacement of point A is desired, it can Mozzi-Chasles’ theorem.

be obtained from eq. (1.6) as uy = dn + (R —

£)(—§Q). A cursory look at fig. 1.2 reveals that r 4 + s + 87 = r, and the displacement of point A becomes
uy=dn+ (R—I)(ry —rg+Bn). Since (B — I)n = 0, this expression reduces to uy = dn+ (B —I)(r, —1q),
and finally,

yA:dﬁ+2sin§§w+(§—£)£A. (1.11)
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The first two terms of this equation represent the intrinsic contribution to the displacement of any arbitrary
point. The third term represents the additional contribution that is specific to point A; as expected, it depends

on the position vector, r 4, of point A.

Example 1.1. Displacement of the points located on a circular cylinder
Consider a general motion, M = (d,¢,9Q,,.), and a circular cylinder of radius ¢ whose axis coincides with
Mozzi-Chasles’ axis. Find the magnitude of the displacement of the points located on this cylinder.

The displacement vector of an arbitrary point A resulting from motion M is given by eq. (1.6) as u, =
dn — (B — I)sg = dn — 2sin$/2 nsg. For all points A located on a circular cylinder of radius ¢ whose axis
coincides with Mozzi-Chasles’ axis, sg = ou, where nTu = 0. It follows that u, = dn — 2psin¢/2 v, where
nTs = 0. The square of the norm of the displacement of point A now becomes |[u,||? = d* + (20sin¢/2)?.
Because d and ¢ are constants for the given motion, M, and g is the radius of the circular cylinder whose axis

coincides with Mozzi-Chasles’ axis, it follows that the magnitudes of the displacement of all points located on

this circular are identical and given by the above formula.

1.2 The motion tensor

In this section, the motion tensor is introduced as the tensor that relates the Pliicker coordinates of a line of a

rigid body in its initial and final configurations.

1.2.1 Transformation of a line of a rigid body

Figure 1.3 shows a rigid body in its reference configura-
tion defined by frame F! = [0,Z = (71,72,23)]. Two
points of this rigid body, denoted points P and Q,

are defined by their position vectors with respect to

point O given as sp and s, respectively. In the final
iy Reference Final b,

f . he riei . . ih f
configuration, the rigid body is associated with frame configuration configuration

F = [A,B* = (b1,by,b3)]. Superscripts (-)* indicate __.
[ (b1, b2 3)] b pts () Figure 1.3: A line of a rigid body in the reference

tensor components resolved in basis B*. The position and final configurations.

vectors of material points P and Q with respect to point

A are now Sp and S, respectively. Because points P and Q are material points of the rigid body, Sp = RSp
and Sp =R §22.
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Consider now the line passing through these two points in the final configuration. Its orientation, resolved
in basis B*, is £* = (S5 — Sp)/(|1S5 — Spll). The Pliicker coordinates of this line evaluated with respect to

point A, are

Sl k*
U G A (1.12)

é*

()
*

The Pliicker coordinates of the same line with respect to point O will now be evaluated and resolved in basis

7. First, the orientation of the line is now

7o (y-f—ﬁQ)—(ﬂ'Fﬁp) _ ﬁQ_ﬁp _ ﬁ*Q_ﬁ}g — R
[(w+Sg) —(w+Sp)l  Sg—Spll  =lS, =Skl =
Next, the Pliicker coordinates of the same line become
U+ Sp)l UR(* + RS, RTR I R UR| | Splr
¢ Rt 0 R A

The motion tensor is defined as

R uR
c=|= =, (1.14)
0 E
and eq. (1.13) can now be written in a compact form as
k k"
Q= =Co" =Cq /- (1.15)
é*

Figure 1.4: Two frames with a rel-
ative displacement, u, and a relative

Clearly, the motion tensor relates the Pliicker coordinates of an arbi- rotation, K.

trary line of the rigid body resolved in two frames. This change of frame
operation is more complex than the change in basis operation: it involve both a change of basis and a change of
reference point (Bottema and Roth, 1979; Pradeep et al., 1989; Angeles, 1998). Equation (1.15) can be written
in a more explicit manner as g[f = c 7] Q[}- I. In this form, the present change of frame operation mirrors
the change of basis operation.

