

UNIVERSITY OF MICHIGAN

Applied Calculus III

Exercise Set 10

Date Due：12：00 PM，Thursday，the $29^{\text {th }}$ of July 2010
Office hours：Tuesdays，12：00－1：00 PM and on the SAKAI system

Exercise 1．For each of the following surfaces in \mathbb{R}^{3} a parametrization of the form $\varphi(u, v)$ with $\varphi: \Omega \rightarrow \mathbb{R}^{3}$ a suitable domain $\Omega \subset \mathbb{R}^{2}$ is given．Calculate the area of each surface，and sketch the surface．
i）Cone：Let $\alpha \in(0, \pi)$ be fixed，$\Omega=[0,2 \pi] \times[0, h]$ and $\varphi(\theta, z)=(z \sin \alpha \cos \theta, z \sin \alpha \sin \theta, z \cos \alpha)$ ．
ii）Paraboloid：Let $a>0$ be fixed，$\Omega=[0,2 \pi] \times[0, h]$ and $\varphi(\theta, t)=\left(a t \cos \theta\right.$ ，at $\left.\sin \theta, t^{2}\right)$ ．
iii）Screw：Let $\Omega=[0,1] \times[0,2 \pi]$ and $\varphi(r, \phi)=(r \cos \phi, r \sin \phi, \phi)$ ．Compare the surface area of the screw with that of the unit circle（the unit circle is the screw＇s projection onto the $x_{1}-x_{2}$－plane．）
$(2+2+(2+1)$ Marks $)$

Exercise 2．Find a parametric representation for the torus obtained by rotating about the z－axis the circle in the $x-z$－ plane with center $(b, 0,0)$ and radius $a<b$ ．Hint：Take as parameters the angles θ and α shown in the figure．
Then find the surface area of the torus．
（2 +2 Marks）

Exercise 3．Find the area of each of the following surfaces in $\mathbb{R}_{(x, y, z)}^{3}$ ：
i）The part of the plane $x+2 y+z=4$ that lies inside the cylinder $x^{2}+y^{2}=9$ ，
ii）The part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$ and $(2,1)$ ，
iii）The part of the cylinder $x^{2}+z^{2}=a^{2}$ that lies in the cylinder $x^{2}+y^{2}=a^{2}$
（ 3×2 Marks）
Exercise 4．For each of the following surfaces in \mathbb{R}^{3} a parametrization of the form $\varphi(u, v)$ with $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ is given．Find an equation of the tangent plane to the given surface at the specified point $p \in \mathbb{R}^{3}$ ．Use a computer to graph the surface together with the tangent plane．
i）$\varphi(u, v)=\left(u+v, 3 u^{2}, u-v\right), p=(2,3,0)$ ，
ii）$\varphi(u, v)=\left(u^{2}, v^{2}, u v\right), p=\varphi(1,1)$ ，
iii）$\varphi(u, v)=(u v, u \sin v, v \cos u), p=\varphi(0, \pi)$ ．
$(3 \times(2+1)$ Marks $)$

Exercise 5. Evaluate the following surface integrals:
i) $\iint_{\mathcal{S}} y d \sigma$ where \mathcal{S} is the surface given by $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right), 0 \leq x \leq 1,0 \leq y \leq 1$.
ii) $\iint_{\mathcal{S}} y d \sigma$ where \mathcal{S} is the part of the paraboloid $y=x^{2}+z^{2}$ that lies inside the cylinder $x^{2}+y^{2}=9$.
iii) $\iint_{\mathcal{S}}\left(x^{2}+y^{2}\right) z d \sigma$ where \mathcal{S} is the hemisphere given by $x^{2}+y^{2}+z^{2}=4, z>0$.

(3×2 Marks)

Exercise 6. The electrostatic potential $V(p)$ at a point $p \in \mathbb{R}^{3}$ induced by a charged surface \mathcal{S} is given by

$$
V(p)=\frac{1}{4 \pi \varepsilon_{0}} \iint_{\mathcal{S}} \frac{\varrho(\cdot)}{\operatorname{dist}(p, \cdot)} d \sigma
$$

where ϱ is the charge density of the surface. Let \mathcal{S} be a uniformly charged circular disk of radius b (and negligible thickness) carrying a total charge Q.
i) Find the electric field $E=-\nabla V$ at a point p on the axis through the center of and perpendicular to the disk.
ii) Let R denote the distance of p from the disk. By expanding E in terms of b / R show that if $R \gg b$ the electric field strength approaches that of a point charge situated at the center of the disk.

(2 +2 Marks)

Exercise 7. A charge Q is distributed uniformly over the wall fo a circular tube of radius b and height h. Determine V and E on its axis
i) at a point outside the tube, then
ii) at a point inside the tube.

(2 + 2 Marks)

