Spring Term 2017

Vv557 Methods of Applied Mathematics II

Class Session 13：Introduction to the Method of Images

Literature

Section 7.5 of E．Zauderer，Partial Differential Equations of Applied Mathematics，3rd Edition，Wiley 2011， Free download from within SJTU network at http：／／onlinelibrary．wiley．com／book／10．1002／9780470906538．

Video Files

43 The Method of Images．mp4
44 Exploiting Symmetries for Image Charges．mp4

Exercises

Exercise 13．1．Use Green＇s function for the Dirichlet problem on the upper half－plane $\mathbb{H}=\left\{\left(x_{1}, x_{2}\right) \in\right.$ $\left.\mathbb{R}^{2}: x_{2}>0\right\}$ to show that the solution to

$$
\Delta u=0 \quad \text { on } \mathbb{H}, \quad u=h \quad \text { on } \partial \mathbb{H}
$$

is given by

$$
u\left(x_{1}, x_{2}\right)=\frac{1}{\pi} \int_{-\infty}^{\infty} h(y) \frac{x_{2}}{x_{2}^{2}+\left(x_{1}-y\right)^{2}} d y
$$

Exercise 13．2．
i）Use the method of images to find Green＇s function for the Neumann problem for the Laplace operator on the upper half－plane，i．e．，$\Omega=\left\{x \in \mathbb{R}^{2}: x_{2}>0\right\}$ ．
ii）Give the formula for the general solution for the problem

$$
\Delta u=0 \quad \text { on } \Omega=\left\{x \in \mathbb{R}^{2}: x_{2}>0\right\},\left.\quad \frac{\partial u}{\partial n}\right|_{\Omega}=-\left.\frac{\partial u}{\partial x_{2}}\right|_{x_{2}=0}=f\left(x_{1}\right)
$$

Find the solution if $f\left(x_{1}\right)=1$ ．
iii）Show that the method of images fails if Ω is replaced by the unit disk with Neumann boundary conditions．
Exercise 13．3．Find Green＇s function for the Dirichlet problem on the first quadrant $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>\right.$ $\left.0, x_{2}>0\right\}$ and give a solution formula for the Dirichlet problem

$$
\Delta u=\varrho \quad \text { on } \Omega, \quad u=f \quad \text { on } \partial \Omega
$$

Exercise 13.4. In this exercise ${ }^{1}$ the method of images is used to find Green's function $g(x, \xi)$ for the Dirichlet problem on the wedge

$$
\Omega=\left\{x \in \mathbb{R}^{2}: x_{1}=r \cos \theta, x_{2}=r \sin \theta, r>0,0<\theta<\pi / 3\right\} .
$$

i) You will need five image charges, $\xi^{(1)}, \ldots, \xi^{(5)}$. Sketch their location and give their position in polar coordinates $\left(r^{(k)}, \theta^{(k)}\right), k=1, \ldots, 5$, supposing that ξ is located at $\left(r_{0}, \theta_{0}\right)$. Write down the resulting Green's function as a sum of fundamental solutions.
Hint: You may find it useful to introduce the complex variable $z=r \exp (i \theta)$
ii) If ξ is located at $(r, \theta)=(1, \pi / 6)$, show that Green's function in polar coordinates is given by

$$
g(r, \theta ; 1, \pi / 6)=-\frac{1}{4 \pi} \ln \left(\frac{r^{6}-2 r^{3} \sin (3 \theta)+1}{r^{6}+2 r^{3} \sin (3 \theta)+1}\right)
$$

iii) Give a solution formula for the Dirichlet problem

$$
\Delta u=0 \quad \text { on } \Omega, \quad u(r, \theta=0)=f_{1}(r), \quad u(r, \theta=\pi / 3)=f_{2}(r), \quad r>0
$$

Facultative Exercises

Exercise 13.5. Consider again the first quadrant $\Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}>0, x_{2}>0\right\}$. Use the method of images to find Green's function for the mixed problem

$$
\Delta g(x ; \xi)=\delta(x-\xi) \quad \text { on } \Omega, \quad g\left(x_{1}, 0 ; \xi\right)=f\left(x_{1}\right), \quad x_{1}>0,\left.\quad \frac{\partial g(x ; \xi)}{\partial x_{1}}\right|_{x_{1}=0}=h\left(x_{2}\right), \quad x_{2}>0
$$

Give a solution formula for the problem

$$
\Delta u=\varrho \quad \text { on } \Omega, \quad u\left(x_{1}, 0\right)=f\left(x_{1}\right), \quad x_{1}>0,\left.\quad \frac{\partial u(x)}{\partial x_{1}}\right|_{x_{1}=0}=h\left(x_{2}\right), \quad x_{2}>0
$$

Exercise 13.6.

i) Use Green's function for the Dirichlet problem on the unit disc $\mathbb{D}=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{1}^{2}+x_{2}^{2}<1\right\}$ to show that the solution to

$$
\Delta u=0 \quad \text { on } \mathbb{D}, \quad u=h \quad \text { on } \partial \mathbb{D}
$$

is given (in polar coordinates) by

$$
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{1-r^{2}}{1+r^{2}-2 r \cos (\theta-\varphi)} h(\varphi) d \varphi
$$

This is known as the Poisson integral formula.
ii) Find the solution of the Dirichlet problem

$$
\Delta_{r, \theta} u(r, \theta)=0, \quad(r, \theta) \in(0,1) \times[-\pi, \pi), \quad u(1, \varphi)=\left\{\begin{array}{cc}
2 & -\pi \leq \theta<-\pi / 2 \\
1 & -\pi / 2 \leq \theta<\pi / 2 \\
0 & \pi / 2 \leq \theta<\pi
\end{array}\right.
$$

in terms of elementary functions. Plot the graph of the solution using a computer algebra system. You may use that

$$
\frac{1}{2 \pi} \int \frac{1-r^{2}}{1+r^{2}-2 r \cos (t-\varphi)} d t=\frac{1}{\pi} \arctan \left(\frac{1+r}{1-r} \tan \frac{t-\varphi}{2}\right)
$$

(Pay careful attention the branches of the arctangent. The solution will be a continuous function of φ.)

[^0]
[^0]: ${ }^{1}$ Taken from the Natural Sciences Tripos examination, Cambridge University, 2008

