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AbstratA novel approah is proposed for parallel omputation in �exible multibody dynamis, based on a sub-domaindeomposition tehnique. In this approah, the omputational domain is divided into non-overlapping sub-domains and kinemati onstraints are used to enfore the ontinuity of the displaement �eld over the entirestruture. These kinemati onstraints are enfored via �elds of Lagrange multipliers that at at the interfaebetween the sub-domains and an be interpreted as the interfae onnetion fores. The proposed approahrelies on a novel strategies for the enforement of the kinemati onstraints at the interfae between sub-domains.The traditional approah ? is to use global Lagrange multipliers to enfore all onstraints. In the proposedapproah, all onstraints are enfored using loal Lagrange multipliers and an interfae mesh is de�ned as abyprodut. Furthermore, an augmented Lagrangian formulation is used in onjuntion with with the loalLagrange multipliers. The penalty terms stemming from the augmented Lagrangian formulation provide anatural onditioning of the interfae problem expressed in terms of the loal Lagrange multipliers. In fat, asthe penalty fator inreases, the ondition number of the interfae problem �exibility matrix tends to unity.This advantage, however, omes at the expense of the solution of a large sized oarse mesh problem. To solvethis latter problem, it is shown that the use of loal Lagrange multipliers leads to an interfae problem thatan itself be deomposed into non-overlapping sub-domains. This ontrasts with the traditional approahes forwhih this is not possible. Clearly, the proposed approah leads to a hierarhial deomposition of the problem,in whih eah deomposition leads to an new interfae problem, of ever dereasing size. At the end, the overallproblem an be solved without resorting to iterative solvers, ahieving great omputation e�ieny and stability.Examples of appliation of the proedure will be presented for �exible multibody systems.
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Chapter 1
Analysis of motion
1.1 General motion of a rigid bodyFigure 1.1 depits a rigid body de�ned in its referene on�guration by frame F0 = [A, E0 = (ē01, ē02, ē03)]. Theposition vetor of point A with respet to point O is denoted r0. Let rP be the position vetor of a materialpoint P of the rigid body with respet to inertial frame FI = [O, I = (̄ı1, ı̄2, ı̄3)]. The position vetor of thesame material point with respet to point A is denoted sP . Hene, rP = r0 + sP .
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Figure 1.1: General motion of a rigid body.

The rigid body now undergoes an arbitrarymotion that brings it to a �nal on�guration de-�ned by frame F = [A, E = (ē1, ē2, ē3)]. Let R0and R be the rotation tensors that bring basis Ito E0 and basis E0 to E , respetively. Consider-ing �g. 1.1, the following vetor relationship iseasily established,
uP = u+ SP − sP , (1.1)where SP is the position vetor of material pointP with respet to point A in the �nal on�guration. Let s∗P = RT

0
sP and S+

P = (RR
0
)TSP denote theomponents of vetor sP in basis E0 and of vetor SP in basis E , respetively.Beause the body is assumed to be rigid, the omponents of vetor sP in E0 are idential to those of SP in



4 Analysis of motion
E , i.e., s∗P = S+

P , and hene, SP = RsP . Equation (1.1) now beomes
uP = u+

(
R− I

)
sP . (1.2)This relationship desribes the displaement of a material point P of the rigid body in terms of u, the displae-ment of its referene point, and tensor R that de�nes its orientation. Note that the hoie of referene point Ais arbitrary, and hene, eq. (1.2) is not an intrinsi relationship.To obtain a more general expression of the displaement �eld, the following question an be asked: isit possible to �nd a material point of the rigid body, say point Q, whose displaement is parallel to n̄, theaxis de�ning rotation tensor R? If point Q exist, its relative position vetor, sQ, must satisfy the followingrelationship

uQ = u+
(
R− I

)
sQ = dn̄. (1.3)Constant d an be evaluated by taking the salar produt this equation by n̄T to �nd d = n̄Tu. It then followsthat

(
R− I

)
sQ = dn̄− u =

(
n̄n̄T − I

)
u. (1.4)Using well-known identities, this equation an be written as ñ [2 sinφ/2 GsQ − ñu

]
= 0. The braketedmust be parallel to unit vetor n̄, whih implies 2 sinφ/2 GsQ − ñu = βn̄, where β is an arbitrary onstant.The loation of point Q is now readily found as

sQ =
ñGT

2 sinφ/2
u+

β

2 sinφ/2
n̄.This represents the equation of a line passing through point Q and parallel to n̄. The displaements of all pointson this line are along n̄.Point Q an be de�ned uniquely by requiring sQ to be orthogonal to n̄, i.e., n̄T sQ = 0, and hene, β = 0.The loation of point Q (Angeles, 1997) now beomes

sQ =
ñGT

2 sinφ/2
u. (1.5)By onstrution, the displaement of point Q is parallel to n̄, see eq. (1.3). Combining eqs. (1.2) and (1.3)now yields

uP = dn̄+ (R− I)(sP − sQ). (1.6)



1.1 � General motion of a rigid body 5This relationship expresses the displaement of a material point P of the rigid body as a translation, dn̄, parallelto axis n̄, followed by a rotation about that same axis. The displaement
d = n̄Tu, (1.7)is the intrinsi displaement of the rigid body : all points of the rigid body undergo the same displaement, d,followed by a rotation.If the rigid body undergoes a general planar motion, u lies in the plane of the motion, and n̄ is perpendiularthis plane. Hene, d = n̄Tu = 0, the intrinsi displaement, d, of a rigid body in general planar motion alwaysvanishes. If the rigid body undergoes a pure translation, axis n̄ is along the displaement u of all the points ofthe body. The motion is then deomposed into a translation, dn̄, followed by a rotation of vanishing magnitudeabout the same axis.Equation (1.6) expresses the general motion of a rigid body as srew motion about axis n̄. The pith of thesrew, ̟, is de�ned as
̟ =