Figure 1.4 depicts the change of frame operation in a more abstract manner: the motion brings frame
FI = ]0,T = (3i,72,13)] to frame F = [B,B = (b1, bab3)]. Vector u is the relative position of point B with

respect to point O and rotation tensor R brings basis 7 to basis B.
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Let J, denote a null vector with a single unit entry in location i. Application of the motion tensor to these

unit vectors yields

ﬁi:

e

I, (1.16)

In view of the definition of the motion tensor, eq. (1.14), the following results are found easily

(=
[y

=all

S
w

2

51 = 9 §2 = ) 53 = ) (117)

1o
1o
(e

B, = , Bs= , Bg= . (1.18)

Note that vectors J,, i = 4,5,6 can be interpreted as the Pliicker coordinates of lines £; = (O,71),
Ly = (0,%2), and L3 = (0O, 73), respectively, evaluated with respect to point O. Notation £ = (P, /) indicates
a line passing through point P and of orientation defined by unit vector /. Equation (1.15) then implies that
vectors By, Bs, and By can be interpreted as the Pliicker coordinates of lines £4 = (B, b1), L5 = (B, bs), and

Ls = (B, b3), evaluated with respect to point O.

1.2.2 Properties of the motion tensor

The motion tensor can be factorized in the following manner

I~

=
II=
o

g: =

I

R, (1.19)

=
I~
o
ll=

where R is the rotation tensor and T the translation tensor. The eigenvalues of the motion tensor are easily
obtained from its characteristic equation, det(C — AZ) = 0. Given the structure of the motion tensor given by
eq. (1.14), the characteristic equation reduces to det2(§ — M) = 0, which implies that the eigenvalues of the
motion tensor are identical to those of the rotation tensor, but each with a multiplicity of two. The motion

tensor, however, unlike the rotation tensor, is not an orthogonal tensor.
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The inverse of the motion tensor is found easily as

RT RT RTyT
CH'=R'T'=R'T =" == = | (1.20)

o
I~
I
~

o
o
I~
o

Two linearly independent eigenvectors of the motion tensor associated with its unit eigenvalues are found to

be
GTu

NT = , and NI = 2sing/2 \ . (1.21)

n

[

The fact that N I is an eigenvector of the motion tensor stems from the corresponding property for the ro-
tation tensor, Rn = 7. It is readily verified that M; is also an eigenvector of the motion tensor, indeed,
QQTQ/@ sing/2) +uRn = (G — 2nsin¢/2)u/(2sin¢/2) = QTQ/Q sing/2).

Any linear combination of eigenvectors N J{ and . ; is still an eigenvector of the motion tensor. Consequently,
the family of eigenvectors associated with the unit eigenvalue is expressed as follows

m (= 1)d

N=<S" NI+ N, (1.22)

B 2sin /27

where « is an arbitrary scalar and d the intrinsic displacement of the rigid body. The displacement related part

of the eigenvector is
G'u  (a—1)d_

2sing/2 | 2sing/2 (1.23)

m:

The scalar product of the two vectors forming the eigenvector is closely related to the intrinsic displacement of

the rigid body
ad

TR (1.24)

A=nlm=

1.2.3 Mozzi-Chasles’ axis

In general, an arbitrary line of a rigid body is different in the reference and final configurations. The following
question can then be asked: is it possible to find a line of the rigid body that is identical in the reference and
final configurations? If such line exists, its Pliicker coordinates in the reference and final configurations are
identical, i.e., @ = Q, or, using eq. (1.15), @ = C Q.

This implies that the Pliicker coordinates of this line must form an eigenvector of the motion tensor, as

given by eq. (1.22). Because the first three components of the Pliicker coordinates of a line must be orthogonal
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to the last three, eq. (1.24) implies A = a = 0, and hence,

G'nm
d -=_u
Qe =Nb - WMJ{ = 2SHi¢/2 : (1.25)
n

In summary, the Pliicker coordinates of the line of the rigid body that is identical in the reference and final
configurations are given by eq. (1.25). These coordinates are those of Mozzi-Chasles’ axis. Hence, Mozzi-Chasles’
axis is the line of the rigid body that is identical in the reference and final configurations. This can be written

as Q) = CQ,,~: Mozzi-Chasles’ axis is an eigenvector of the motion tensor corresponding to a unit eigenvalue.

