

Applied Calculus III

Exercise Set 10

Date Due: 12:00 PM, Thursday, the 29th of July 2010

Office hours: Tuesdays, 12:00-1:00 PM and on the SAKAI system

Exercise 1. For each of the following surfaces in \mathbb{R}^3 a parametrization of the form $\varphi(u, v)$ with $\varphi \colon \Omega \to \mathbb{R}^3$ a suitable domain $\Omega \subset \mathbb{R}^2$ is given. Calculate the area of each surface, and sketch the surface.

- i) **Cone**: Let $\alpha \in (0, \pi)$ be fixed, $\Omega = [0, 2\pi] \times [0, h]$ and $\varphi(\theta, z) = (z \sin \alpha \cos \theta, z \sin \alpha \sin \theta, z \cos \alpha)$.
- ii) **Paraboloid**: Let a > 0 be fixed, $\Omega = [0, 2\pi] \times [0, h]$ and $\varphi(\theta, t) = (at \cos \theta, at \sin \theta, t^2)$.
- iii) Screw: Let $\Omega = [0,1] \times [0,2\pi]$ and $\varphi(r,\phi) = (r\cos\phi, r\sin\phi, \phi)$. Compare the surface area of the screw with that of the unit circle (the unit circle is the screw's projection onto the x_1 - x_2 -plane.)

(2+2+(2+1) Marks)

Exercise 2. Find a parametric representation for the torus obtained by rotating about the z-axis the circle in the x - z-plane with center (b, 0, 0) and radius a < b. *Hint:* Take as parameters the angles θ and α shown in the figure.

Then find the surface area of the torus. (2 + 2 Marks)

Exercise 3. Find the area of each of the following surfaces in $\mathbb{R}^3_{(x,y,z)}$:

- i) The part of the plane x + 2y + z = 4 that lies inside the cylinder $x^2 + y^2 = 9$,
- ii) The part of the surface $z = 1 + 3x + 2y^2$ that lies above the triangle with vertices (0,0), (0,1) and (2,1),
- iii) The part of the cylinder $x^2 + z^2 = a^2$ that lies in the cylinder $x^2 + y^2 = a^2$

$(3 \times 2 \text{ Marks})$

Exercise 4. For each of the following surfaces in \mathbb{R}^3 a parametrization of the form $\varphi(u, v)$ with $\varphi \colon \mathbb{R}^2 \to \mathbb{R}^3$ is given. Find an equation of the tangent plane to the given surface at the specified point $p \in \mathbb{R}^3$. Use a computer to graph the surface together with the tangent plane.

- i) $\varphi(u, v) = (u + v, 3u^2, u v), p = (2, 3, 0),$
- $\text{ii)}\quad \varphi(u,v)=(u^2,v^2,uv),\, p=\varphi(1,1),\\$
- iii) $\varphi(u, v) = (uv, u \sin v, v \cos u), p = \varphi(0, \pi).$

 $(3 \times (2+1) \text{ Marks})$

Exercise 5. Evaluate the following surface integrals:

- i) $\iint_{\mathcal{S}} y \, d\sigma$ where \mathcal{S} is the surface given by $z = \frac{2}{3}(x^{3/2} + y^{3/2}), 0 \le x \le 1, 0 \le y \le 1$.
- ii) $\iint_{\mathcal{S}} y \, d\sigma$ where \mathcal{S} is the part of the paraboloid $y = x^2 + z^2$ that lies inside the cylinder $x^2 + y^2 = 9$.
- iii) $\iint_{\mathcal{S}} (x^2 + y^2) z \, d\sigma$ where \mathcal{S} is the hemisphere given by $x^2 + y^2 + z^2 = 4, z > 0.$

$(3 \times 2 \text{ Marks})$

Exercise 6. The electrostatic potential V(p) at a point $p \in \mathbb{R}^3$ induced by a charged surface S is given by

$$V(p) = \frac{1}{4\pi\varepsilon_0} \iint\limits_{\mathcal{S}} \frac{\varrho(\cdot)}{\operatorname{dist}(p, \cdot)} \, d\sigma$$

where ρ is the charge density of the surface. Let S be a uniformly charged circular disk of radius b (and negligible thickness) carrying a total charge Q.

- i) Find the electric field $E = -\nabla V$ at a point p on the axis through the center of and perpendicular to the disk.
- ii) Let R denote the distance of p from the disk. By expanding E in terms of b/R show that if $R \gg b$ the electric field strength approaches that of a point charge situated at the center of the disk.

(2+2 Marks)

Exercise 7. A charge Q is distributed uniformly over the wall fo a circular tube of radius b and height h. Determine V and E on its axis

- i) at a point outside the tube, then
- ii) at a point inside the tube.

(2+2 Marks)