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Abstra
tA novel approa
h is proposed for parallel 
omputation in �exible multibody dynami
s, based on a sub-domainde
omposition te
hnique. In this approa
h, the 
omputational domain is divided into non-overlapping sub-domains and kinemati
 
onstraints are used to enfor
e the 
ontinuity of the displa
ement �eld over the entirestru
ture. These kinemati
 
onstraints are enfor
ed via �elds of Lagrange multipliers that a
t at the interfa
ebetween the sub-domains and 
an be interpreted as the interfa
e 
onne
tion for
es. The proposed approa
hrelies on a novel strategies for the enfor
ement of the kinemati
 
onstraints at the interfa
e between sub-domains.The traditional approa
h ? is to use global Lagrange multipliers to enfor
e all 
onstraints. In the proposedapproa
h, all 
onstraints are enfor
ed using lo
al Lagrange multipliers and an interfa
e mesh is de�ned as abyprodu
t. Furthermore, an augmented Lagrangian formulation is used in 
onjun
tion with with the lo
alLagrange multipliers. The penalty terms stemming from the augmented Lagrangian formulation provide anatural 
onditioning of the interfa
e problem expressed in terms of the lo
al Lagrange multipliers. In fa
t, asthe penalty fa
tor in
reases, the 
ondition number of the interfa
e problem �exibility matrix tends to unity.This advantage, however, 
omes at the expense of the solution of a large sized 
oarse mesh problem. To solvethis latter problem, it is shown that the use of lo
al Lagrange multipliers leads to an interfa
e problem that
an itself be de
omposed into non-overlapping sub-domains. This 
ontrasts with the traditional approa
hes forwhi
h this is not possible. Clearly, the proposed approa
h leads to a hierar
hi
al de
omposition of the problem,in whi
h ea
h de
omposition leads to an new interfa
e problem, of ever de
reasing size. At the end, the overallproblem 
an be solved without resorting to iterative solvers, a
hieving great 
omputation e�
ien
y and stability.Examples of appli
ation of the pro
edure will be presented for �exible multibody systems.
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Chapter 1
Analysis of motion
1.1 General motion of a rigid bodyFigure 1.1 depi
ts a rigid body de�ned in its referen
e 
on�guration by frame F0 = [A, E0 = (ē01, ē02, ē03)]. Theposition ve
tor of point A with respe
t to point O is denoted r0. Let rP be the position ve
tor of a materialpoint P of the rigid body with respe
t to inertial frame FI = [O, I = (̄ı1, ı̄2, ı̄3)]. The position ve
tor of thesame material point with respe
t to point A is denoted sP . Hen
e, rP = r0 + sP .
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Figure 1.1: General motion of a rigid body.

The rigid body now undergoes an arbitrarymotion that brings it to a �nal 
on�guration de-�ned by frame F = [A, E = (ē1, ē2, ē3)]. Let R0and R be the rotation tensors that bring basis Ito E0 and basis E0 to E , respe
tively. Consider-ing �g. 1.1, the following ve
tor relationship iseasily established,
uP = u+ SP − sP , (1.1)where SP is the position ve
tor of material pointP with respe
t to point A in the �nal 
on�guration. Let s∗P = RT

0
sP and S+

P = (RR
0
)TSP denote the
omponents of ve
tor sP in basis E0 and of ve
tor SP in basis E , respe
tively.Be
ause the body is assumed to be rigid, the 
omponents of ve
tor sP in E0 are identi
al to those of SP in



4 Analysis of motion
E , i.e., s∗P = S+

P , and hen
e, SP = RsP . Equation (1.1) now be
omes
uP = u+

(
R− I

)
sP . (1.2)This relationship des
ribes the displa
ement of a material point P of the rigid body in terms of u, the displa
e-ment of its referen
e point, and tensor R that de�nes its orientation. Note that the 
hoi
e of referen
e point Ais arbitrary, and hen
e, eq. (1.2) is not an intrinsi
 relationship.To obtain a more general expression of the displa
ement �eld, the following question 
an be asked: isit possible to �nd a material point of the rigid body, say point Q, whose displa
ement is parallel to n̄, theaxis de�ning rotation tensor R? If point Q exist, its relative position ve
tor, sQ, must satisfy the followingrelationship

uQ = u+
(
R− I

)
sQ = dn̄. (1.3)Constant d 
an be evaluated by taking the s
alar produ
t this equation by n̄T to �nd d = n̄Tu. It then followsthat

(
R− I

)
sQ = dn̄− u =

(
n̄n̄T − I

)
u. (1.4)Using well-known identities, this equation 
an be written as ñ [2 sinφ/2 GsQ − ñu

]
= 0. The bra
ketedmust be parallel to unit ve
tor n̄, whi
h implies 2 sinφ/2 GsQ − ñu = βn̄, where β is an arbitrary 
onstant.The lo
ation of point Q is now readily found as

sQ =
ñGT

2 sinφ/2
u+

β

2 sinφ/2
n̄.This represents the equation of a line passing through point Q and parallel to n̄. The displa
ements of all pointson this line are along n̄.Point Q 
an be de�ned uniquely by requiring sQ to be orthogonal to n̄, i.e., n̄T sQ = 0, and hen
e, β = 0.The lo
ation of point Q (Angeles, 1997) now be
omes

sQ =
ñGT

2 sinφ/2
u. (1.5)By 
onstru
tion, the displa
ement of point Q is parallel to n̄, see eq. (1.3). Combining eqs. (1.2) and (1.3)now yields

uP = dn̄+ (R− I)(sP − sQ). (1.6)



1.1 � General motion of a rigid body 5This relationship expresses the displa
ement of a material point P of the rigid body as a translation, dn̄, parallelto axis n̄, followed by a rotation about that same axis. The displa
ement
d = n̄Tu, (1.7)is the intrinsi
 displa
ement of the rigid body : all points of the rigid body undergo the same displa
ement, d,followed by a rotation.If the rigid body undergoes a general planar motion, u lies in the plane of the motion, and n̄ is perpendi
ularthis plane. Hen
e, d = n̄Tu = 0, the intrinsi
 displa
ement, d, of a rigid body in general planar motion alwaysvanishes. If the rigid body undergoes a pure translation, axis n̄ is along the displa
ement u of all the points ofthe body. The motion is then de
omposed into a translation, dn̄, followed by a rotation of vanishing magnitudeabout the same axis.Equation (1.6) expresses the general motion of a rigid body as s
rew motion about axis n̄. The pit
h of thes
rew, ̟, is de�ned as
̟ =