2πd

φ
. (1.8)Mozzi-Chasles' theorem due to Mozzi (1763) and Chasles (1830) states the results obtained here in a ompatmanner.Theorem 1.1 (Mozzi-Chasles' theorem). The most general motion of a rigid body onsists of a translationalong an axis followed by a rotation about the same axis.The Mozzi-Chasles axis is de�ned by its orientation, n̄, and the position of one of its points, sQ, given byeq. (1.5). Alternatively, this axis an be de�ned by its Plüker oordinates (Angeles, 1997, 1998)

Q
MC

=




−

ññGT

2 sinφ/2
u

n̄





(1.9)1.1.1 Intrinsi representation of motionIn �g. 1.1, the general motion of a rigid body has been desribed by two quantities: the displaement of one of itsmaterial points and its rotation. Mathematially, these quantities are represented by vetor u, the displaementvetor of material point A, and tensor R, whih de�nes the rotation of the rigid body, respetively. Rotationtensor R is an intrinsi quantity: it de�nes the rotation of the rigid body. In ontrast, displaement vetor uis not an intrinsi quantity: it represents the displaement of an arbitrarily hosen material point of the rigid



6 Analysis of motionbody. Had another referene point been seleted, say point A', a di�erent displaement vetor, say u′, wouldhave resulted.Mozzi-Chasles' theorem 1.1 states that a general rigid body motion onsists of a translation along an axisfollowed by a rotation about the same axis. This theorem provides an alternative means of representing motion,whih is fully de�ned by the magnitude of the translation, d, that of the rotation, φ, and the axis along andabout whih these motions are taking plae.This onept is illustrated in �g. 1.2, whih depits Mozzi-Chasles' axis and the magnitudes of the translationand rotation. Mozzi-Chasles' axis is a line, whih is most e�etively represented by its Plüker oordinatesevaluated with respet to point O, Q
MC

= (w, n̄), where n̄ is the unit vetor de�ning its orientation and
w = r̃Qn̄. Vetor rQ is the position vetor of an arbitrary point along Mozzi-Chasles' axis with respet to pointO. Mozzi-Chasles' theorem 1.1 now implies that a general motion, M, is fully de�ned as follows

M = (d, φ, w, n̄). (1.10)The Plüker oordinates of Mozzi-Chasles' axis satisfy two onstraints, ‖n̄‖ = 1 and n̄Tw = 0. Consequently,motion M is haraterized by six parameters only, as expeted.
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The representation of motion depited in �g. 1.2make no use of the on�guration of a partiularrigid body. The referene and �nal on�gurations ofa spei� rigid body undergoing the motion de�nedby eq. (1.10) are given in dotted lines. Note thatthe displaement of point A, an arbitrary materialpoint of the rigid body, does not enter the de�nitionof the motion de�ned by eq. (1.10), whih now givesan intrinsi de�nition of the motion.If the displaement of point A is desired, it anbe obtained from eq. (1.6) as uA = dn̄ + (R −

I)(−sQ). A ursory look at �g. 1.2 reveals that rA + sQ + βn̄ = rQ, and the displaement of point A beomes
uA = dn̄+ (R− I)(rA − rQ + βn̄). Sine (R− I)n̄ = 0, this expression redues to uA = dn̄+ (R− I)(rA − rQ),and �nally,

uA = dn̄+ 2 sin
φ

2
Gw + (R − I)rA. (1.11)



1.2 � The motion tensor 7The �rst two terms of this equation represent the intrinsi ontribution to the displaement of any arbitrarypoint. The third term represents the additional ontribution that is spei� to point A; as expeted, it dependson the position vetor, rA, of point A.Example 1.1. Displaement of the points loated on a irular ylinderConsider a general motion, M = (d, φ,Q
MC

), and a irular ylinder of radius ̺ whose axis oinides withMozzi-Chasles' axis. Find the magnitude of the displaement of the points loated on this ylinder.The displaement vetor of an arbitrary point A resulting from motion M is given by eq. (1.6) as uA =

dn̄ − (R − I)sQ = dn̄ − 2 sinφ/2 ñsQ. For all points A loated on a irular ylinder of radius ̺ whose axisoinides with Mozzi-Chasles' axis, sQ = ̺ū, where n̄T ū = 0. It follows that uA = dn̄ − 2̺ sinφ/2 v̄, where
n̄T v̄ = 0. The square of the norm of the displaement of point A now beomes ‖uA‖

2 = d2 + (2̺ sinφ/2)2.Beause d and φ are onstants for the given motion, M, and ̺ is the radius of the irular ylinder whose axisoinides with Mozzi-Chasles' axis, it follows that the magnitudes of the displaement of all points loated onthis irular are idential and given by the above formula.1.2 The motion tensorIn this setion, the motion tensor is introdued as the tensor that relates the Plüker oordinates of a line of arigid body in its initial and �nal on�gurations.1.2.1 Transformation of a line of a rigid body
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Figure 1.3 shows a rigid body in its referene on�gura-tion de�ned by frame FI = [O, I = (̄ı1, ı̄2, ı̄3)]. Twopoints of this rigid body, denoted points P and Q,are de�ned by their position vetors with respet topoint O given as sP and sQ, respetively. In the �nalon�guration, the rigid body is assoiated with frame
F =

[
A,B∗ = (b̄1, b̄2, b̄3)

]. Supersripts (·)∗ indiatetensor omponents resolved in basis B∗. The positionvetors of material points P andQ with respet to pointA are now SP and SQ, respetively. Beause points P and Q are material points of the rigid body, SP = RS∗
Pand SQ = RS∗

Q.