1.2.4 Intrinsic expression of the motion tensor

The motion tensor was defined by eq. (1.14), which is not an intrinsic expression because the displacement
vector of the reference point of the rigid body, u, explicitly appears in this definition. In this section, an intrinsic

expression of the motion tensor is sought, i.e., an expression in which vector u does not appear explicitly.

Rodrigues’ rotation formula provides an intrinsic equation for the rotation tensor in terms of 7, the eigen-
vector of the rotation tensor associated with its unit eigenvalue, and ¢, the magnitude of the rotation. A similar
approach is followed here for the motion tensor, which should be expressed in terms of N, the eigenvector of
the motion tensor associated with its unit eigenvalue, ¢, the magnitude of the rotation, and d, the intrinsic

displacement of the rigid body.

The motion tensor, eq. (1.14), is composed of two sub-matrices: the rotation tensor, repeated twice along
the diagonal, and tensor uR, appearing as an off-diagonal term. The intrinsic expression of the rotation tensor
is provided by Rodrigues’ rotation formula. In contrast, the term uRR is not intrinsic because the displacement

vector of the reference point, u, appear explicitly.

Using the definition of the intrinsic displacement of the rigid body, the displacement vector is related to
the eigenvector of the motion tensor, with the help of eq. (1.23) to find m = [G"u + (a — 1)nnTy] /(2sin ¢/2).

Introducing the expression for the half-angle rotation tensor then yields

E
I
s>
=

(1.26)
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where second-order tensor E is defined as

« 1_ « 1 —
L= gemopt 3" " (2sin¢/2 " 2tan (;5/2) - (1.27)

It now becomes possible to express the displacement vector in terms of the first part of the eigenvector of

the motion tensor as

u=Jm, (1.28)
where tensor J = 271 is easily found as
J= %W£+(l—cos¢)ﬁ+ <25H;7¢/2 —sinqb) nn. (1.29)
Equation (1.28) now yields an explicit expression of the displacement of the body’s reference point
u= ;\ﬁ =sin¢g m +d(1 — acos g)ﬁ + (1 — cos ¢)(nm — mn). (1.30)
Finally, tedious algebra reveals the following result,
iR = JmR = sin¢m +deiii + (1 — cos ¢) (7 + mi) + deaiim, (1.31)
where coefficients ¢; and ¢ are defined as
€1 =cos¢p — acos@/2, (1.32a)
¢y = sin¢g — 2asin ¢/2. (1.32b)
Combining Rodrigues’ rotation formula and eq. (1.31), the motion tensor, eq. (1.14), becomes
C—T+ singl deil nom N (1 —coso) L deal n m||n m . (1.33)
- 0 singl| |0 n 0 (1-cosg)L| |0 n| [0 n

To simplify the writing of this seemingly complicated expression, the following notation is introduced. First,



1.2 — The motion tensor 13

tensor Z, a function of two scalars, o and (3, is introduced

BL ol
Za,B)=1| =~ ~|. (1.34)
0 AI
Second, the generalized vector product tensor is defined
- n o m
N = . (1.35)
0 n

Notation A does not indicate a 6 x 6 skew-symmetric tensor, but rather the above 6 x 6 tensor formed by three
skew-symmetric sub-tensors.
Introducing these various notations into eq. (1.33) yields the desired intrinsic expression of the motion tensor

and of its inverse

CN) = Z + Z(dey,sin )N + Z(dea, 1 — cos g)NN, (1.36a)

CHN) = Z — Z(dey, sin¢)/\~f+ Z(de2, 1 — cos ¢)/\~U\~/ (1.36b)

The parallel between this intrinsic expression for the motion tensor and that for the rotation tensor given by
Rodrigues’ rotation formula, is striking. Clearly, the skew-symmetric tensor, 1, appearing in the expression for
the rotation tensor is replaced by the generalized vector product tensor, N , appearing in that for the motion
tensor. The two scalars, sin ¢ and (1 — cos ¢), appearing in the expression for the rotation tensor becomes the
second arguments of tensor Z appearing in that for the motion tensor.