2πd

φ
. (1.8)Mozzi-Chasles' theorem due to Mozzi (1763) and Chasles (1830) states the results obtained here in a 
ompa
tmanner.Theorem 1.1 (Mozzi-Chasles' theorem). The most general motion of a rigid body 
onsists of a translationalong an axis followed by a rotation about the same axis.The Mozzi-Chasles axis is de�ned by its orientation, n̄, and the position of one of its points, sQ, given byeq. (1.5). Alternatively, this axis 
an be de�ned by its Plü
ker 
oordinates (Angeles, 1997, 1998)

Q
MC

=




−

ññGT

2 sinφ/2
u

n̄





(1.9)1.1.1 Intrinsi
 representation of motionIn �g. 1.1, the general motion of a rigid body has been des
ribed by two quantities: the displa
ement of one of itsmaterial points and its rotation. Mathemati
ally, these quantities are represented by ve
tor u, the displa
ementve
tor of material point A, and tensor R, whi
h de�nes the rotation of the rigid body, respe
tively. Rotationtensor R is an intrinsi
 quantity: it de�nes the rotation of the rigid body. In 
ontrast, displa
ement ve
tor uis not an intrinsi
 quantity: it represents the displa
ement of an arbitrarily 
hosen material point of the rigid



6 Analysis of motionbody. Had another referen
e point been sele
ted, say point A', a di�erent displa
ement ve
tor, say u′, wouldhave resulted.Mozzi-Chasles' theorem 1.1 states that a general rigid body motion 
onsists of a translation along an axisfollowed by a rotation about the same axis. This theorem provides an alternative means of representing motion,whi
h is fully de�ned by the magnitude of the translation, d, that of the rotation, φ, and the axis along andabout whi
h these motions are taking pla
e.This 
on
ept is illustrated in �g. 1.2, whi
h depi
ts Mozzi-Chasles' axis and the magnitudes of the translationand rotation. Mozzi-Chasles' axis is a line, whi
h is most e�e
tively represented by its Plü
ker 
oordinatesevaluated with respe
t to point O, Q
MC

= (w, n̄), where n̄ is the unit ve
tor de�ning its orientation and
w = r̃Qn̄. Ve
tor rQ is the position ve
tor of an arbitrary point along Mozzi-Chasles' axis with respe
t to pointO. Mozzi-Chasles' theorem 1.1 now implies that a general motion, M, is fully de�ned as follows

M = (d, φ, w, n̄). (1.10)The Plü
ker 
oordinates of Mozzi-Chasles' axis satisfy two 
onstraints, ‖n̄‖ = 1 and n̄Tw = 0. Consequently,motion M is 
hara
terized by six parameters only, as expe
ted.
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The representation of motion depi
ted in �g. 1.2make no use of the 
on�guration of a parti
ularrigid body. The referen
e and �nal 
on�gurations ofa spe
i�
 rigid body undergoing the motion de�nedby eq. (1.10) are given in dotted lines. Note thatthe displa
ement of point A, an arbitrary materialpoint of the rigid body, does not enter the de�nitionof the motion de�ned by eq. (1.10), whi
h now givesan intrinsi
 de�nition of the motion.If the displa
ement of point A is desired, it 
anbe obtained from eq. (1.6) as uA = dn̄ + (R −

I)(−sQ). A 
ursory look at �g. 1.2 reveals that rA + sQ + βn̄ = rQ, and the displa
ement of point A be
omes
uA = dn̄+ (R− I)(rA − rQ + βn̄). Sin
e (R− I)n̄ = 0, this expression redu
es to uA = dn̄+ (R− I)(rA − rQ),and �nally,

uA = dn̄+ 2 sin
φ

2
Gw + (R − I)rA. (1.11)



1.2 � The motion tensor 7The �rst two terms of this equation represent the intrinsi
 
ontribution to the displa
ement of any arbitrarypoint. The third term represents the additional 
ontribution that is spe
i�
 to point A; as expe
ted, it dependson the position ve
tor, rA, of point A.Example 1.1. Displa
ement of the points lo
ated on a 
ir
ular 
ylinderConsider a general motion, M = (d, φ,Q
MC

), and a 
ir
ular 
ylinder of radius ̺ whose axis 
oin
ides withMozzi-Chasles' axis. Find the magnitude of the displa
ement of the points lo
ated on this 
ylinder.The displa
ement ve
tor of an arbitrary point A resulting from motion M is given by eq. (1.6) as uA =

dn̄ − (R − I)sQ = dn̄ − 2 sinφ/2 ñsQ. For all points A lo
ated on a 
ir
ular 
ylinder of radius ̺ whose axis
oin
ides with Mozzi-Chasles' axis, sQ = ̺ū, where n̄T ū = 0. It follows that uA = dn̄ − 2̺ sinφ/2 v̄, where
n̄T v̄ = 0. The square of the norm of the displa
ement of point A now be
omes ‖uA‖

2 = d2 + (2̺ sinφ/2)2.Be
ause d and φ are 
onstants for the given motion, M, and ̺ is the radius of the 
ir
ular 
ylinder whose axis
oin
ides with Mozzi-Chasles' axis, it follows that the magnitudes of the displa
ement of all points lo
ated onthis 
ir
ular are identi
al and given by the above formula.1.2 The motion tensorIn this se
tion, the motion tensor is introdu
ed as the tensor that relates the Plü
ker 
oordinates of a line of arigid body in its initial and �nal 
on�gurations.1.2.1 Transformation of a line of a rigid body
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Figure 1.3 shows a rigid body in its referen
e 
on�gura-tion de�ned by frame FI = [O, I = (̄ı1, ı̄2, ı̄3)]. Twopoints of this rigid body, denoted points P and Q,are de�ned by their position ve
tors with respe
t topoint O given as sP and sQ, respe
tively. In the �nal
on�guration, the rigid body is asso
iated with frame
F =

[
A,B∗ = (b̄1, b̄2, b̄3)

]. Supers
ripts (·)∗ indi
atetensor 
omponents resolved in basis B∗. The positionve
tors of material points P andQ with respe
t to pointA are now SP and SQ, respe
tively. Be
ause points P and Q are material points of the rigid body, SP = RS∗
Pand SQ = RS∗

Q.