8 Analysis of motionConsider now the line passing through these two points in the �nal on�guration. Its orientation, resolvedin basis B∗, is ℓ̄∗ = (S∗
Q − S∗

P )/(‖S
∗
Q − S∗

P ‖). The Plüker oordinates of this line evaluated with respet topoint A, are
Q∗ =




S̃∗
P ℓ̄

∗

ℓ̄∗





=




k∗

ℓ̄∗




. (1.12)The Plüker oordinates of the same line with respet to point O will now be evaluated and resolved in basis

I. First, the orientation of the line is now
ℓ̄ =

(u+ SQ)− (u+ SP )

‖(u+ SQ)− (u+ SP )‖
=

SQ − SP

‖SQ − SP ‖
= R

S∗
Q − S∗

P

‖S∗
Q − S∗

P ‖
= R ℓ̄∗.Next, the Plüker oordinates of the same line beome

Q =




(ũ+ S̃P )ℓ̄

ℓ̄





=




ũRℓ̄∗ +RS̃∗

PR
TR ℓ̄∗

R ℓ̄∗





=



R ũR

0 R







S̃∗
P ℓ̄

∗

ℓ̄∗




. (1.13)
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The motion tensor is de�ned as
C =



R ũR

0 R


 , (1.14)and eq. (1.13) an now be written in a ompat form as

Q =




k

ℓ̄





= C Q∗ = C




k∗

ℓ̄∗




. (1.15)Clearly, the motion tensor relates the Plüker oordinates of an arbi-trary line of the rigid body resolved in two frames. This hange of frameoperation is more omplex than the hange in basis operation: it involve both a hange of basis and a hange ofreferene point (Bottema and Roth, 1979; Pradeep et al., 1989; Angeles, 1998). Equation (1.15) an be writtenin a more expliit manner as Q[FI ] = C[FI ]Q[F ]. In this form, the present hange of frame operation mirrorsthe hange of basis operation.Figure 1.4 depits the hange of frame operation in a more abstrat manner: the motion brings frame

FI = [O, I = (̄ıi, ı̄2, ı̄3)] to frame F = [B,B = (b̄1, b̄2b̄3)]. Vetor u is the relative position of point B withrespet to point O and rotation tensor R brings basis I to basis B.



1.2 � The motion tensor 9Let J
i
denote a null vetor with a single unit entry in loation i. Appliation of the motion tensor to theseunit vetors yields

Bi = C J
i
. (1.16)In view of the de�nition of the motion tensor, eq. (1.14), the following results are found easily

B1 =




b̄1

0




, B2 =




b̄2

0




, B3 =




b̄3

0




, (1.17)beause the rotation tensor an be expressed as R =

[
b̄1, b̄2, b̄3

]. On the other hand, the last three vetors are
B4 =




ũb̄1

b̄1




, B5 =




ũb̄2

b̄2




, B6 =




ũb̄3

b̄3




. (1.18)Note that vetors J

i
, i = 4, 5, 6 an be interpreted as the Plüker oordinates of lines L1 = (O, ı̄1),

L2 = (O, ı̄2), and L3 = (O, ı̄3), respetively, evaluated with respet to point O. Notation L = (P, ℓ̄) indiatesa line passing through point P and of orientation de�ned by unit vetor ℓ̄. Equation (1.15) then implies thatvetors B4, B5, and B6 an be interpreted as the Plüker oordinates of lines L4 = (B, b̄1), L5 = (B, b̄2), and
L6 = (B, b̄3), evaluated with respet to point O.
1.2.2 Properties of the motion tensorThe motion tensor an be fatorized in the following manner

C =



I ũ

0 I






R 0

0 R


 = T R, (1.19)where R is the rotation tensor and T the translation tensor. The eigenvalues of the motion tensor are easilyobtained from its harateristi equation, det(C − λI) = 0. Given the struture of the motion tensor given byeq. (1.14), the harateristi equation redues to det2(R − λI) = 0, whih implies that the eigenvalues of themotion tensor are idential to those of the rotation tensor, but eah with a multipliity of two. The motiontensor, however, unlike the rotation tensor, is not an orthogonal tensor.



10 Analysis of motionThe inverse of the motion tensor is found easily as
C−1 = R−1T −1 = RTT −1 =



RT 0

0 RT






I ũT

0 I


 =



RT RT ũT

0 RT


 . (1.20)Two linearly independent eigenvetors of the motion tensor assoiated with its unit eigenvalues are found tobe

N †
1 =




n̄

0




, and N †

2 =





GTu

2 sinφ/2

n̄




. (1.21)The fat that N †

1 is an eigenvetor of the motion tensor stems from the orresponding property for the ro-tation tensor, R n̄ = n̄. It is readily veri�ed that N †
2 is also an eigenvetor of the motion tensor, indeed,

RGTu/(2 sinφ/2) + ũR n̄ = (G− 2ñ sinφ/2)u/(2 sinφ/2) = GTu/(2 sinφ/2).Any linear ombination of eigenvetorsN †
1 and N †

2 is still an eigenvetor of the motion tensor. Consequently,the family of eigenvetors assoiated with the unit eigenvalue is expressed as follows
N =




m

n̄





=
(α − 1)d

2 sinφ/2
N †

1 +N †
2, (1.22)where α is an arbitrary salar and d the intrinsi displaement of the rigid body. The displaement related partof the eigenvetor is

m =
GTu

2 sinφ/2
+

(α− 1)d

2 sinφ/2
n̄. (1.23)The salar produt of the two vetors forming the eigenvetor is losely related to the intrinsi displaement ofthe rigid body

λ = n̄Tm =
αd

2 sinφ/2
. (1.24)1.2.3 Mozzi-Chasles' axisIn general, an arbitrary line of a rigid body is di�erent in the referene and �nal on�gurations. The followingquestion an then be asked: is it possible to �nd a line of the rigid body that is idential in the referene and�nal on�gurations? If suh line exists, its Plüker oordinates in the referene and �nal on�gurations areidential, i.e., Q = Q∗, or, using eq. (1.15), Q = C Q.This implies that the Plüker oordinates of this line must form an eigenvetor of the motion tensor, asgiven by eq. (1.22). Beause the �rst three omponents of the Plüker oordinates of a line must be orthogonal



1.2 � The motion tensor 11to the last three, eq. (1.24) implies λ = α = 0, and hene,
Q

MC
= N †

2 −
d

2 sinφ/2
N †

1 =




−

GT ññ

2 sinφ/2
u

n̄




. (1.25)In summary, the Plüker oordinates of the line of the rigid body that is idential in the referene and �nalon�gurations are given by eq. (1.25). These oordinates are those of Mozzi-Chasles' axis. Hene, Mozzi-Chasles'axis is the line of the rigid body that is idential in the referene and �nal on�gurations. This an be writtenasQ

MC
= C Q

MC
: Mozzi-Chasles' axis is an eigenvetor of the motion tensor orresponding to a unit eigenvalue.

