

UNIVERSITY OF MICHIGAN

SHANGHAI JIAO TONG UNIVERSITY

Applied Calculus III

Exercise Set 11

Date Due：12：00 PM，Tuesday，the $10^{\text {th }}$ of August 2010
Office hours：Tuesdays，12：00－1：00 PM and on the SAKAI system

Exercise 1．Let $A \in \operatorname{Mat}(2 \times 2, \mathbb{R})$ be symmetric，i．e．，

$$
A=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

Let $\Delta=\operatorname{det} A$ ．Prove that
i）A positive definite $\Leftrightarrow a>0$ and $\Delta>0$
ii）A negative definite $\Leftrightarrow a<0$ and $\Delta>0$
iii）A indefinite $\Leftrightarrow \Delta<0$

（3 Marks）

Exercise 2．Find all local and global extrema（if they exist）of the following real functions on their domains．
i） $\operatorname{dom} f=\mathbb{R}^{2}, f(x, y)=x^{2}+x y+y^{2}+x+y+1$
ii） $\operatorname{dom} f=\mathbb{R}^{2} \backslash\{0\}, f(x, y)=1 / y-1 / x-4 x+y$
iii） $\operatorname{dom} f=\mathbb{R}^{2}, f(x, y)=\sqrt{x^{2}+y^{2}}$
iv） $\operatorname{dom} f=\left\{(x, y) \in \mathbb{R}^{2}: 0 \leq x, y \leq \pi / 2\right\}, f(x, y)=\sin x+\sin y+\sin (x+y)$
（2＋2＋1＋4 Marks）
Exercise 3．The effect $E(x, t)$ of x units of some medicine t hours after ingestion is frequently modeled by

$$
E(x, t)=x^{2}(a-x) t^{2} e^{-t}, \quad 0 \leq x \leq a, \quad t \geq 0
$$

Find the dosage x and the time t such that the effect is maximal．
（3 Marks）
Exercise 4．It is known that a point charge Q at position $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ induces the potential

$$
V_{x}(p)=\frac{1}{4 \pi \varepsilon_{0}} \frac{Q}{|x-p|}
$$

at $p \in \mathbb{R}^{3} \backslash\{x\}$ ．Suppose three equal point charges are located at the points $x=(0,0,0), y=(0,1,0)$ and $z=(1,0,0)$ in \mathbb{R}^{3} ．They induce the potential

$$
V(p)=V_{x}(p)+V_{y}(p)+V_{z}(p)
$$

at $p \in \mathbb{R}^{3} \backslash\{x, y, z\}$ ．Find all local extrema of $V(p)$ in the $p_{1}-p_{2}$－plane．You may use a computer algebra program to solve the equations numerically；give the coordinates of the extrema to two decimal place．
（4 Marks）
Exercise 5．Find the maximum of $f(x, y, z)=z$ under the constraints $x+y+z=1$ and $z^{2} /\left(x y^{3}\right)=3$（this problem occurs in seeking to maximize the yield of an ammonia reactor）．
（3 Marks）

Exercise 6. A cylindrical storage tank of height h and radius r is to be designed to hold a volume V of water. Find the height and radius that minimise the surface area of the tank.

(3 Marks)

Exercise 7. Find all extrema (if they exist) of the following real functions f subject to the constraints given.
i) $f(x, y)=4 x^{2}+3 y^{2}-5 x y-8 x$ subject to $x+y=4$,
ii) $f(x, y)=4 x^{2}+9 y^{2}+6 y-4 x+13$ subject to $x-3 y+3=0$,
iii) $f(x, y, z)=(x-1)^{2}+(y+2)^{2}+(z-2)^{2}$ subject to $2 x+3 y-1=0, x+y+2 z-4=0$

(2+2+2 Marks)

Exercise 8. In geometrical optics, we consider the problem of refraction at the boundary of two media. Medium 1 has the index of refraction n_{1}, Medium 2 has the index of refraction n_{2}. (The index of refraction of a medium is the quotient of the speed of light in vacuum divided by the speed of light in the medium.)

A light ray originating at a point $\left(a_{1}, b_{1}\right)$ in Medium 1 will travel in a straight line until it meets the interface of the two media, whereupon it will enter Medium 2 and again travel in a straight line to the point $\left(a_{2}, b_{2}\right)$. By Fermat's principle, the lines are such that the travel time of the light ray will be minimized.

Write the travel time as a function f of (x, y), where (x, y) are the coordinates of the point on the interface of the media where refraction occurs. Note that f needs to be minimized subject to the constraint $g(x, y)=y=0$. Use the method of Lagrange multipliers to verify Snell's law,

$$
n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2} .
$$

(3 Marks)

Exercise 9. A ball bearing with 14 balls is to be prestressed in such a way that when the interior ring is subjected to a load of $F=3000 \mathrm{~N}$ the maximal ball deformation is minimized:

Every ball in the bearing is subjected to a radial load, pressed and elastically deformed. This prestress presses the interior ring concentrically against the exterior ring by a distance e (measured in $\mu \mathrm{m}$). The load F translates the interior ring downwards by $x[\mu \mathrm{~m}]$.

The radial deformation δ_{i} of the i th ball is given by

$$
\delta_{i}=e+x \cos \varphi_{i}, \quad i=1,2, \ldots, 14
$$

in first-order approximation. For $y \in \mathbb{R}$ we define

$$
(y)_{+}= \begin{cases}y, & y>0 \\ 0, & y \leq 0\end{cases}
$$

According to the Hertz model, the relationship between the pressing load F_{i} and the deformation δ_{i} is given by

$$
F_{i}=C \cdot\left(\delta_{i}\right)_{+}^{3 / 2}
$$

where C is a constant depending on the geometry of the bearing. Here, $C=10 \mathrm{~N} /\left(\mu \mathrm{m}^{3 / 2}\right)$. If we set $\varphi_{i}=$ $2 \pi(i-1) / 14, i=1, \ldots, 14$, as in the sketch, we have

$$
F(e, x)=\sum_{i=1}^{14} F_{i} \cos \varphi_{i}=C \cdot \sum_{i=1}^{14}\left(e+x \cos \frac{\pi(i-1)}{7}\right)_{+}^{3 / 2} \cos \frac{\pi(i-1)}{7}
$$

The maximal load is borne by ball $1\left(\varphi_{1}=0\right)$,

$$
F_{1}(e, x)=C(e+x)^{3 / 2} .
$$

i) No prestress: Set $e=0$ and calculate x for $F=3000 \mathrm{~N}$. How large is the maximal ball load $F_{1}(0, x)$ and how many balls are under load?
ii) Optimal prestress: Minimize $F_{1}(e, x)$ for $e \geq 0, x>0$, under the constraint $F(e, x)=3000$ N. How many balls are under load?

Hint: Eliminate the multiplier and find an equation for $\frac{e}{x}$; solve this quation numerically.
The solution will yield that the optimal prestress gives $e=8.182 \mu \mathrm{~m}$ and $x=10.88 \mu \mathrm{~m}$. The maximal ball load is reduced by 11.2% under optimal prestress, but there will always be 11 balls under load.
(2 +4 Marks)