8 Analysis of motionConsider now the line passing through these two points in the �nal 
on�guration. Its orientation, resolvedin basis B∗, is ℓ̄∗ = (S∗
Q − S∗

P )/(‖S
∗
Q − S∗

P ‖). The Plü
ker 
oordinates of this line evaluated with respe
t topoint A, are
Q∗ =




S̃∗
P ℓ̄

∗

ℓ̄∗





=




k∗

ℓ̄∗




. (1.12)The Plü
ker 
oordinates of the same line with respe
t to point O will now be evaluated and resolved in basis

I. First, the orientation of the line is now
ℓ̄ =

(u+ SQ)− (u+ SP )

‖(u+ SQ)− (u+ SP )‖
=

SQ − SP

‖SQ − SP ‖
= R

S∗
Q − S∗

P

‖S∗
Q − S∗

P ‖
= R ℓ̄∗.Next, the Plü
ker 
oordinates of the same line be
ome

Q =




(ũ+ S̃P )ℓ̄

ℓ̄





=




ũRℓ̄∗ +RS̃∗

PR
TR ℓ̄∗

R ℓ̄∗





=



R ũR

0 R







S̃∗
P ℓ̄

∗

ℓ̄∗




. (1.13)

i1
-

i3
-

i2
-

O

I

B

b1
-

b2
-

b3
-

R
=

B

-
u

Figure 1.4: Two frames with a rel-ative displa
ement, u, and a relativerotation, R.

The motion tensor is de�ned as
C =



R ũR

0 R


 , (1.14)and eq. (1.13) 
an now be written in a 
ompa
t form as

Q =




k

ℓ̄





= C Q∗ = C




k∗

ℓ̄∗




. (1.15)Clearly, the motion tensor relates the Plü
ker 
oordinates of an arbi-trary line of the rigid body resolved in two frames. This 
hange of frameoperation is more 
omplex than the 
hange in basis operation: it involve both a 
hange of basis and a 
hange ofreferen
e point (Bottema and Roth, 1979; Pradeep et al., 1989; Angeles, 1998). Equation (1.15) 
an be writtenin a more expli
it manner as Q[FI ] = C[FI ]Q[F ]. In this form, the present 
hange of frame operation mirrorsthe 
hange of basis operation.Figure 1.4 depi
ts the 
hange of frame operation in a more abstra
t manner: the motion brings frame

FI = [O, I = (̄ıi, ı̄2, ı̄3)] to frame F = [B,B = (b̄1, b̄2b̄3)]. Ve
tor u is the relative position of point B withrespe
t to point O and rotation tensor R brings basis I to basis B.



1.2 � The motion tensor 9Let J
i
denote a null ve
tor with a single unit entry in lo
ation i. Appli
ation of the motion tensor to theseunit ve
tors yields

Bi = C J
i
. (1.16)In view of the de�nition of the motion tensor, eq. (1.14), the following results are found easily

B1 =




b̄1

0




, B2 =




b̄2

0




, B3 =




b̄3

0




, (1.17)be
ause the rotation tensor 
an be expressed as R =

[
b̄1, b̄2, b̄3

]. On the other hand, the last three ve
tors are
B4 =




ũb̄1

b̄1




, B5 =




ũb̄2

b̄2




, B6 =




ũb̄3

b̄3




. (1.18)Note that ve
tors J

i
, i = 4, 5, 6 
an be interpreted as the Plü
ker 
oordinates of lines L1 = (O, ı̄1),

L2 = (O, ı̄2), and L3 = (O, ı̄3), respe
tively, evaluated with respe
t to point O. Notation L = (P, ℓ̄) indi
atesa line passing through point P and of orientation de�ned by unit ve
tor ℓ̄. Equation (1.15) then implies thatve
tors B4, B5, and B6 
an be interpreted as the Plü
ker 
oordinates of lines L4 = (B, b̄1), L5 = (B, b̄2), and
L6 = (B, b̄3), evaluated with respe
t to point O.
1.2.2 Properties of the motion tensorThe motion tensor 
an be fa
torized in the following manner

C =



I ũ

0 I






R 0

0 R


 = T R, (1.19)where R is the rotation tensor and T the translation tensor. The eigenvalues of the motion tensor are easilyobtained from its 
hara
teristi
 equation, det(C − λI) = 0. Given the stru
ture of the motion tensor given byeq. (1.14), the 
hara
teristi
 equation redu
es to det2(R − λI) = 0, whi
h implies that the eigenvalues of themotion tensor are identi
al to those of the rotation tensor, but ea
h with a multipli
ity of two. The motiontensor, however, unlike the rotation tensor, is not an orthogonal tensor.



10 Analysis of motionThe inverse of the motion tensor is found easily as
C−1 = R−1T −1 = RTT −1 =



RT 0

0 RT






I ũT

0 I


 =



RT RT ũT

0 RT


 . (1.20)Two linearly independent eigenve
tors of the motion tensor asso
iated with its unit eigenvalues are found tobe

N †
1 =




n̄

0




, and N †

2 =





GTu

2 sinφ/2

n̄




. (1.21)The fa
t that N †

1 is an eigenve
tor of the motion tensor stems from the 
orresponding property for the ro-tation tensor, R n̄ = n̄. It is readily veri�ed that N †
2 is also an eigenve
tor of the motion tensor, indeed,

RGTu/(2 sinφ/2) + ũR n̄ = (G− 2ñ sinφ/2)u/(2 sinφ/2) = GTu/(2 sinφ/2).Any linear 
ombination of eigenve
torsN †
1 and N †

2 is still an eigenve
tor of the motion tensor. Consequently,the family of eigenve
tors asso
iated with the unit eigenvalue is expressed as follows
N =




m

n̄





=
(α − 1)d

2 sinφ/2
N †

1 +N †
2, (1.22)where α is an arbitrary s
alar and d the intrinsi
 displa
ement of the rigid body. The displa
ement related partof the eigenve
tor is

m =
GTu

2 sinφ/2
+

(α− 1)d

2 sinφ/2
n̄. (1.23)The s
alar produ
t of the two ve
tors forming the eigenve
tor is 
losely related to the intrinsi
 displa
ement ofthe rigid body

λ = n̄Tm =
αd

2 sinφ/2
. (1.24)1.2.3 Mozzi-Chasles' axisIn general, an arbitrary line of a rigid body is di�erent in the referen
e and �nal 
on�gurations. The followingquestion 
an then be asked: is it possible to �nd a line of the rigid body that is identi
al in the referen
e and�nal 
on�gurations? If su
h line exists, its Plü
ker 
oordinates in the referen
e and �nal 
on�gurations areidenti
al, i.e., Q = Q∗, or, using eq. (1.15), Q = C Q.This implies that the Plü
ker 
oordinates of this line must form an eigenve
tor of the motion tensor, asgiven by eq. (1.22). Be
ause the �rst three 
omponents of the Plü
ker 
oordinates of a line must be orthogonal



