## Spring Term 2017

## Vv557 Methods of Applied Mathematics II Review Questions and Problems

## Class Session 2：Operations on Distributions

## Video Files

10 Elementary Operations on Distributions．mp4
11 The Weak Derivative．mp4
12 Two Applications of the Weak Derivative．mp4

## Review Questions

i）Explain how operations for functions are extended to distributions＂by duality＂．
ii）What are Green＇s first and second identities？
iii）Why is the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by $g(x)=1 / x$ not a distribution？Explain what the principal value of $g$ is．

## Exercises

Exercise 2．1．Let $\xi \in(0,1)$ be fixed．The goal of this exercise is to show that the Green＇s function $g(x, \xi)$ （introduced and defined in the lecture video）for the problem

$$
-u^{\prime \prime}=f(x), \quad 0<x<1, \quad u(0)=u(1)=0
$$

satisfies

$$
\begin{equation*}
-g^{\prime \prime}=\delta(x-\xi), \quad 0<x<1 \tag{1}
\end{equation*}
$$

in the distributional sense．This will require the definition of distributions on the open set $\Omega=(0,1) \subset \mathbb{R}$ ．
Proceed as follows：Define first $\mathcal{D}(0,1):=\{\varphi \in \mathcal{D}(\mathbb{R}): \operatorname{supp} \varphi \subset(0,1)\}$ and then $\mathcal{D}^{\prime}(0,1)$ as the set of continuous linear functionals on $\mathcal{D}(0,1)$ ．Regard $g(\cdot, \xi)$ as an element of $\mathcal{D}^{\prime}(0,1)$ and differentiate it as a distribution．Note that the test functions will have compact support in the interval $(0,1) \subset \mathbb{R}$ ．

## Exercise 2．2．

i）Verify that the Cauchy principal value $\mathcal{P}(1 / x)$ defines a distribution，i．e．，that it is a continuous linear functional on $\mathcal{D}(\mathbb{R})$ ．
ii）Verify that $x \mathcal{P}(1 / x)=1$ in the sense of distributions．
Exercise 2．3．While $g: \mathbb{R} \rightarrow \mathbb{R}, g(x)=1 / x$ is not a distribution，the function $h: \mathbb{R}^{3} \rightarrow \mathbb{R}, h(x)=1 /|x|$ is locally integrable and hence a regular distribution．Verify this！

## Facultative Exercises

Exercise 2．4．Show that

$$
g \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right)
$$

$$
g(x)=-\frac{1}{2 \pi} \log |x|
$$

satisfies $\Delta g=\delta(x)$ in the distributional sense．

Exercise 2.5. For $u: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by ${ }^{1}$

$$
u(x, t)= \begin{cases}1 / 2 & t-|x|>0 \\ 0 & \text { otherwise }\end{cases}
$$

calculate $u_{t t}-u_{x x}$.
Exercise 2.6. Prove the following statement: Let $I \subset \mathbb{R}$ be an open interval and $f \in L_{\text {loc }}^{1}(I) \cap C^{1}(I \backslash\{\xi\})$ such that the left- and right-hand limits of $f$ and $f^{\prime}$ at $\xi$ exist. Denote

$$
[f]_{\xi}:=\lim _{\varepsilon \rightarrow 0}(f(\xi+\varepsilon)-f(\xi-\varepsilon))
$$

Then

$$
\left(T_{f}\right)^{\prime}=[f]_{\xi} \cdot \delta(x-\xi)+T_{f^{\prime}}
$$

where we define $f^{\prime}(\xi)$ to have any value we like.
Exercise 2.7. Show that

$$
\frac{d}{d x} \mathcal{P}\left(\frac{1}{x}\right)=-\mathcal{P}\left(\frac{1}{x^{2}}\right)
$$

where

$$
\mathcal{P}\left(\frac{1}{x^{2}}\right)(\varphi):=\lim _{\varepsilon \searrow 0} \int_{|x|>\varepsilon} \frac{1}{x^{2}}(\varphi(x)-\varphi(0)) d x .
$$

(5 Marks)

[^0]
[^0]:    ${ }^{1}$ Zuily, C., Problems in Distributions and Partial Differential Equations, Exercise 28