1.2.4 Intrinsi expression of the motion tensorThe motion tensor was de�ned by eq. (1.14), whih is not an intrinsi expression beause the displaementvetor of the referene point of the rigid body, u, expliitly appears in this de�nition. In this setion, an intrinsiexpression of the motion tensor is sought, i.e., an expression in whih vetor u does not appear expliitly.Rodrigues' rotation formula provides an intrinsi equation for the rotation tensor in terms of n̄, the eigen-vetor of the rotation tensor assoiated with its unit eigenvalue, and φ, the magnitude of the rotation. A similarapproah is followed here for the motion tensor, whih should be expressed in terms of N , the eigenvetor ofthe motion tensor assoiated with its unit eigenvalue, φ, the magnitude of the rotation, and d, the intrinsidisplaement of the rigid body.The motion tensor, eq. (1.14), is omposed of two sub-matries: the rotation tensor, repeated twie alongthe diagonal, and tensor ũR, appearing as an o�-diagonal term. The intrinsi expression of the rotation tensoris provided by Rodrigues' rotation formula. In ontrast, the term ũR is not intrinsi beause the displaementvetor of the referene point, u, appear expliitly.Using the de�nition of the intrinsi displaement of the rigid body, the displaement vetor is related tothe eigenvetor of the motion tensor, with the help of eq. (1.23) to �nd m =
[
GTu+ (α− 1)n̄n̄Tu

]
/(2 sinφ/2).Introduing the expression for the half-angle rotation tensor then yields

m = E u, (1.26)



12 Analysis of motionwhere seond-order tensor E is de�ned as
E =

α

2 sinφ/2
I −

1

2
ñ+

(
α

2 sinφ/2
−

1

2 tanφ/2

)
ññ. (1.27)It now beomes possible to express the displaement vetor in terms of the �rst part of the eigenvetor ofthe motion tensor as

u = J m, (1.28)where tensor J = E−1 is easily found as
J =

2 sinφ/2

α
I + (1− cosφ)ñ+

(
2 sinφ/2

α
− sinφ

)
ññ. (1.29)Equation (1.28) now yields an expliit expression of the displaement of the body's referene point

ũ = J̃ m = sinφ m̃+ d(1− α cos
φ

2
)ñ+ (1 − cosφ)(ñm̃− m̃ñ). (1.30)Finally, tedious algebra reveals the following result,

ũR = J̃ mR = sinφ m̃+ dc1ñ+ (1 − cosφ) (ñm̃+ m̃ñ) + dc2ññ, (1.31)where oe�ients c1 and c2 are de�ned as
c1 = cosφ− α cosφ/2, (1.32a)
c2 = sinφ− 2α sinφ/2. (1.32b)Combining Rodrigues' rotation formula and eq. (1.31), the motion tensor, eq. (1.14), beomes

C = I +



sinφ I dc1I

0 sinφ I






ñ m̃

0 ñ


+



(1− cosφ) I dc2I

0 (1− cosφ) I






ñ m̃

0 ñ






ñ m̃

0 ñ


 . (1.33)

To simplify the writing of this seemingly ompliated expression, the following notation is introdued. First,



1.2 � The motion tensor 13tensor Z, a funtion of two salars, α and β, is introdued
Z(α, β) =



βI αI

0 βI


 . (1.34)Seond, the generalized vetor produt tensor is de�ned

Ñ =



ñ m̃

0 ñ


 . (1.35)Notation Ñ does not indiate a 6× 6 skew-symmetri tensor, but rather the above 6× 6 tensor formed by threeskew-symmetri sub-tensors.Introduing these various notations into eq. (1.33) yields the desired intrinsi expression of the motion tensorand of its inverse

C(N ) = I + Z(dc1, sinφ)Ñ + Z(dc2, 1− cosφ)Ñ Ñ , (1.36a)
C−1(N ) = I − Z(dc1, sinφ)Ñ + Z(dc2, 1− cosφ)Ñ Ñ . (1.36b)The parallel between this intrinsi expression for the motion tensor and that for the rotation tensor given byRodrigues' rotation formula, is striking. Clearly, the skew-symmetri tensor, ñ, appearing in the expression forthe rotation tensor is replaed by the generalized vetor produt tensor, Ñ , appearing in that for the motiontensor. The two salars, sinφ and (1 − cosφ), appearing in the expression for the rotation tensor beomes theseond arguments of tensor Z appearing in that for the motion tensor.Rodrigues' rotation formula provides an intrinsi expression for the rotation tensor and is a diret onse-quene of Euler's theorem on rotations. Similarly, the intrinsi expression for the motion tensor is a diretonsequene of the Mozzi-Chasles theorem.1.2.5 Properties of the generalized vetor produt tensorThe generalized vetor produt tensor de�ned by eq. (1.35) enjoys remarkable properties that generalize thoseof the skew-symmetri tensor. First, the skew-symmetri operator, ñ, possesses a null eigenvalue, ñn̄ = 0n̄.Similarly, the generalized vetor produt tensor also possesses a null eigenvalue, ÑN = 0N .The seond property of the generalized vetor produt tensor generalizes the behavior of the skew-symmetri