1.2 � The motion tensor 11to the last three, eq. (1.24) implies λ = α = 0, and hen
e,
Q

MC
= N †

2 −
d

2 sinφ/2
N †

1 =




−

GT ññ

2 sinφ/2
u

n̄




. (1.25)In summary, the Plü
ker 
oordinates of the line of the rigid body that is identi
al in the referen
e and �nal
on�gurations are given by eq. (1.25). These 
oordinates are those of Mozzi-Chasles' axis. Hen
e, Mozzi-Chasles'axis is the line of the rigid body that is identi
al in the referen
e and �nal 
on�gurations. This 
an be writtenasQ

MC
= C Q

MC
: Mozzi-Chasles' axis is an eigenve
tor of the motion tensor 
orresponding to a unit eigenvalue.

1.2.4 Intrinsi
 expression of the motion tensorThe motion tensor was de�ned by eq. (1.14), whi
h is not an intrinsi
 expression be
ause the displa
ementve
tor of the referen
e point of the rigid body, u, expli
itly appears in this de�nition. In this se
tion, an intrinsi
expression of the motion tensor is sought, i.e., an expression in whi
h ve
tor u does not appear expli
itly.Rodrigues' rotation formula provides an intrinsi
 equation for the rotation tensor in terms of n̄, the eigen-ve
tor of the rotation tensor asso
iated with its unit eigenvalue, and φ, the magnitude of the rotation. A similarapproa
h is followed here for the motion tensor, whi
h should be expressed in terms of N , the eigenve
tor ofthe motion tensor asso
iated with its unit eigenvalue, φ, the magnitude of the rotation, and d, the intrinsi
displa
ement of the rigid body.The motion tensor, eq. (1.14), is 
omposed of two sub-matri
es: the rotation tensor, repeated twi
e alongthe diagonal, and tensor ũR, appearing as an o�-diagonal term. The intrinsi
 expression of the rotation tensoris provided by Rodrigues' rotation formula. In 
ontrast, the term ũR is not intrinsi
 be
ause the displa
ementve
tor of the referen
e point, u, appear expli
itly.Using the de�nition of the intrinsi
 displa
ement of the rigid body, the displa
ement ve
tor is related tothe eigenve
tor of the motion tensor, with the help of eq. (1.23) to �nd m =
[
GTu+ (α− 1)n̄n̄Tu

]
/(2 sinφ/2).Introdu
ing the expression for the half-angle rotation tensor then yields

m = E u, (1.26)
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ond-order tensor E is de�ned as
E =

α

2 sinφ/2
I −

1

2
ñ+

(
α

2 sinφ/2
−

1

2 tanφ/2

)
ññ. (1.27)It now be
omes possible to express the displa
ement ve
tor in terms of the �rst part of the eigenve
tor ofthe motion tensor as

u = J m, (1.28)where tensor J = E−1 is easily found as
J =

2 sinφ/2

α
I + (1− cosφ)ñ+

(
2 sinφ/2

α
− sinφ

)
ññ. (1.29)Equation (1.28) now yields an expli
it expression of the displa
ement of the body's referen
e point

ũ = J̃ m = sinφ m̃+ d(1− α cos
φ

2
)ñ+ (1 − cosφ)(ñm̃− m̃ñ). (1.30)Finally, tedious algebra reveals the following result,

ũR = J̃ mR = sinφ m̃+ dc1ñ+ (1 − cosφ) (ñm̃+ m̃ñ) + dc2ññ, (1.31)where 
oe�
ients c1 and c2 are de�ned as
c1 = cosφ− α cosφ/2, (1.32a)
c2 = sinφ− 2α sinφ/2. (1.32b)Combining Rodrigues' rotation formula and eq. (1.31), the motion tensor, eq. (1.14), be
omes

C = I +



sinφ I dc1I

0 sinφ I






ñ m̃

0 ñ


+



(1− cosφ) I dc2I

0 (1− cosφ) I






ñ m̃

0 ñ






ñ m̃

0 ñ


 . (1.33)

To simplify the writing of this seemingly 
ompli
ated expression, the following notation is introdu
ed. First,
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tion of two s
alars, α and β, is introdu
ed
Z(α, β) =



βI αI

0 βI


 . (1.34)Se
ond, the generalized ve
tor produ
t tensor is de�ned

Ñ =



ñ m̃

0 ñ


 . (1.35)Notation Ñ does not indi
ate a 6× 6 skew-symmetri
 tensor, but rather the above 6× 6 tensor formed by threeskew-symmetri
 sub-tensors.Introdu
ing these various notations into eq. (1.33) yields the desired intrinsi
 expression of the motion tensorand of its inverse

C(N ) = I + Z(dc1, sinφ)Ñ + Z(dc2, 1− cosφ)Ñ Ñ , (1.36a)
C−1(N ) = I − Z(dc1, sinφ)Ñ + Z(dc2, 1− cosφ)Ñ Ñ . (1.36b)The parallel between this intrinsi
 expression for the motion tensor and that for the rotation tensor given byRodrigues' rotation formula, is striking. Clearly, the skew-symmetri
 tensor, ñ, appearing in the expression forthe rotation tensor is repla
ed by the generalized ve
tor produ
t tensor, Ñ , appearing in that for the motiontensor. The two s
alars, sinφ and (1 − cosφ), appearing in the expression for the rotation tensor be
omes these
ond arguments of tensor Z appearing in that for the motion tensor.Rodrigues' rotation formula provides an intrinsi
 expression for the rotation tensor and is a dire
t 
onse-quen
e of Euler's theorem on rotations. Similarly, the intrinsi
 expression for the motion tensor is a dire
t
onsequen
e of the Mozzi-Chasles theorem.1.2.5 Properties of the generalized ve
tor produ
t tensorThe generalized ve
tor produ
t tensor de�ned by eq. (1.35) enjoys remarkable properties that generalize thoseof the skew-symmetri
 tensor. First, the skew-symmetri
 operator, ñ, possesses a null eigenvalue, ñn̄ = 0n̄.Similarly, the generalized ve
tor produ
t tensor also possesses a null eigenvalue, ÑN = 0N .The se
ond property of the generalized ve
tor produ
t tensor generalizes the behavior of the skew-symmetri




