Spring Term 2017

Vv557 Methods of Applied Mathematics II Review Questions and Problems

Class Session 3: Families of Distributions

Video Files

13 Families of Distributions.mp414 Delta Families.mp4

Review Questions

- i) How is convergence of a family of distributions defined?
- ii) What is a delta sequence or a delta family? Give examples!

Exercises

Exercise 3.1. For fixed $\alpha > 0$, consider the sequence (f_k) of continuous functions¹

$$f_k \colon \mathbb{R} \to \mathbb{R}, \qquad \qquad f_k(x) = k^{\alpha} H(x) x e^{-kx}$$

Show that

- i) $f_k(x) \to 0$ as $k \to \infty$ for all $x \in \mathbb{R}$ and any value of $\alpha > 0$,
- ii) $f_k \to 0$ uniformly on \mathbb{R} as $k \to \infty$ if $\alpha < 1$,
- iii) $\int_{\mathbb{R}} |f_k(x)| \, dx \to 0 \text{ as } k \to \infty \text{ if } \alpha < 2,$
- iv) $T_{f_k} \to 0$ as $k \to \infty$ in the sense of distributions if $\alpha < 2$,
- v) $T_{f_k} \to T_{\delta}$ as $k \to \infty$ in the sense of distributions if $\alpha = 2$,
- vi) T_{f_k} does not converge as $k \to \infty$ in the sense of distributions if $\alpha > 2$.

Exercise 3.2. For $z = re^{i\varphi} \in \mathbb{C}$ define $\arg z := \varphi$. For $\varepsilon > 0$ and $x \in \mathbb{R}$ define²

$$\ln(x+i\varepsilon) := \ln(|x+i\varepsilon|) + i\arg(x+i\varepsilon).$$

i) Define $f_{\varepsilon} \colon \mathbb{R} \to \mathbb{C}, f_{\varepsilon}(x) = \ln(x + i\varepsilon)$ for $\varepsilon > 0$. Let

$$f_0: \mathbb{R} \to \mathbb{C},$$
 $f_0(x) = \begin{cases} \ln(x) & x > 0, \\ \ln(|x|) + i\pi & x < 0, \\ 0 & x = 0. \end{cases}$

Show that

$$\lim_{\varepsilon \searrow 0} f_{\varepsilon} = f$$

in the sense of distributions (i.e., $T_{f_{\varepsilon}} \to T_{f_0}$ in \mathcal{D}').

ii) Calculate the derivative of f_0 as a distribution. Recall that the derivative of $\ln(|x|)$ was the principal value of 1/x, but f_0 also has a jump discontinuity that needs to be taken into account.

 $^{1}Stakgold$, Ex. 2.2.3

²Zuily, C., Problems in Distributions and Partial Differential Equations, Exercise 47

iii) Deduce that

$$\lim_{\varepsilon \searrow 0} \frac{1}{x + i\varepsilon} = -i\pi\delta(x) + \mathcal{P}\left(\frac{1}{x}\right)$$

in the sense of distributions.

iv) Show similarly that

$$\lim_{\varepsilon \searrow 0} \frac{1}{x - i\varepsilon} = i\pi\delta(x) + \mathcal{P}\left(\frac{1}{x}\right)$$
$$\lim_{\varepsilon \searrow 0} \frac{1}{\pi(x^2 + \varepsilon^2)} = \delta(x).$$

and conclude that

Exercise 3.3. Let $\{f_{\alpha}\}$ be a family of nonnegative locally integrable functions on \mathbb{R}^n . Make the following assumptions:³

- (A) For some R > 0, $\lim_{\alpha \to \alpha_0} \int_{|x| < R} f_{\alpha}(x) dx = 1$,
- (B) For every R > 0, $f_{\alpha}(x) \to 0$ as $\alpha \to \alpha_0$, uniformly for |x| > R.

Show the following:

- i) If (A) holds for some R > 0, then (A) also holds for any R > 0.
- ii) Suppose that φ is any function which is continuous at x = 0 and that satisfies $\int_{\mathbb{R}^n} |\varphi(x)| dx < \infty$. Then

$$\lim_{\alpha \to \alpha_0} \int_{\mathbb{R}^n} f_\alpha(x)\varphi(x) \, dx = \varphi(0).$$

Clearly, this shows that $\{f_{\alpha}\}$ is a delta family as $\alpha \to \alpha_0$. However, since very few assumptions on φ are made, this result can be applied even more generally.

Hint: Fix a suitable value of R > 0 and estimate the terms in

$$\int_{\mathbb{R}^n} f_\alpha(x)\varphi(x)\,dx - \varphi(0) = \int_{|x| \le R} f_\alpha(x)(\varphi(x) - \varphi(0)\,dx + \varphi(0)\left(\int_{|x| \le R} f_\alpha(x)\,dx - 1\right) + \int_{|x| \ge R} f_\alpha(x)\varphi(x)\,dx$$

iii) Consider a complex number $z = re^{i\theta}$ and use the geometric series formula to show that

$$1 + 2\sum_{n=1}^{\infty} z^n = 1 + \frac{2z}{1-z} = \frac{1 - r^2 - 2ir\sin\theta}{1 - 2r\cos\theta + r^2}$$

From this and $\operatorname{Re} z^n = r^n \cos(n\theta)$, deduce that

$$\frac{1 - r^2}{1 + r^2 - 2r\cos\theta} = 1 + 2\sum_{n=1}^{\infty} r^n \cos(n\theta)$$

Integrate to show that

$$\int_{-\pi}^{\pi} \frac{1 - r^2}{1 + r^2 - 2r\cos\theta} \, d\theta = 2\pi.$$

iv) Combine the previous results to deduce that the family

$$f_r(\theta) = \begin{cases} \frac{1}{2\pi} \cdot \frac{1 - r^2}{1 + r^2 - 2r \cos \theta} & |\theta| \le \pi, \\ 0 & |\theta| > \pi, \end{cases} \qquad 0 \le r < 1$$

converges to $\delta(\theta)$ as $r \nearrow 1$.

 $^{^{3}}Stakgold$, Ex. 2.2.4, 2.2.9