Rodrigues’ rotation formula provides an intrinsic expression for the rotation tensor and is a direct conse-
quence of Euler’s theorem on rotations. Similarly, the intrinsic expression for the motion tensor is a direct

consequence of the Mozzi-Chasles theorem.

1.2.5 Properties of the generalized vector product tensor

The generalized vector product tensor defined by eq. (1.35) enjoys remarkable properties that generalize those
of the skew-symmetric tensor. First, the skew-symmetric operator, n, possesses a null eigenvalue, nn = 0n.
Similarly, the generalized vector product tensor also possesses a null eigenvalue, N. N =0N.

The second property of the generalized vector product tensor generalizes the behavior of the skew-symmetric
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tensor under a change of basis operation. Consider the following triple matrix product

g ma R} Rlay| |nn mai| |R, R,

o
t

i3 0 R!

o
St

0 R

=2

This equality implies two conditions. The first condition is ng = égﬁlﬁy which implies 3 = @gﬁl The
second condition is ms = R;(ﬁn + nqts — Egﬁl)EQ, and tensor identities then lead to ms = Rg(ml + niuy).

These results can be summarized by the following equivalence,

N3 = gil(ﬂz)ﬁlg(ﬁz) = N;= gil(MQ)Ml- (1.37)

The third property of the generalized vector product tensor generalizes identity, which holds for unit vectors

and is rewritten here as nnn +n = 0.

NNN +Z2\ )N =0. (1.38)
The use of well-known identities yields the above result, where A = n”'m.
Consider two vectors defined as
v p
V= , P=<"
@ 4q
The well-known property of the vector product, ab = —Eg, then generalizes to
VP = —PV. (1.39)
The following operation is alos needed
VIp =Py, (1.40)
where the following notation was introduced
~ 0 p
== 7. (1.41)
P q

1.2.6 Composition of motion

Figure 1.5 shows three frames denoted 7 = [0,T = (7;,%2,73)], F* = [K, B* = (b¥,b50%)], and F* = [L, B* =

(b§,b5b5)]. The relative position vectors of points K and L with respect to point O are denoted u* and uf,
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respectively. The relative rotation tensors of bases B* and B* with respect to basis Z are denoted ék and @Z,
respectively. Finally, let gk, g, and C denote the motion tensors that bring frame FT to F*, frame FT to F¢,
and frame F* to F*, respectively. All tensor components are resolved in frame FZ.

In view of eq. (1.16), BY = gk11 and B = gli, leading to B! =

gegkflﬁf. Because B¢ = gﬁf, it then follows that

c=c'ct . (1.42)

Initial
This tensor relationship is called composition of motion: it expresses configuration

the relative motion tensor, C, of frame F* with respect to frame F* in

terms of the relative motion tensors of these two frames with respect
Figure 1.5: Configuration of three

to frame FZ.
frames.

Introducing egs. (1.14) and (1.20) into eq. (1.42), the components of the relative motion tensor, resolved in

frame FZT, become

GZEZ EkT EkT&'kT EZE]@T ;IIOEKE]@T
== = —|== == (1.43)

R’ 0 RFT 0 R'RFT

o 1y

where uy = (uf — u¥) — (ﬁgﬁkT — I)u”. Figure 1.5 shows that u = u’ — u* is the relative position vector of

point L with respect to point K and R = ﬁzﬁw is the relative rotation of basis B¢ with respect to basis B*.

With these notations, the relative motion tensor, eq. (1.43), becomes

o
I
[i=
3
S
=

= (1.44)

o
1=

where vector u is defined as

up =u— (R—1)u". (1.45)

The discussion thus far has focused on the abstract concept of frames. In contrast, section 1.1 deals with
the general motion of rigid bodies. It is clear that a one-to-one relationship exist between a frame and the
configuration a rigid body; in fact, fig. 1.5 can be interpreted as representing the configuration of a rigid body
in its initial and final configurations. Consider now the material point of the body whose location coincides
with that of point O in the initial configuration. The displacement of this material point as the body moves to
its final configuration is given by eq. (1.2) as up = u+ (B — I) (—u*). This observation allows the geometric

interpretation of vector u, defined by eq. (1.45): it represents the displacement of the point of the rigid body
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whose location coincides with point O in the reference configuration.