14 Analysis of motiontensor under a 
hange of basis operation. Consider the following triple matrix produ
t


ñ3 m̃3

0 ñ3


 =



RT

2
RT

2
ũT2

0 RT

2






ñ1 m̃1

0 ñ1






R

2
ũ2R2

0 R
2


 .This equality implies two 
onditions. The �rst 
ondition is ñ3 = RT

2
ñ1R2

, whi
h implies n̄3 = RT

2
n̄1. These
ond 
ondition is m̃3 = RT

2
(m̃1 + ñ1ũ2 − ũ2ñ1)R2

, and tensor identities then lead to m3 = RT

2
(m1 + ñ1u2).These results 
an be summarized by the following equivalen
e,

Ñ3 = C−1(N 2)Ñ1C(N 2) ⇐⇒ N 3 = C−1(N 2)N 1. (1.37)The third property of the generalized ve
tor produ
t tensor generalizes identity, whi
h holds for unit ve
torsand is rewritten here as ñññ+ ñ = 0.
Ñ Ñ Ñ + Z(2λ, 1)Ñ = 0. (1.38)The use of well-known identities yields the above result, where λ = n̄Tm.Consider two ve
tors de�ned as
V =




v

ω




, P =




p

q




.The well-known property of the ve
tor produ
t, ãb = −b̃a, then generalizes to

ṼP = −P̃V . (1.39)The following operation is alos needed
ṼTP = P̂V , (1.40)where the following notation was introdu
ed
P̂ =



0 p̃

p̃ q̃


 . (1.41)1.2.6 Composition of motionFigure 1.5 shows three frames denoted FI = [O, I = (̄ıi, ı̄2, ı̄3)], Fk = [K,Bk = (b̄k1 , b̄

k
2 b̄

k
3)], and Fℓ = [L,Bℓ =

(b̄ℓ1, b̄
ℓ
2b̄

ℓ
3)]. The relative position ve
tors of points K and L with respe
t to point O are denoted uk and uℓ,



1.2 � The motion tensor 15respe
tively. The relative rotation tensors of bases Bk and Bℓ with respe
t to basis I are denoted Rk and Rℓ,respe
tively. Finally, let Ck, Cℓ, and C denote the motion tensors that bring frame FI to Fk, frame FI to Fℓ,and frame Fk to Fℓ, respe
tively. All tensor 
omponents are resolved in frame FI .
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configurationFigure 1.5: Con�guration of threeframes.

In view of eq. (1.16), Bk
i = CkJ

i
and Bℓ

i = CℓJ
i
, leading to Bℓ

i =

CℓCk−1Bk
i . Be
ause Bℓ

i = C Bk
i , it then follows that
C = CℓCk−1. (1.42)This tensor relationship is 
alled 
omposition of motion: it expressesthe relative motion tensor, C, of frame Fℓ with respe
t to frame Fk interms of the relative motion tensors of these two frames with respe
tto frame FI .Introdu
ing eqs. (1.14) and (1.20) into eq. (1.42), the 
omponents of the relative motion tensor, resolved inframe FI , be
ome

C =



Rℓ ũℓRℓ

0 Rℓ






RkT RkT ũkT

0 RkT


 =



RℓRkT ũOR

ℓRkT

0 RℓRkT


 , (1.43)where uO = (uℓ − uk) − (RℓRkT − I)uk. Figure 1.5 shows that u = uℓ − uk is the relative position ve
tor ofpoint L with respe
t to point K and R = RℓRkT is the relative rotation of basis Bℓ with respe
t to basis Bk.With these notations, the relative motion tensor, eq. (1.43), be
omes

C =



R ũOR

0 R


 , (1.44)where ve
tor uO is de�ned as

uO = u−
(
R − I

)
uk. (1.45)The dis
ussion thus far has fo
used on the abstra
t 
on
ept of frames. In 
ontrast, se
tion 1.1 deals withthe general motion of rigid bodies. It is 
lear that a one-to-one relationship exist between a frame and the
on�guration a rigid body; in fa
t, �g. 1.5 
an be interpreted as representing the 
on�guration of a rigid bodyin its initial and �nal 
on�gurations. Consider now the material point of the body whose lo
ation 
oin
ideswith that of point O in the initial 
on�guration. The displa
ement of this material point as the body moves toits �nal 
on�guration is given by eq. (1.2) as uO = u +

(
R− I

)
(−uk). This observation allows the geometri
interpretation of ve
tor uO de�ned by eq. (1.45): it represents the displa
ement of the point of the rigid body
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ation 
oin
ides with point O in the referen
e 
on�guration.In se
tion 1.1.1, the motion of a rigid body was de�ned in an intrinsi
 manner by eq. (1.10). The developmentspresented here also give an intrinsi
 representation, but based on a di�erent set of quantities. Intuitively, thetwo representations should be 
losely linked.Starting from the representation given by eq. (1.10), the relative rotation tensor, R, is readily obtained fromunit ve
tor n̄ and the magnitude of the rotation, φ. To 
omplete the determination of the motion tensor, ve
tor
uO must be evaluated. Equation (1.11) yields

uO = dn̄+ 2 sinφ/2 Gw. (1.46)Clearly, given the intrinsi
 de�nition of the motion in eq. (1.10), the motion tensor is obtained easily.Conversely, if the motion tensor is know, unit ve
tor n̄ and the magnitude, φ, of the rotation are obtainedeasily. Next, ve
tor uO is extra
ted from the motion tensor and yields the intrinsi
 displa
ement of the rigidbody as d = n̄TuO. Finally, the Plü
ker 
oordinates or the Mozzi-Chasles axis are found by inverting eq. (1.46)yields
w = r̃Qn̄ = GT uO − dn̄

2 sinφ/2
. (1.47)By imposing the normality 
ondition n̄T rQ = 0, the point of the Mozzi-Chasles axis that is at the shortestdistan
e from point O is found as rQ = ñGTuO/(2 sinφ/2).The relative motion tensor de�ned by eq. (1.44) only involves intrinsi
 quantities, i.e., quantities that areindependent of the sele
tion of a parti
ular referen
e point of the rigid body. The 
omponents of the samerelative motion tensor resolved in frame Fk are C∗ = Ck−1C Ck, where notation (·)∗ indi
ates tensor quantitiesresolved in frame Fk. Tedious algebra reveals the following result

C∗ =



RkTRℓ ũ∗RkTRℓ

0 RkTRℓ


 , (1.48)where u∗ = RkT (uℓ − uk). Clearly, RkTRℓ = RkTRRk = R∗ are the 
omponents of the relative rotation tensorresolved in basis Bk. With these notations, the 
omponents of the relative motion tensor resolved in the materialframe be
ome

C∗ =



R∗ ũ∗R∗

0 R∗


 . (1.49)This expession involves two quantities. First, the 
omponents of the relative rotation tensor resolved in basis
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Bk, as expe
ted, and se
ond, the 
omponents of the displa
ement ve
tor of point A, also resolved in basis Bk.Clearly, this is not an intrinsi
 expression be
ause it involves the 
omponents of the displa
ement ve
tor of aspe
i�
 point of the rigid body.1.3 Velo
ity �eld of a rigid bodyThe time-dependent motion of a rigid body, as depi
ted in �g. 1.6, will now be investigated. The stru
ture ofthe velo
ity �eld of the entire rigid body is the fo
us of the analysis.

