Vv557 Methods of Applied Mathematics II Review Questions and Problems

Class Session 5: The Fourier Transform for Tempered Distributions

Video Files

18 Tempered Distributions.mp4

19 Application of the Fourier Transform to Partial Differential Equations.mp4

Review Questions

- i) What is a tempered distribution?
- ii) How is the Fourier transform defined for tempered distributions?
- iii) Explain how the convolution can be defined for tempered distributions.

Exercises

Exercise 5.1. Calculate the Fourier transforms of the following elements in $\mathcal{S}'(\mathbb{R})$:

- ${\rm i}) \quad \begin{cases} e^{-\varepsilon x} & x \ge 1, \\ 0 & x < 1, \end{cases} \qquad \varepsilon > 0,$
- ii) $\sin(3x-2)$,
- iii) $x^2 \cos(x)$,
- iv) xH(x-2),
- v) $x^2\delta(x-1)$.

Exercise 5.2. A distribution $T \in \mathcal{D}'$ is said to be even if $T\varphi = T\widetilde{\varphi}$ for all test functions φ , where $\widetilde{\varphi}(x) = \varphi(-x)$. The distribution is said to be odd if $T\varphi = -T\widetilde{\varphi}$.

Show that if $T \in \mathcal{S}'$ is even (odd), then the Fourier transform $\widehat{T} \in \mathcal{S}'$ is even (odd).

Exercise 5.3. Consider the wave equation problem for a function $u \colon \mathbb{R}^2 \to \mathbb{R}$,

 $u_{tt} - u_{xx} = 0,$ u(x, 0) = f(x), $u_t(x, 0) = g(x).$

Take the Fourier transform of the equation with respect to the x-variable to obtain an ODE in the t-variable and solve the ODE to obtain

$$\widehat{u}(\xi,t) = \widehat{f}(\xi)\cos(\xi t) + \frac{\widehat{g}(\xi)}{\xi}\sin(\xi t).$$

Then calculate the inverse Fourier transform (in the distributional sense) to obtain a solution formula for u(x, t).