In section 1.1.1, the motion of a rigid body was defined in an intrinsic manner by eq. (1.10). The developments
presented here also give an intrinsic representation, but based on a different set of quantities. Intuitively, the
two representations should be closely linked.

Starting from the representation given by eq. (1.10), the relative rotation tensor, R, is readily obtained from
unit vector 7 and the magnitude of the rotation, ¢. To complete the determination of the motion tensor, vector

up must be evaluated. Equation (1.11) yields

up = dn+2sin¢/2 G w. (1.46)

Clearly, given the intrinsic definition of the motion in eq. (1.10), the motion tensor is obtained easily.

Conversely, if the motion tensor is know, unit vector n and the magnitude, ¢, of the rotation are obtained
easily. Next, vector u, is extracted from the motion tensor and yields the intrinsic displacement of the rigid
body as d = nlu,. Finally, the Pliicker coordinates or the Mozzi-Chasles axis are found by inverting eq. (1.46)
yields

_ U, — dn
w=ron = =0

TR (1.47)

[[op)

By imposing the normality condition ﬁTfQ = 0, the point of the Mozzi-Chasles axis that is at the shortest
distance from point O is found as rg = ﬁngO/(Q sing/2).

The relative motion tensor defined by eq. (1.44) only involves intrinsic quantities, i.e., quantities that are
independent of the selection of a particular reference point of the rigid body. The components of the same

*

relative motion tensor resolved in frame F* are C* = gk_lg gk, where notation (-)* indicates tensor quantities

resolved in frame F*. Tedious algebra reveals the following result

*

i

where u* = @kT (u® — u¥). Clearly, @kTéz = ﬁkTﬁﬁk = é* are the components of the relative rotation tensor
resolved in basis B*. With these notations, the components of the relative motion tensor resolved in the material

frame become

=

cr = = 1. (1.49)
ﬁ*

o

This expession involves two quantities. First, the components of the relative rotation tensor resolved in basis
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B*, as expected, and second, the components of the displacement vector of point A, also resolved in basis B*.
Clearly, this is not an intrinsic expression because it involves the components of the displacement vector of a

specific point of the rigid body.

1.3 Velocity field of a rigid body

The time-dependent motion of a rigid body, as depicted in fig. 1.6, will now be investigated. The structure of

the velocity field of the entire rigid body is the focus of the analysis.

The inertial velocity of material point P is

obtained from a time derivative of eq. (1.2), Reference

vp = Q+§§P - Q+§§T§P, where vp = 01 configuration

and v = 4 are the inertial velocity vectors of
point P and A, respectively. This equation be-

comes

vp =v+wSp, (1.50)

where w = axial(ﬁ QT) is the angular velocity

vector of the rigid body. This relationship de-

Figure 1.6: Time-dependent motion of a rigid body.

scribes the velocity of an arbitrary point P of
the rigid body in terms of v, the velocity of a reference point, and w, the angular velocity vector of the rigid
body. Here again, the choice of reference point A is arbitrary, and hence, eq. (1.50) is not an intrinsic relation-
ship.

To obtain a more general description of the velocity field, the following question can be asked: is it possible
to find a material point of the rigid body, say point Q, whose velocity vector is parallel to the angular velocity

vector? If such a point exists, the following relationship must hold
v =v+WSq = pw, (1.51)

where 4 is an arbitrary scalar that can be found by taking the scalar product of this equation by w” to find
p=(w"v)/w?
Equation (1.51) now becomes @S, = (ww’/w? — I)v = @wv/w?. This equation can be recast as

w [ﬁQ — @Q/oﬂ] = 0. The bracketed term is parallel to the angular velocity vector, which implies S, —ov/w? =
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aw, where « is an arbitrary constant. The location of point Q is now found as

w
S, =aw-+ —uv.
_Q * w2_

The solution is the locus of points along a straight line parallel to w, and hence, no unique solution exists for
the location of point Q.