14 Analysis of motiontensor under a hange of basis operation. Consider the following triple matrix produt


ñ3 m̃3

0 ñ3


 =



RT

2
RT

2
ũT2

0 RT

2






ñ1 m̃1

0 ñ1






R

2
ũ2R2

0 R
2


 .This equality implies two onditions. The �rst ondition is ñ3 = RT

2
ñ1R2

, whih implies n̄3 = RT

2
n̄1. Theseond ondition is m̃3 = RT

2
(m̃1 + ñ1ũ2 − ũ2ñ1)R2

, and tensor identities then lead to m3 = RT

2
(m1 + ñ1u2).These results an be summarized by the following equivalene,

Ñ3 = C−1(N 2)Ñ1C(N 2) ⇐⇒ N 3 = C−1(N 2)N 1. (1.37)The third property of the generalized vetor produt tensor generalizes identity, whih holds for unit vetorsand is rewritten here as ñññ+ ñ = 0.
Ñ Ñ Ñ + Z(2λ, 1)Ñ = 0. (1.38)The use of well-known identities yields the above result, where λ = n̄Tm.Consider two vetors de�ned as
V =




v

ω




, P =




p

q




.The well-known property of the vetor produt, ãb = −b̃a, then generalizes to

ṼP = −P̃V . (1.39)The following operation is alos needed
ṼTP = P̂V , (1.40)where the following notation was introdued
P̂ =



0 p̃

p̃ q̃


 . (1.41)1.2.6 Composition of motionFigure 1.5 shows three frames denoted FI = [O, I = (̄ıi, ı̄2, ı̄3)], Fk = [K,Bk = (b̄k1 , b̄

k
2 b̄

k
3)], and Fℓ = [L,Bℓ =

(b̄ℓ1, b̄
ℓ
2b̄

ℓ
3)]. The relative position vetors of points K and L with respet to point O are denoted uk and uℓ,



1.2 � The motion tensor 15respetively. The relative rotation tensors of bases Bk and Bℓ with respet to basis I are denoted Rk and Rℓ,respetively. Finally, let Ck, Cℓ, and C denote the motion tensors that bring frame FI to Fk, frame FI to Fℓ,and frame Fk to Fℓ, respetively. All tensor omponents are resolved in frame FI .
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In view of eq. (1.16), Bk
i = CkJ

i
and Bℓ

i = CℓJ
i
, leading to Bℓ

i =

CℓCk−1Bk
i . Beause Bℓ

i = C Bk
i , it then follows that
C = CℓCk−1. (1.42)This tensor relationship is alled omposition of motion: it expressesthe relative motion tensor, C, of frame Fℓ with respet to frame Fk interms of the relative motion tensors of these two frames with respetto frame FI .Introduing eqs. (1.14) and (1.20) into eq. (1.42), the omponents of the relative motion tensor, resolved inframe FI , beome

C =



Rℓ ũℓRℓ

0 Rℓ






RkT RkT ũkT

0 RkT


 =



RℓRkT ũOR

ℓRkT

0 RℓRkT


 , (1.43)where uO = (uℓ − uk) − (RℓRkT − I)uk. Figure 1.5 shows that u = uℓ − uk is the relative position vetor ofpoint L with respet to point K and R = RℓRkT is the relative rotation of basis Bℓ with respet to basis Bk.With these notations, the relative motion tensor, eq. (1.43), beomes

C =



R ũOR

0 R


 , (1.44)where vetor uO is de�ned as

uO = u−
(
R − I

)
uk. (1.45)The disussion thus far has foused on the abstrat onept of frames. In ontrast, setion 1.1 deals withthe general motion of rigid bodies. It is lear that a one-to-one relationship exist between a frame and theon�guration a rigid body; in fat, �g. 1.5 an be interpreted as representing the on�guration of a rigid bodyin its initial and �nal on�gurations. Consider now the material point of the body whose loation oinideswith that of point O in the initial on�guration. The displaement of this material point as the body moves toits �nal on�guration is given by eq. (1.2) as uO = u +

(
R− I

)
(−uk). This observation allows the geometriinterpretation of vetor uO de�ned by eq. (1.45): it represents the displaement of the point of the rigid body



16 Analysis of motionwhose loation oinides with point O in the referene on�guration.In setion 1.1.1, the motion of a rigid body was de�ned in an intrinsi manner by eq. (1.10). The developmentspresented here also give an intrinsi representation, but based on a di�erent set of quantities. Intuitively, thetwo representations should be losely linked.Starting from the representation given by eq. (1.10), the relative rotation tensor, R, is readily obtained fromunit vetor n̄ and the magnitude of the rotation, φ. To omplete the determination of the motion tensor, vetor
uO must be evaluated. Equation (1.11) yields

uO = dn̄+ 2 sinφ/2 Gw. (1.46)Clearly, given the intrinsi de�nition of the motion in eq. (1.10), the motion tensor is obtained easily.Conversely, if the motion tensor is know, unit vetor n̄ and the magnitude, φ, of the rotation are obtainedeasily. Next, vetor uO is extrated from the motion tensor and yields the intrinsi displaement of the rigidbody as d = n̄TuO. Finally, the Plüker oordinates or the Mozzi-Chasles axis are found by inverting eq. (1.46)yields
w = r̃Qn̄ = GT uO − dn̄

2 sinφ/2
. (1.47)By imposing the normality ondition n̄T rQ = 0, the point of the Mozzi-Chasles axis that is at the shortestdistane from point O is found as rQ = ñGTuO/(2 sinφ/2).The relative motion tensor de�ned by eq. (1.44) only involves intrinsi quantities, i.e., quantities that areindependent of the seletion of a partiular referene point of the rigid body. The omponents of the samerelative motion tensor resolved in frame Fk are C∗ = Ck−1C Ck, where notation (·)∗ indiates tensor quantitiesresolved in frame Fk. Tedious algebra reveals the following result

C∗ =



RkTRℓ ũ∗RkTRℓ

0 RkTRℓ


 , (1.48)where u∗ = RkT (uℓ − uk). Clearly, RkTRℓ = RkTRRk = R∗ are the omponents of the relative rotation tensorresolved in basis Bk. With these notations, the omponents of the relative motion tensor resolved in the materialframe beome

C∗ =



R∗ ũ∗R∗

0 R∗


 . (1.49)This expession involves two quantities. First, the omponents of the relative rotation tensor resolved in basis
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Bk, as expeted, and seond, the omponents of the displaement vetor of point A, also resolved in basis Bk.Clearly, this is not an intrinsi expression beause it involves the omponents of the displaement vetor of aspei� point of the rigid body.1.3 Veloity �eld of a rigid bodyThe time-dependent motion of a rigid body, as depited in �g. 1.6, will now be investigated. The struture ofthe veloity �eld of the entire rigid body is the fous of the analysis.
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Figure 1.6: Time-dependent motion of a rigid body.

