

Second-Order Equations and Boundary Value Problems

Basic Quantities

Let $\Omega \subset \mathbb{R}^n$, n = 2 or 3, be a bounded, connected, open set.

The boundary of Ω is denoted $\partial \Omega$.

Define

$$Lu := -\operatorname{div}(p(x)\operatorname{grad} u) + q(x)u, \qquad x \in \Omega,$$

where

• $p, q \colon \Omega \to \mathbb{R}$ are sufficiently smooth

•
$$p(x) > 0$$
 for all $x \in \Omega$

• $q(x) \ge 0$ for all $x \in \Omega$

Basic Quantities

Let $I \subset \mathbb{R}$ be an open interval and

be a forcing function.

Let

$$\varrho\colon \Omega \to [0,\infty) \subset \mathbb{R}$$

Depending on context,

$$u: \Omega \to \mathbb{C}$$
 or $u: \Omega \times I \to \mathbb{C}$

Second-Order Equations

► Elliptic equation

$$Lu = \varrho(x)F(x), \qquad x \in \Omega,$$

Parabolic equation

$$\varrho(x)\frac{\partial u}{\partial t} + Lu = \varrho(x)F(x,t), \qquad (x,t) \in \Omega \times I,$$

Hyperbolic equation

$$\varrho(x)\frac{\partial^2 u}{\partial t^2} + Lu = \varrho(x)F(x,t)$$
 $(x,t) \in \Omega \times I.$

Boundary Conditions

Boundary operator

$$Bu := \alpha(x)u + \beta(x)\frac{\partial u}{\partial n}\Big|_{\partial\Omega}$$

where $\alpha, \beta \colon \partial \Omega \to \mathbb{R}$ with

$$\alpha(x) \ge 0, \qquad \beta(x) \ge 0, \qquad \alpha(x) + \beta(x) > 0 \qquad \text{on } \partial \Omega.$$

Special cases: boundary conditions

- of the first kind (Dirichlet): $\beta(x) = 0$ for all x
- of the second kind (Neumann):
- of the third kind (Robin):

 $\alpha(x) = 0$ for all x

 $\alpha(x), \beta(x) \neq 0$ for all x

Boundary Conditions

We write

$$\partial \Omega = S_1 \cup S_2 \cup S_3$$

where

- S_1, S_2, S_3 are pairwise disjoint
- boundary conditions of the *k*th kind are imposed on S_k .

If any two of these sets are non-empty, we say that we have

mixed boundary conditions.

The Boundary Value Problem

The equations

$$Lu = \varrho F,$$
 $Bu = \gamma$

where

$$\gamma : \partial \Omega \to \mathbb{R}$$
 or $\gamma : \partial \Omega \times I \to \mathbb{R}$

constitute the boundary value problem (L, B) with data $\{\varrho F, \gamma\}$