S

A

i1

-

i3

-

i2

-

O

I
e01
-

e03
-

e02
-

Reference

configuration

E0

e1
- e3

-

e2
-u, R

=
_

x0, R0=
_

uP_

P

A

E

s_ P
SQ_

Final

configuration

QxP_

_ω

Figure 1.6: Time-dependent motion of a rigid body.

The inertial velo
ity of material point P isobtained from a time derivative of eq. (1.2),
vP = v + Ṙ sP = v + ṘRTSP , where vP = u̇Pand v = u̇ are the inertial velo
ity ve
tors ofpoint P and A, respe
tively. This equation be-
omes

vP = v + ω̃SP , (1.50)where ω = axial(Ṙ RT ) is the angular velo
ityve
tor of the rigid body. This relationship de-s
ribes the velo
ity of an arbitrary point P ofthe rigid body in terms of v, the velo
ity of a referen
e point, and ω, the angular velo
ity ve
tor of the rigidbody. Here again, the 
hoi
e of referen
e point A is arbitrary, and hen
e, eq. (1.50) is not an intrinsi
 relation-ship.To obtain a more general des
ription of the velo
ity �eld, the following question 
an be asked: is it possibleto �nd a material point of the rigid body, say point Q, whose velo
ity ve
tor is parallel to the angular velo
ityve
tor? If su
h a point exists, the following relationship must hold
vQ = v + ω̃SQ = µω, (1.51)where µ is an arbitrary s
alar that 
an be found by taking the s
alar produ
t of this equation by ωT to �nd

µ = (ωT v)/ω2.Equation (1.51) now be
omes ω̃SQ = (ω ωT /ω2 − I)v = ω̃ω̃v/ω2. This equation 
an be re
ast as
ω̃
[
SQ − ω̃v/ω2

]
= 0. The bra
keted term is parallel to the angular velo
ity ve
tor, whi
h implies SQ− ω̃v/ω2 =
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αω, where α is an arbitrary 
onstant. The lo
ation of point Q is now found as

SQ = αω +
ω̃

ω2
v.The solution is the lo
us of points along a straight line parallel to ω, and hen
e, no unique solution exists forthe lo
ation of point Q.To remove this ambiguity, point Q will be sele
ted as that at the shortest distan
e from point A, i.e.,

ωTSQ = 0. It follows that α = 0, and
SQ =

ω̃

ω2
v. (1.52)In summary, material point Q of the rigid body exists whose velo
ity ve
tor is parallel to the angular velo
ityve
tor. The lo
ation of this point is given by eq. (1.52). Combining eqs. (1.50) and (1.51) now yields

vP =
ωT v

ω2
ω + ω̃(SP − SQ) = vQ + ω̃(SP − SQ) (1.53)This relationship expresses the velo
ity of material point P of the rigid body as the velo
ity of point Q, vQ,whi
h is parallel to angular velo
ity ve
tor ω, followed by a rotation about that same axis. This is referred toas s
rew motion about axis ω. The s
rew axis is de�ned as the line passing through point Q and parallel to ω.The Plü
ker 
oordinates, Q, of the s
rew axis are

Q
SA

=




−
ω̃ω̃

ω2
v

ω





(1.54)1.4 Derivatives of �nite motion operationsThe derivatives of �nite rotation operations lead to the 
on
ept of angular velo
ity ve
tor. The present se
tionfo
uses on the study of time derivatives of the motion tensor, whi
h leads to both velo
ity and angular velo
ityve
tors. Di�erential 
hanges in motion are also investigated.1.4.1 The velo
ity ve
torThe time-dependent motion of a rigid body is represented by the time-dependent motion of the body atta
hedframe, F =
[A,B∗ = (b̄1, b̄3, b̄3)

], depi
ted in �g. 1.3. Let C be the motion tensor that brings referen
e frame
FI to frame F , and eq. (1.15) then implies Q(t) = C(t)Q∗. Taking a time derivative of this equation leads to
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Q̇ = Ċ Q∗, and eliminating Q∗ then yields

Q̇ = Ċ C−1Q. (1.55)The use of well-known identity leads to
Ċ C−1 =



Ṙ ˙̃uR+ ũṘ

0 Ṙ






RT RT ũT

0 RT


 =



ω̃ ˜(u̇+ ũω)

0 ω̃


 =



ω̃ ṽ

0 ω̃


 . (1.56)This expression gives rise to two quantities. First, the angular velo
ity of the rigid body emerges from thetime derivative of the rotation tensor, ω = axial(Ṙ RT ); as expe
ted, this quantity is identi
al to that whi
harose for the study of time derivatives of time-dependent rotations. Se
ond, the velo
ity ve
tor of the rigid body,

v = u̇ + ũω, also emerges from the time derivative of the motion tensor. This quantity 
an be interpreted asthe linear velo
ity of the point of the rigid body that instantaneously 
oin
ides with the origin of the referen
eframe, point O.The velo
ity ve
tor of the rigid body resolved in frame FI is now de�ned as
V =




v

ω




, (1.57)and eq. (1.55) be
omes Q̇ = ṼQ, where the generalized ve
tor produ
t tensor is given by eq. (1.35).It is also possible to resolve the 
omponents of the velo
ity ve
tor in the moving frame,

C−1Q̇ = C−1Ċ Q∗. (1.58)It is readily found that
C−1Ċ =



RT RT ũT

0 RT






Ṙ ˙̃uR+ ũṘ

0 Ṙ


 =



ω̃∗ R̃T u̇

0 ω̃


 =



ω̃∗ ṽ∗

0 ω̃∗


 . (1.59)This expression gives rise to two quantities. First, the 
omponents of the angular velo
ity of the rigid bodyresolved in the rotating basis, ω∗ = axial(RT Ṙ). Se
ond, the 
omponents of the velo
ity ve
tor of the referen
epoint of rigid body resolved in the rotating basis, v∗ = RT u̇.



