Spring Term 2017

Vv557 Methods of Applied Mathematics II Review Questions and Problems

Class Session 1：Distributions

Video Files

06 Further Approaches to the Green Function．mp4
07 Smooth，Compactly Supported Functions．mp4
08 Null Sequences．mp4
09 Test Functions and Distributions．mp4

Review Questions

i）Explain what a test function in \mathbb{R}^{n} is．
ii）Explain what a null sequence of test functions is and give an example and a counter－example．
iii）Explain what a distribution is．
iv）What is a locally integrable function？Give examples and counter－examples．
v）Define what a regular and a singular distribution is．Give examples．

Exercises

Recall that a sequence $\left(f_{n}\right)$ of functions $f_{n}: I \rightarrow \mathbb{C}$ ，where $I \subset \mathbb{R}$ ，converges pointwise to a function $f: I \rightarrow \mathbb{C}$ if

$$
\lim _{n \rightarrow \infty}\left|f_{n}(x)-f(x)\right|=0 \quad \text { for all } x \in I
$$

The convergence is uniform if

$$
\lim _{n \rightarrow \infty} \sup _{x \in I}\left|f_{n}(x)-f(x)\right|=0 .
$$

Exercise 1．1．Let $\xi \in(0,1) \subset \mathbb{R}$ be fixed．Solve the problem

$$
\begin{equation*}
-u^{\prime \prime}=f_{n}(x ; \xi), \quad 0<x<1, \quad u(0)=u(1)=0 \tag{1}
\end{equation*}
$$

for

$$
f_{n}(x ; \xi)= \begin{cases}n, & |x-\xi|<1 / 2 n \\ 0 & \text { otherwise }\end{cases}
$$

with $1 / n$ smaller than $\min \{\xi, 1-\xi\}$ ．
i）For n as above，find the solution u_{n} of（1）．Solution：

$$
u_{n}(x)= \begin{cases}(1-\xi) \cdot x & 0 \leq x \leq \xi-\frac{1}{2 n} \\ (1-\xi) \cdot x-\frac{n}{2}(x-\xi+1 /(2 n))^{2} & \xi-\frac{1}{2 n}<x<\xi+\frac{1}{2 n} \\ \xi \cdot(1-x) & \xi+\frac{1}{2 n} \leq x \leq 1\end{cases}
$$

ii）Verify that the sequence of solutions $u_{n}(x ; \xi)$ converges pointwise on $[0,1]$ as $n \rightarrow \infty$ to the Green function $g(x, \xi)$ derived in the lecture．
iii）Is the convergence uniform on $[0,1]$ ？Prove your assertion！

Exercise 1.2. Which of the following are distributions? Justify your response!
i) $T: \mathcal{D}(\mathbb{R}) \rightarrow \mathbb{C}, \varphi \mapsto \varphi(-10)$,
ii) $T: \mathcal{D}(\mathbb{R}) \rightarrow \mathbb{C}, \varphi \mapsto \varphi(0)^{2}$,
iii) $T: \mathcal{D}\left(\mathbb{R}^{n}\right) \rightarrow \mathbb{C}^{n}, \varphi \mapsto \operatorname{grad} \varphi(0)$,
iv) $T: \mathcal{D}(\mathbb{R}) \rightarrow \mathbb{C}, \varphi \mapsto \varphi(0)+\varphi(1)+\varphi(2)+\varphi(3)+\ldots$,
v) $T_{f}: \mathcal{D} \rightarrow \mathbb{R}, \varphi \mapsto \int_{\mathbb{R}} f(x) \varphi(x) d x$, with
(a) $f(x)=1 / \sqrt{|x|}$,
(b) $f(x)=1 / x^{2}$.

Facultative Exercises

Exercise 1.3. The goal of this exercise is to verify that the eigenfunction expansion of $g(x, \xi)$ coincides with the expression obtained earlier.
i) Use the Fourier series of $(\pi-x) / 2$ on the interval $[0, \pi]$ to show that

$$
\sum_{n=1}^{\infty} \frac{\cos n x}{n^{2}}=\frac{x^{2}}{4}-\frac{\pi x}{2}+\frac{\pi^{2}}{6}, \quad 0 \leq x \leq \pi
$$

ii) Using

$$
\sin \alpha \sin \beta=\frac{1}{2}(\cos (\alpha-\beta)-\cos (\alpha+\beta)), \quad \alpha, \beta \in \mathbb{R}
$$

show that

$$
\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\sin (n \pi x) \sin (n \pi \xi)}{n^{2}}= \begin{cases}(1-\xi) x, & x \leq \xi \\ (1-x) \xi, & x>\xi\end{cases}
$$

for $0 \leq x, \xi \leq 1$.