To remove this ambiguity, point Q will be selected as that at the shortest distance from point A, i.e.,
c_uTﬁQ = 0. It follows that a = 0, and

w

Sy =—uv (1.52)

w2~
In summary, material point Q of the rigid body exists whose velocity vector is parallel to the angular velocity

vector. The location of this point is given by eq. (1.52). Combining eqgs. (1.50) and (1.51) now yields

w'w ~ -~

vp=—7wt+w(Sp—58g) =vg+tw(Sp—5g) (1.53)
This relationship expresses the velocity of material point P of the rigid body as the velocity of point Q, vy,
which is parallel to angular velocity vector w, followed by a rotation about that same axis. This is referred to
as screw motion about axis w. The screw axis is defined as the line passing through point Q and parallel to w.

The Pliicker coordinates, Q, of the screw axis are
Q=14 W (1.54)

1.4 Derivatives of finite motion operations

The derivatives of finite rotation operations lead to the concept of angular velocity vector. The present section
focuses on the study of time derivatives of the motion tensor, which leads to both velocity and angular velocity

vectors. Differential changes in motion are also investigated.

1.4.1 The velocity vector

The time-dependent motion of a rigid body is represented by the time-dependent motion of the body attached
frame, F = [A,B* = (51,53,53)}, depicted in fig. 1.3. Let C be the motion tensor that brings reference frame

F! to frame F, and eq. (1.15) then implies Q(t) = C(¢)Q". Taking a time derivative of this equation leads to
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Q= gg*, and eliminating Q" then yields

IS
Il
ey
IIQ‘
o

(1.55)

The use of well-known identity leads to

[I=~E

UR+ 17,

[l=
ll=,

" R"u" (@ + Tw)

[
IIQ‘
I

(1.56)

o
= +
[|f==}
[f=s}
)
o €
&2
o &
&2

This expression gives rise to two quantities. First, the angular velocity of the rigid body emerges from the
time derivative of the rotation tensor, w = axial(ﬁ QT); as expected, this quantity is identical to that which
arose for the study of time derivatives of time-dependent rotations. Second, the velocity vector of the rigid body,
v = 4 + uw, also emerges from the time derivative of the motion tensor. This quantity can be interpreted as
the linear velocity of the point of the rigid body that instantaneously coincides with the origin of the reference

frame, point O.

The velocity vector of the rigid body resolved in frame F' is now defined as

IS4

Y = , (1.57)
w
and eq. (1.55) becomes Q = VQ, where the generalized vector product tensor is given by eq. (1.35).
It is also possible to resolve the components of the velocity vector in the moving frame,
clo=c'co (1.58)
It is readily found that
.. |B" R'u"| |R uR+uR @ R @
¢ C= N - | = : (1.59)
0 R" |0 R 0 0 wr

This expression gives rise to two quantities. First, the components of the angular velocity of the rigid body
resolved in the rotating basis, w* = axial(@Tﬁ). Second, the components of the velocity vector of the reference

point of rigid body resolved in the rotating basis, v* = QTQ.
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The components of the velocity vector of the rigid body resolved in the material frame are now defined as

V=" b =C"'V (1.60)

Equation (1.58) now becomes ™' Q = V*Q*, where the generalized vector product operator is given by
eq. (1.35).

The above developments are summarized in the following relationships

cet=v, ce =-v (1.61a)
cle=v, ¢ lc=-v (1.61b)
As expected, it is readily shown that
v =cve, (1.62a)
y=cviet (1.62b)

1.4.2 The differential motion vector

The concept of differential rotation vector was introduced based on the rotation tensor. By analogy, the following

expression is formed

ot |AE duBsadR| (BT RGN dY (du+ady)| (dy o du

o
[oW
=
o
o,

This expression gives rise to two quantities. First, the differential rotation vector of the rigid body emerges
from differential changes of the rotation tensor, dy = axial(dR ET) No vector 1 exists such that d(z)) gives

the differential rotation vector.

Second, the differential displacement vector of the rigid body, du = du + udy, also emerges from the
differential of the motion tensor. du is the differential displacement of point A and du = du + udy the
differential displacement of the material point of the rigid body that instantaneously coincides with point O.
Of course, there exist no displacement vector, say z, such d(z) = du +udy. Notations du and di will be used

to denote the differential displacement and rotation vectors, respectively.
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By analogy to egs. (1.61a) and (1.61b), the following compact notation is adopted

acct=au, cdcT' = -du, (1.63a)
clac=du, dcT'c=-du, (1.63b)
where the components of the differential motion vector are defined as
du
dU = =cdu’, (1.64a)
dy
du* .
au* = =C dud, (1.64b)
%*

in the fixed and moving frames, respectively. The components of the differential rotation and displacement

vectors, both resolved in the moving frame, are di)* = axial(ﬁTdﬁ) and du* = ﬁng, respectively.