20 Analysis of motionThe 
omponents of the velo
ity ve
tor of the rigid body resolved in the material frame are now de�ned as
V∗ =




v∗

ω∗





= C−1V. (1.60)Equation (1.58) now be
omes C−1Q̇ = Ṽ∗Q∗, where the generalized ve
tor produ
t operator is given byeq. (1.35).The above developments are summarized in the following relationships
Ċ C−1 = Ṽ, C Ċ

−1
= −Ṽ , (1.61a)

C−1Ċ = Ṽ∗, Ċ
−1

C = −Ṽ∗. (1.61b)As expe
ted, it is readily shown that
Ṽ∗ = C−1ṼC, (1.62a)
Ṽ = C Ṽ∗C−1. (1.62b)1.4.2 The di�erential motion ve
torThe 
on
ept of di�erential rotation ve
tor was introdu
ed based on the rotation tensor. By analogy, the followingexpression is formed

dC C−1 =



dR d̃uR+ ũ dR

0 dR






RT RT ũT

0 RT


 =



d̃ψ ˜(du+ ũdψ)

0 d̃ψ


 =



d̃ψ d̃u

0 d̃ψ


 .This expression gives rise to two quantities. First, the di�erential rotation ve
tor of the rigid body emergesfrom di�erential 
hanges of the rotation tensor, dψ = axial(dRRT ). No ve
tor ψ exists su
h that d(ψ) givesthe di�erential rotation ve
tor.Se
ond, the di�erential displa
ement ve
tor of the rigid body, du = du + ũ dψ, also emerges from thedi�erential of the motion tensor. du is the di�erential displa
ement of point A and du = du + ũdψ thedi�erential displa
ement of the material point of the rigid body that instantaneously 
oin
ides with point O.Of 
ourse, there exist no displa
ement ve
tor, say x, su
h d(x) = du+ ũ dψ. Notations du and dψ will be usedto denote the di�erential displa
ement and rotation ve
tors, respe
tively.
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ompa
t notation is adopted
dC C−1 = d̃U , CdC−1 = −d̃U , (1.63a)
C−1dC = d̃U

∗
, dC−1C = −d̃U

∗
, (1.63b)where the 
omponents of the di�erential motion ve
tor are de�ned as

dU =




du

dψ





= C dU∗, (1.64a)
dU∗ =




du∗

dψ∗





= C−1dU , (1.64b)in the �xed and moving frames, respe
tively. The 
omponents of the di�erential rotation and displa
ementve
tors, both resolved in the moving frame, are dψ∗ = axial(RT dR) and du∗ = RTdu, respe
tively.It is readily shown that
d̃U

∗
= C−1d̃UC, (1.65a)

d̃U = C d̃U
∗
C−1. (1.65b)Taking a di�erential of eq. (1.61a) and a time derivative of eq. (1.63a) leads to dṼ = dĊ C−1 + ĊdC−1 and

˙̃
dU = dĊ C−1 + dC Ċ

−1, respe
tively. Subtra
ting these two equations and using eqs. (1.61a) and (1.63a) thenyields
dṼ −

˙̃
dU = −Ṽ d̃U + d̃U Ṽ .Expanding these expressions and using well-known identities then leads to this important result dV = ˙dU−ṼdU ,whi
h relates di�erentials in the velo
ity ve
tor to the di�erential motion ve
tor and its time derivative.The following results are obtained in a similar manner

dV = ˙dU − ṼdU , dV = C ˙dU
∗
, (1.66a)

dV∗ = ˙dU
∗
+ Ṽ∗dU∗, dV∗ = C−1 ˙dU . (1.66b)



22 Analysis of motion1.5 Time derivatives and variation of rigid body motion operationsConsider a �xed frame FI = [O, I = (̄ıi, ı̄2, ı̄3)], and a time-dependent frame Fk = [K,Bk = (b̄k1 , b̄
k
2 b̄

k
3)]. It'soften the 
ase that the motion of this time-dependent frame depend on a s
alar variable, say time t. If C(t)is the time-dependent motion tensor that bring frame FI to Fk, kȲi(t) = Ck(t)I Ȳi, i = 1, 2, · · · , 6. The timederivative and variation of this expression are k ˙̄Yi(t) = Ċ(t)I Ȳi = Ċ(t)C(t)−1kȲi, and δ kȲi(t) = δC(t)I Ȳi =

δC(t)C(t)−1kȲi, where notation ˙(·) and δ(·) indi
ates a time derivative and variation, respe
tively.The generalized velo
ity ve
tor of a rigid body motion is now de�ned as
V × I = Ċ(t)C(t)−1

= (k ˙̄Yi(t)⊗
IȲi)(kȲi(t)⊗

IȲi)−1 = k ˙̄Yi(t)⊗
kȲi(t) (1.67)where V =




V1

V2




, I = [I]Ȳi ⊗ [I]Yi = kȲi(t)⊗ kȲi(t) is the identity tensor, and V × I =



V2 × I V1 × I

0 V2 × I


.1.6 Relationships between motion tensor and s
rew

Figure 1.7: S
rew.Consider a rigid motion as depi
ted in Fig.(1.7). The s
rew 
orresponding to this rigid motion 
an beexpressed as follows
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S =




q

p





= p




q̂

n̄





= p




s̃0n̄+ αdn̄

n̄





(1.68)where, p = f(φ), d = q̂T n̄/α, s0 =
ñGTu

2sinφ/2
, φ is the rotational angel, and α is an arbitrary 
oe�
ient ex
eptfor α = 0. It's 
lear that a s
rew S has 6 degrees of freedom, therefore a rigid motion 
an be represented by as
rew (a line ve
tor or the Plü
ker 
oordinate of a line only has 4 degrees of freedom). Ve
tor n̄ is the axis of a�nite rotation, and p is a odd fun
tion of angel φ.

p and d are invariant under frame transformation. Let S∗ denote the 
omponents of a s
rew resolved inframe Fk, and it's 
omponents resolved in frame FI 
an be obtain as following
S [I] = kC[I]S∗ =



Rk ũkRk

0 Rk







q∗

p∗





=




ũkRk p∗ +Rk q∗

Rkp∗





=




q[I]

p[I]





(1.69)From eq.(1.69), we 
an obtain
p

′

= ‖p[I]‖ = ‖Rkp∗‖ = ‖p∗‖ = p (1.70)
αd

′

= p[I]
T
q[I] = (Rk p∗)T (ũkRk p∗ + Rk q∗)/p

′

= αd (1.71)Two linearly independent eigenve
tors of C[I] asso
iated with its unit eigenvalues are found to be
N †

1 =




n̄

0




, and N †

2 =





−ññGT r

2sinφ/2

0





(1.72)The family of eigenve
tors asso
iated with the unit eigenvalues 
an be expressed as follows
N =

α

2sinφ/2
N †

1 +N †
2 (1.73)It's 
lear that pN is a s
rew.



