Second－Order Equations and Boundary Value Problems

Basic Quantities

Let $\Omega \subset \mathbb{R}^{n}, n=2$ or 3 ，be a bounded，connected，open set．
The boundary of Ω is denoted $\partial \Omega$ ．
Define

$$
L u:=-\operatorname{div}(p(x) \operatorname{grad} u)+q(x) u, \quad x \in \Omega
$$

where
－$p, q: \Omega \rightarrow \mathbb{R}$ are sufficiently smooth
－$p(x)>0$ for all $x \in \Omega$
－$q(x) \geq 0$ for all $x \in \Omega$

Basic Quantities

Let $I \subset \mathbb{R}$ be an open interval and

$$
F: \Omega \rightarrow \mathbb{R} \quad \text { or } \begin{array}{cc}
F: \Omega \times I & \rightarrow \mathbb{R} \\
& \\
& \text { position } x
\end{array}
$$

be a forcing function．
Let

$$
\varrho: \Omega \rightarrow[0, \infty) \subset \mathbb{R}
$$

Depending on context，

$$
u: \Omega \rightarrow \mathbb{C} \quad \text { or } \quad u: \Omega \times I \rightarrow \mathbb{C}
$$

Second－Order Equations

－Elliptic equation

$$
L u=\varrho(x) F(x), \quad x \in \Omega,
$$

－Parabolic equation

$$
\varrho(x) \frac{\partial u}{\partial t}+L u=\varrho(x) F(x, t), \quad(x, t) \in \Omega \times I
$$

－Hyperbolic equation

$$
\varrho(x) \frac{\partial^{2} u}{\partial t^{2}}+L u=\varrho(x) F(x, t) \quad(x, t) \in \Omega \times I
$$

Boundary Conditions

Boundary operator

$$
B u:=\alpha(x) u+\left.\beta(x) \frac{\partial u}{\partial n}\right|_{\partial \Omega}
$$

where $\alpha, \beta: \partial \Omega \rightarrow \mathbb{R}$ with

$$
\alpha(x) \geq 0, \quad \beta(x) \geq 0, \quad \alpha(x)+\beta(x)>0 \quad \text { on } \partial \Omega .
$$

Special cases：boundary conditions
－of the first kind（Dirichlet）：
－of the second kind（Neumann）：
－of the third kind（Robin）：
$\beta(x)=0$ for all x
$\alpha(x)=0$ for all x
$\alpha(x), \beta(x) \neq 0$ for all x

Boundary Conditions

We write

$$
\partial \Omega=S_{1} \cup S_{2} \cup S_{3}
$$

where
－S_{1}, S_{2}, S_{3} are pairwise disjoint
－boundary conditions of the k th kind are imposed on S_{k} ．
If any two of these sets are non－empty，we say that we have mixed boundary conditions．

The Boundary Value Problem

The equations

$$
L u=\varrho F, \quad B u=\gamma
$$

where

$$
\gamma: \partial \Omega \rightarrow \mathbb{R} \quad \text { or } \quad \gamma: \partial \Omega \times I \rightarrow \mathbb{R}
$$

constitute the boundary value problem (L, B) with data $\{\varrho F, \gamma\}$