The inertial veloity of material point P isobtained from a time derivative of eq. (1.2),
vP = v + Ṙ sP = v + ṘRTSP , where vP = u̇Pand v = u̇ are the inertial veloity vetors ofpoint P and A, respetively. This equation be-omes

vP = v + ω̃SP , (1.50)where ω = axial(Ṙ RT ) is the angular veloityvetor of the rigid body. This relationship de-sribes the veloity of an arbitrary point P ofthe rigid body in terms of v, the veloity of a referene point, and ω, the angular veloity vetor of the rigidbody. Here again, the hoie of referene point A is arbitrary, and hene, eq. (1.50) is not an intrinsi relation-ship.To obtain a more general desription of the veloity �eld, the following question an be asked: is it possibleto �nd a material point of the rigid body, say point Q, whose veloity vetor is parallel to the angular veloityvetor? If suh a point exists, the following relationship must hold
vQ = v + ω̃SQ = µω, (1.51)where µ is an arbitrary salar that an be found by taking the salar produt of this equation by ωT to �nd

µ = (ωT v)/ω2.Equation (1.51) now beomes ω̃SQ = (ω ωT /ω2 − I)v = ω̃ω̃v/ω2. This equation an be reast as
ω̃
[
SQ − ω̃v/ω2

]
= 0. The braketed term is parallel to the angular veloity vetor, whih implies SQ− ω̃v/ω2 =
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αω, where α is an arbitrary onstant. The loation of point Q is now found as

SQ = αω +
ω̃

ω2
v.The solution is the lous of points along a straight line parallel to ω, and hene, no unique solution exists forthe loation of point Q.To remove this ambiguity, point Q will be seleted as that at the shortest distane from point A, i.e.,

ωTSQ = 0. It follows that α = 0, and
SQ =

ω̃

ω2
v. (1.52)In summary, material point Q of the rigid body exists whose veloity vetor is parallel to the angular veloityvetor. The loation of this point is given by eq. (1.52). Combining eqs. (1.50) and (1.51) now yields

vP =
ωT v

ω2
ω + ω̃(SP − SQ) = vQ + ω̃(SP − SQ) (1.53)This relationship expresses the veloity of material point P of the rigid body as the veloity of point Q, vQ,whih is parallel to angular veloity vetor ω, followed by a rotation about that same axis. This is referred toas srew motion about axis ω. The srew axis is de�ned as the line passing through point Q and parallel to ω.The Plüker oordinates, Q, of the srew axis are

Q
SA

=




−
ω̃ω̃

ω2
v

ω





(1.54)1.4 Derivatives of �nite motion operationsThe derivatives of �nite rotation operations lead to the onept of angular veloity vetor. The present setionfouses on the study of time derivatives of the motion tensor, whih leads to both veloity and angular veloityvetors. Di�erential hanges in motion are also investigated.1.4.1 The veloity vetorThe time-dependent motion of a rigid body is represented by the time-dependent motion of the body attahedframe, F =
[A,B∗ = (b̄1, b̄3, b̄3)

], depited in �g. 1.3. Let C be the motion tensor that brings referene frame
FI to frame F , and eq. (1.15) then implies Q(t) = C(t)Q∗. Taking a time derivative of this equation leads to
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Q̇ = Ċ Q∗, and eliminating Q∗ then yields

Q̇ = Ċ C−1Q. (1.55)The use of well-known identity leads to
Ċ C−1 =



Ṙ ˙̃uR+ ũṘ

0 Ṙ






RT RT ũT

0 RT


 =



ω̃ ˜(u̇+ ũω)

0 ω̃


 =



ω̃ ṽ

0 ω̃


 . (1.56)This expression gives rise to two quantities. First, the angular veloity of the rigid body emerges from thetime derivative of the rotation tensor, ω = axial(Ṙ RT ); as expeted, this quantity is idential to that whiharose for the study of time derivatives of time-dependent rotations. Seond, the veloity vetor of the rigid body,

v = u̇ + ũω, also emerges from the time derivative of the motion tensor. This quantity an be interpreted asthe linear veloity of the point of the rigid body that instantaneously oinides with the origin of the refereneframe, point O.The veloity vetor of the rigid body resolved in frame FI is now de�ned as
V =




v

ω




, (1.57)and eq. (1.55) beomes Q̇ = ṼQ, where the generalized vetor produt tensor is given by eq. (1.35).It is also possible to resolve the omponents of the veloity vetor in the moving frame,

C−1Q̇ = C−1Ċ Q∗. (1.58)It is readily found that
C−1Ċ =



RT RT ũT

0 RT






Ṙ ˙̃uR+ ũṘ

0 Ṙ


 =



ω̃∗ R̃T u̇

0 ω̃


 =



ω̃∗ ṽ∗

0 ω̃∗


 . (1.59)This expression gives rise to two quantities. First, the omponents of the angular veloity of the rigid bodyresolved in the rotating basis, ω∗ = axial(RT Ṙ). Seond, the omponents of the veloity vetor of the referenepoint of rigid body resolved in the rotating basis, v∗ = RT u̇.