24 Analysis of motion1.7 Transitivity equations of rigid body motionIf we assume δĊ = ˙δC, or equivalently δq̇ = δ̇q (q are the motion parameters), then the following results areobtained
δV = ˙δU − ṼδU , δV = C ˙δU

∗ (1.74)
δV∗ = ˙δU

∗
+ Ṽ∗δU∗, δV∗ = C−1 ˙δU (1.75)Variations of V = V(q̇, q, t), V∗ = V∗(q̇, q, t) 
an be expressed as following

δV =
∂V

∂q̇
δq̇ +

∂V

∂q
δq (1.76)

δV∗ =
∂V∗

∂q̇
δq̇ +

∂V∗

∂q
δq (1.77)The time derivative of δU =

∂V

∂q̇
δq, δU∗ =

∂V∗

∂q̇
δq 
an be expressed as following

˙δU =
d

dt

∂V

∂q̇
δq +

∂V

∂q̇
δ̇q (1.78)

˙δU
∗
=

d

dt

∂V∗

∂q̇
δq +

∂V∗

∂q̇
δ̇q (1.79)subtra
ting eqs. (1.76) with (1.78), (1.77) with (1.79), and note that δq̇ = δ̇q, we obtain the followingtransitivity equations

˙δU − δV =

(
d

dt

∂V

∂q̇
−
∂V

∂q̇

)
δq (1.80)

˙δU
∗
− δV∗ =

(
d

dt

∂V∗

∂q̇
−
∂V∗

∂q̇

)
δq (1.81)Substituting eqs. (1.76), (1.77), (1.78), and (1.79) into eqs. (1.74) and (1.75), and note that H = ∂V/∂q̇,and H∗ = ∂V∗/∂q̇, we obtain the following two sets of transitivity equations

Ḣ −
∂V

∂q̇
= ṼH (1.82)

Ḣ
∗
−
∂V∗

∂q̇
= −Ṽ∗H (1.83)
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C−1Ḣ −

∂V∗

∂q
= 0 (1.84)

C Ḣ
∗
−
∂V

∂q
= 0 (1.85)





Chapter 2
Various fa
ts
2.1 Notational 
onventionsSeveral notational 
onventions are used in the literature to denote ve
tors and tensors. Three widely usednotations, the geometri
 notation, the matrix notation, and the index notation (?) are presented in table 2.1.The geometri
 notation is widely used in the literature, sometimes the boldfa
e notation for ve
tors is repla
edby a spe
i�
 �ve
tor� supers
ript: −→a . The index notation is frequently used, spe
ially when higher-ordertensors must be manipulated su
h as in the theory of elasti
ity. It is, however, less often used in kinemati
s anddynami
s.The matrix notation is a 
onvenient mnemoni
 notation and will be used ex
lusively in this book. Ve
torsare denoted with an underline, u, but unit ve
tors are simply denoted n̄, rather than the more 
umbersome n̄.Tensors are denoted by a double underline, A, but skew-symmetri
 tensors are denoted ã, rather than the more
umbersome ã. Note that the tensor produ
t, u vT , also yields a tensor.Table 2.1: The geometri
, matrix, and index notations for ve
tors and tensors.Geometri
 Matrix Indexnotation notation notationve
tor a a aitensor A A Aijs
alar produ
t u · v uT v uivive
tor produ
t u × v ũv uivjǫijktensor produ
t u ⊗ v u vT uivjIn pra
ti
al situations, su
h 
omputer implementations, it will be ne
essary to work with the 
omponents
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tsof spe
i�
 tensors resolved in various bases. In su
h 
ases, the following notation will be used
a[I] =





a1

a2

a3




,where a1, a2, and a3 are the 
omponents of ve
tor a resolved in basis I. Be
ause the notation a[I] is rather
umbersome, it will be used only when ne
essary; for instan
e, when the 
omponents of a ve
tor in two di�erentbases are used in the same 
ontext. When there is no possible 
onfusion, the notation a[I] will be simpli�ed as

a, thereby blurring the distin
tion between a ve
tor and its 
omponents in a given basis.



Chapter 3
Con
lusions and future work
3.1 Con
lusionsA novel approa
h has been proposed for parallel 
omputation in �exible multibody dynami
s. The approa
hrelies on two distin
t strategies for the enfor
ement of the kinemati
 
onstraints at the interfa
e between sub-domains. The traditional approa
h is to use global Lagrange multipliers to enfor
e all 
onstraints. In theproposed approa
h, a hybrid strategy is used: some 
onstraint are enfor
ed using lo
al Lagrange multipliers,while the remaining are imposed via global Lagrange multipliers. A 
oarse mesh is de�ned as a byprodu
t of thelo
al Lagrange multiplier te
hnique. Furthermore, an augmented Lagrangian formulation is used in 
onjun
tionwith with the lo
al Lagrange multipliers. If all kinemati
 
onstraints are enfor
ed via this te
hnique, the penaltyterms stemming from the augmented Lagrangian formulation provide a natural 
onditioning of the interfa
eproblem expressed in terms of the lo
al Lagrange multipliers. In fa
t, as the penalty fa
tor in
reases, the
ondition number of the interfa
e problem �exibility matrix tend to unity. Clearly, this approa
h is ideallysuited for iterative solutions of the interfa
e problem. This advantage, however, 
omes at the expense of thesolution of a large sized 
oarse mesh problem. When the proposed 
ombination of global and lo
al Lagrangemultipliers is used, it is still possible to obtain an interfa
e problem expressed in terms of the sole globalLagrange multipliers and the solution of the 
oarse mesh problem provides a natural pre
onditioning of thisinterfa
e problem.3.2 Future workThis is an important se
tion. Dis
uss possible extensions of your work and future resear
h dire
tions.
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