It is readily shown that
U =ctdue, (1.65a)
(1.65b)

Taking a differential of eq. (1.61a) and a time derivative of eq. (1.63a) leads to dV = dgg_l + gdg_l and

du = dggfl + dggil, respectively. Subtracting these two equations and using eqs. (1.61a) and (1.63a) then

yields
AV —dlU = =V dU +dU V.

Expanding these expressions and using well-known identities then leads to this important result d) = d_L{ - 9d_L{ ,

which relates differentials in the velocity vector to the differential motion vector and its time derivative.

The following results are obtained in a similar manner
Ay = did — vdu, v =cdu’, (1.66a)
(1.66b)



29 Analysis of motion

1.5 Time derivatives and variation of rigid body motion operations

Consider a fixed frame FZ = [0,T = (;,72,73)], and a time-dependent frame F* = [K, B* = (b}, b505)]. Tt’s
often the case that the motion of this time-dependent frame depend on a scalar variable, say time t. If C(t)
is the time-dependent motion tensor that bring frame FZ to F*, kY;(t) = gk t)*Y;, i =1,2,---,6. The time
derivative and variation of this expression are kj)i(t) = Q(t)zjii = Q(t)g(t)_lkjii, and 65 Y;(t) = 6C(t)L Vi =

oC(t)C (t)"**Y;, where notation (-) and &(-) indicates a time derivative and variation, respectively.

The generalized velocity vector of a rigid body motion is now defined as

Y xI=CCt) = (*Vit) 0TV (*Vit) 9 TY) L = FY(t) @ FYi(¢) (1.67)
)% _ , _ _ Vox1I Vi x1
where V= { ,Z=HY @By =*Y;(t) @ *Y(t) is the identity tensor, and VY x I = s TTs
Zz 2 Zz X i

1.6 Relationships between motion tensor and screw

Fictitious
rigid body

Figure 1.7: Screw.

Consider a rigid motion as depicted in Fig.(1.7). The screw corresponding to this rigid motion can be

expressed as follows



1.6 — Relationships between motion tensor and screw 23

q q Son + adn
S={"¢=p{ =0 (1.68)
D n n
T nG"u
where, p = f(¢), d = ¢ n/a, sy = m, ¢ is the rotational angel, and « is an arbitrary coefficient except
= sin

for a = 0. It’s clear that a screw S has 6 degrees of freedom, therefore a rigid motion can be represented by a
screw (a line vector or the Pliicker coordinate of a line only has 4 degrees of freedom). Vector 7 is the axis of a

finite rotation, and p is a odd function of angel ¢.

p and d are invariant under frame transformation. Let S* denote the components of a screw resolved in

frame F*, and it’s components resolved in frame FZ can be obtain as following

Rk ﬂkRk q* ﬂkRk p* + Rk q* q[I]
é[l'] _ kg[I]é* _ |= = 1 _ = L = 1 _ ES (169)
0 B | |p R*p* p!
From eq.(1.69), we can obtain
p = p" = 1B "] = " = » (1.70)
’ T * ~ * * !
ad :B[I] gm = (R'p ) @R p* + R ¢")/p = ad (1.71)

Two linearly independent eigenvectors of C 7] agsociated with its unit eigenvalues are found to be

—anG’r
1; _ . and M; = { 2sing/2 (1.72)
0

[=
S

The family of eigenvectors associated with the unit eigenvalues can be expressed as follows

© N+ (1.73)

N = 2sing/2

It’s clear that p/V is a screw.
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Transitivity equations of rigid body motion