20 Analysis of motionThe omponents of the veloity vetor of the rigid body resolved in the material frame are now de�ned as
V∗ =




v∗

ω∗





= C−1V. (1.60)Equation (1.58) now beomes C−1Q̇ = Ṽ∗Q∗, where the generalized vetor produt operator is given byeq. (1.35).The above developments are summarized in the following relationships
Ċ C−1 = Ṽ, C Ċ

−1
= −Ṽ , (1.61a)

C−1Ċ = Ṽ∗, Ċ
−1

C = −Ṽ∗. (1.61b)As expeted, it is readily shown that
Ṽ∗ = C−1ṼC, (1.62a)
Ṽ = C Ṽ∗C−1. (1.62b)1.4.2 The di�erential motion vetorThe onept of di�erential rotation vetor was introdued based on the rotation tensor. By analogy, the followingexpression is formed

dC C−1 =



dR d̃uR+ ũ dR

0 dR






RT RT ũT

0 RT


 =



d̃ψ ˜(du+ ũdψ)

0 d̃ψ


 =



d̃ψ d̃u

0 d̃ψ


 .This expression gives rise to two quantities. First, the di�erential rotation vetor of the rigid body emergesfrom di�erential hanges of the rotation tensor, dψ = axial(dRRT ). No vetor ψ exists suh that d(ψ) givesthe di�erential rotation vetor.Seond, the di�erential displaement vetor of the rigid body, du = du + ũ dψ, also emerges from thedi�erential of the motion tensor. du is the di�erential displaement of point A and du = du + ũdψ thedi�erential displaement of the material point of the rigid body that instantaneously oinides with point O.Of ourse, there exist no displaement vetor, say x, suh d(x) = du+ ũ dψ. Notations du and dψ will be usedto denote the di�erential displaement and rotation vetors, respetively.



1.4 � Derivatives of �nite motion operations 21By analogy to eqs. (1.61a) and (1.61b), the following ompat notation is adopted
dC C−1 = d̃U , CdC−1 = −d̃U , (1.63a)
C−1dC = d̃U

∗
, dC−1C = −d̃U

∗
, (1.63b)where the omponents of the di�erential motion vetor are de�ned as

dU =




du

dψ





= C dU∗, (1.64a)
dU∗ =




du∗

dψ∗





= C−1dU , (1.64b)in the �xed and moving frames, respetively. The omponents of the di�erential rotation and displaementvetors, both resolved in the moving frame, are dψ∗ = axial(RT dR) and du∗ = RTdu, respetively.It is readily shown that
d̃U

∗
= C−1d̃UC, (1.65a)

d̃U = C d̃U
∗
C−1. (1.65b)Taking a di�erential of eq. (1.61a) and a time derivative of eq. (1.63a) leads to dṼ = dĊ C−1 + ĊdC−1 and

˙̃
dU = dĊ C−1 + dC Ċ

−1, respetively. Subtrating these two equations and using eqs. (1.61a) and (1.63a) thenyields
dṼ −

˙̃
dU = −Ṽ d̃U + d̃U Ṽ .Expanding these expressions and using well-known identities then leads to this important result dV = ˙dU−ṼdU ,whih relates di�erentials in the veloity vetor to the di�erential motion vetor and its time derivative.The following results are obtained in a similar manner

dV = ˙dU − ṼdU , dV = C ˙dU
∗
, (1.66a)

dV∗ = ˙dU
∗
+ Ṽ∗dU∗, dV∗ = C−1 ˙dU . (1.66b)



22 Analysis of motion1.5 Time derivatives and variation of rigid body motion operationsConsider a �xed frame FI = [O, I = (̄ıi, ı̄2, ı̄3)], and a time-dependent frame Fk = [K,Bk = (b̄k1 , b̄
k
2 b̄

k
3)]. It'soften the ase that the motion of this time-dependent frame depend on a salar variable, say time t. If C(t)is the time-dependent motion tensor that bring frame FI to Fk, kȲi(t) = Ck(t)I Ȳi, i = 1, 2, · · · , 6. The timederivative and variation of this expression are k ˙̄Yi(t) = Ċ(t)I Ȳi = Ċ(t)C(t)−1kȲi, and δ kȲi(t) = δC(t)I Ȳi =

δC(t)C(t)−1kȲi, where notation ˙(·) and δ(·) indiates a time derivative and variation, respetively.The generalized veloity vetor of a rigid body motion is now de�ned as
V × I = Ċ(t)C(t)−1

= (k ˙̄Yi(t)⊗
IȲi)(kȲi(t)⊗

IȲi)−1 = k ˙̄Yi(t)⊗
kȲi(t) (1.67)where V =




V1

V2




, I = [I]Ȳi ⊗ [I]Yi = kȲi(t)⊗ kȲi(t) is the identity tensor, and V × I =



V2 × I V1 × I

0 V2 × I


.1.6 Relationships between motion tensor and srew

Figure 1.7: Srew.Consider a rigid motion as depited in Fig.(1.7). The srew orresponding to this rigid motion an beexpressed as follows
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S =




q

p





= p




q̂

n̄





= p




s̃0n̄+ αdn̄

n̄





(1.68)where, p = f(φ), d = q̂T n̄/α, s0 =
ñGTu

2sinφ/2
, φ is the rotational angel, and α is an arbitrary oe�ient exeptfor α = 0. It's lear that a srew S has 6 degrees of freedom, therefore a rigid motion an be represented by asrew (a line vetor or the Plüker oordinate of a line only has 4 degrees of freedom). Vetor n̄ is the axis of a�nite rotation, and p is a odd funtion of angel φ.

p and d are invariant under frame transformation. Let S∗ denote the omponents of a srew resolved inframe Fk, and it's omponents resolved in frame FI an be obtain as following
S [I] = kC[I]S∗ =



Rk ũkRk

0 Rk







q∗

p∗





=




ũkRk p∗ +Rk q∗

Rkp∗





=




q[I]

p[I]





(1.69)From eq.(1.69), we an obtain
p

′

= ‖p[I]‖ = ‖Rkp∗‖ = ‖p∗‖ = p (1.70)
αd

′

= p[I]
T
q[I] = (Rk p∗)T (ũkRk p∗ + Rk q∗)/p

′

= αd (1.71)Two linearly independent eigenvetors of C[I] assoiated with its unit eigenvalues are found to be
N †

1 =




n̄

0




, and N †

2 =





−ññGT r

2sinφ/2

0





(1.72)The family of eigenvetors assoiated with the unit eigenvalues an be expressed as follows
N =

α

2sinφ/2
N †

1 +N †
2 (1.73)It's lear that pN is a srew.



24 Analysis of motion1.7 Transitivity equations of rigid body motionIf we assume δĊ = ˙δC, or equivalently δq̇ = δ̇q (q are the motion parameters), then the following results areobtained
δV = ˙δU − ṼδU , δV = C ˙δU

∗ (1.74)
δV∗ = ˙δU

∗
+ Ṽ∗δU∗, δV∗ = C−1 ˙δU (1.75)Variations of V = V(q̇, q, t), V∗ = V∗(q̇, q, t) an be expressed as following

δV =
∂V

∂q̇
δq̇ +

∂V

∂q
δq (1.76)

δV∗ =
∂V∗

∂q̇
δq̇ +

∂V∗

∂q
δq (1.77)The time derivative of δU =

∂V

∂q̇
δq, δU∗ =

∂V∗

∂q̇
δq an be expressed as following

˙δU =
d

dt

∂V

∂q̇
δq +

∂V

∂q̇
δ̇q (1.78)

˙δU
∗
=

d

dt

∂V∗

∂q̇
δq +

∂V∗

∂q̇
δ̇q (1.79)subtrating eqs. (1.76) with (1.78), (1.77) with (1.79), and note that δq̇ = δ̇q, we obtain the followingtransitivity equations

˙δU − δV =

(
d

dt

∂V

∂q̇
−
∂V

∂q̇

)
δq (1.80)

˙δU
∗
− δV∗ =

(
d

dt

∂V∗

∂q̇
−
∂V∗

∂q̇

)
δq (1.81)Substituting eqs. (1.76), (1.77), (1.78), and (1.79) into eqs. (1.74) and (1.75), and note that H = ∂V/∂q̇,and H∗ = ∂V∗/∂q̇, we obtain the following two sets of transitivity equations

Ḣ −
∂V

∂q̇
= ṼH (1.82)

Ḣ
∗
−
∂V∗

∂q̇
= −Ṽ∗H (1.83)
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C−1Ḣ −

∂V∗

∂q
= 0 (1.84)

C Ḣ
∗
−
∂V

∂q
= 0 (1.85)





Chapter 2
Various fats
2.1 Notational onventionsSeveral notational onventions are used in the literature to denote vetors and tensors. Three widely usednotations, the geometri notation, the matrix notation, and the index notation (?) are presented in table 2.1.The geometri notation is widely used in the literature, sometimes the boldfae notation for vetors is replaedby a spei� �vetor� supersript: −→a . The index notation is frequently used, speially when higher-ordertensors must be manipulated suh as in the theory of elastiity. It is, however, less often used in kinematis anddynamis.The matrix notation is a onvenient mnemoni notation and will be used exlusively in this book. Vetorsare denoted with an underline, u, but unit vetors are simply denoted n̄, rather than the more umbersome n̄.Tensors are denoted by a double underline, A, but skew-symmetri tensors are denoted ã, rather than the moreumbersome ã. Note that the tensor produt, u vT , also yields a tensor.Table 2.1: The geometri, matrix, and index notations for vetors and tensors.Geometri Matrix Indexnotation notation notationvetor a a aitensor A A Aijsalar produt u · v uT v uivivetor produt u × v ũv uivjǫijktensor produt u ⊗ v u vT uivjIn pratial situations, suh omputer implementations, it will be neessary to work with the omponents



28 Various fatsof spei� tensors resolved in various bases. In suh ases, the following notation will be used
a[I] =





a1

a2

a3




,where a1, a2, and a3 are the omponents of vetor a resolved in basis I. Beause the notation a[I] is ratherumbersome, it will be used only when neessary; for instane, when the omponents of a vetor in two di�erentbases are used in the same ontext. When there is no possible onfusion, the notation a[I] will be simpli�ed as

a, thereby blurring the distintion between a vetor and its omponents in a given basis.



Chapter 3
Conlusions and future work
3.1 ConlusionsA novel approah has been proposed for parallel omputation in �exible multibody dynamis. The approahrelies on two distint strategies for the enforement of the kinemati onstraints at the interfae between sub-domains. The traditional approah is to use global Lagrange multipliers to enfore all onstraints. In theproposed approah, a hybrid strategy is used: some onstraint are enfored using loal Lagrange multipliers,while the remaining are imposed via global Lagrange multipliers. A oarse mesh is de�ned as a byprodut of theloal Lagrange multiplier tehnique. Furthermore, an augmented Lagrangian formulation is used in onjuntionwith with the loal Lagrange multipliers. If all kinemati onstraints are enfored via this tehnique, the penaltyterms stemming from the augmented Lagrangian formulation provide a natural onditioning of the interfaeproblem expressed in terms of the loal Lagrange multipliers. In fat, as the penalty fator inreases, theondition number of the interfae problem �exibility matrix tend to unity. Clearly, this approah is ideallysuited for iterative solutions of the interfae problem. This advantage, however, omes at the expense of thesolution of a large sized oarse mesh problem. When the proposed ombination of global and loal Lagrangemultipliers is used, it is still possible to obtain an interfae problem expressed in terms of the sole globalLagrange multipliers and the solution of the oarse mesh problem provides a natural preonditioning of thisinterfae problem.3.2 Future workThis is an important setion. Disuss possible extensions of your work and future researh diretions.
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