1.7
If we assume 5§ = (59 or equivalently d¢ = 5g (¢ are the motion parameters), then the following results are
obtained
8V =dU VU,  V=CoU (1.74)
SV =0U + VUt sV =CtoU (1.75)
Variations of ¥ = V(q,¢,t), V" = V*(¢,¢,t) can be expressed as following
oy oy
0¥ =—0¢+ —=—9¢ 1.76
)4 51 + 5 (1.76)
oy* oy*
SV* = == §¢ =5 1.77
)% 97 q+ 9q q (1.77)
. o )% L. oY .
The time derivative of U = ?5(]’ u* = 5 dq can be expressed as following
q - qa -
d oy ay
U =——0g+ =9 1.
T gt 9% (1.78)
« doy* oV”
= =5 1.79
T Ty T g (1.79)

subtracting eqs. (1.76) with (1.78), (1.77) with (1.79), and note that d¢ = 5g, we obtain the following

transitivity equations
doy oy
U-V=—-—=]6 L.
U5y (dtaq aq) q (1.80)
(1.81)

Substituting eqs. (1.76), (1.77), (1.78), and (1.79) into egs. (1.74) and (1.75), and note that H = 9V/0q,

and 1" = 9V"/0q, we obtain the following two sets of transitivity equations

v -
H— % VH (1.82)
A ~V'H (1.83)

[l
I
S5
BS)
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C'H - 882 =0 (1.84)
4
OV _ 0 (1.85)






Chapter 2

Various facts

2.1 Notational conventions

Several notational conventions are used in the literature to denote vectors and tensors. Three widely used
notations, the geometric notation, the matriz notation, and the index notation (?7) are presented in table 2.1.
The geometric notation is widely used in the literature, sometimes the boldface notation for vectors is replaced
by a specific “vector” superscript: @. The index notation is frequently used, specially when higher-order
tensors must be manipulated such as in the theory of elasticity. It is, however, less often used in kinematics and
dynamics.

The matrix notation is a convenient mnemonic notation and will be used exclusively in this book. Vectors
are denoted with an underline, u, but unit vectors are simply denoted 7, rather than the more cumbersome 7.
Tensors are denoted by a double underline, A, but skew-symmetric tensors are denoted a, rather than the more

cumbersome a. Note that the tensor product, u v, also yields a tensor.

Table 2.1: The geometric, matrix, and index notations for vectors and tensors.

Geometric | Matriz Index
notation notation | notation
vector a a a;
tensor A A Ajj
scalar product u-v QTQ UV;
vector product u X v uv UiV €ijk
tensor product u®v U QT UiV

In practical situations, such computer implementations, it will be necessary to work with the components
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of specific tensors resolved in various bases. In such cases, the following notation will be used

where a1, as, and az are the components of vector a resolved in basis Z. Because the notation a! is rather
cumbersome, it will be used only when necessary; for instance, when the components of a vector in two different
bases are used in the same context. When there is no possible confusion, the notation a/*! will be simplified as

a, thereby blurring the distinction between a vector and its components in a given basis.
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Conclusions and future work

3.1 Conclusions

A novel approach has been proposed for parallel computation in flexible multibody dynamics. The approach
relies on two distinct strategies for the enforcement of the kinematic constraints at the interface between sub-
domains. The traditional approach is to use global Lagrange multipliers to enforce all constraints. In the
proposed approach, a hybrid strategy is used: some constraint are enforced using local Lagrange multipliers,
while the remaining are imposed via global Lagrange multipliers. A coarse mesh is defined as a byproduct of the
local Lagrange multiplier technique. Furthermore, an augmented Lagrangian formulation is used in conjunction
with with the local Lagrange multipliers. If all kinematic constraints are enforced via this technique, the penalty
terms stemming from the augmented Lagrangian formulation provide a natural conditioning of the interface
problem expressed in terms of the local Lagrange multipliers. In fact, as the penalty factor increases, the
condition number of the interface problem flexibility matrix tend to unity. Clearly, this approach is ideally
suited for iterative solutions of the interface problem. This advantage, however, comes at the expense of the
solution of a large sized coarse mesh problem. When the proposed combination of global and local Lagrange
multipliers is used, it is still possible to obtain an interface problem expressed in terms of the sole global
Lagrange multipliers and the solution of the coarse mesh problem provides a natural preconditioning of this

interface problem.

3.2 Future work

This is an important section. Discuss possible extensions of your work and future research directions.
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