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Exercise 1. Let A € Mat(2 x 2,R) be symmetric, i.e.,

(Y
Let A = det A. Prove that
i) A positive definite < a > 0 and A >0
ii) A negative definite < a <0 and A >0
iii) A indefinite & A <0
(3 Marks)
Exercise 2. Find all local and global extrema (if they exist) of the following real functions on their domains.

i) domf=R? f(z,y) =a*+ay+y’+z+y+1
ii) dom f=R>\{0}, f(x,y) =1/y—1/z —4x +y
)

dOIHf :R27 f(xay) =V x2 +y2

iv) dom f = {(z,y) € R?: 0 < 2,y < 7/2}, f(z,y) = sinz + siny + sin(z + y)

iii

(2 + 2+ 1+ 4 Marks)
Exercise 3. The effect E(x,t) of x units of some medicine ¢ hours after ingestion is frequently modeled by
E(x,t) = 2%(a — x)t?e™", 0<z<a, t>0.

Find the dosage = and the time t such that the effect is maximal.
(3 Marks)

Exercise 4. It is known that a point charge @ at position x = (21, 22, 73) € R? induces the potential
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O e

at p € R?\ {x}. Suppose three equal point charges are located at the points = (0,0,0), y = (0,1,0) and
z = (1,0,0) in R3. They induce the potential

V(p) = Valp) + Vy(p) + Vz(p)

at p € R3\ {,y, 2z}. Find all local extrema of V (p) in the p;-pa-plane. You may use a computer algebra program
to solve the equations numerically; give the coordinates of the extrema to two decimal place.
(4 Marks)

Exercise 5. Find the maximum of f(z,y,2) = z under the constraints z +y + z = 1 and 22/(zy?) = 3 (this
problem occurs in seeking to maximize the yield of an ammonia reactor).
(3 Marks)



Exercise 6. A cylindrical storage tank of height h and radius r is to be designed to hold a volume V of water.
Find the height and radius that minimise the surface area of the tank.
(3 Marks)

Exercise 7. Find all extrema (if they exist) of the following real functions f subject to the constraints given.
i) f(x,y) =422 + 3y? — 5y — 8x subject to x +y = 4,
ii) f(z,y) = 422 + 9y* + 6y — 4x + 13 subject to x — 3y + 3 = 0,
iii) f(x,y,2) =(x—1)2+ (y+2)?+ (2 — 2)? subject to 22 + 3y —1 =0, x +y+22—4=0
(2 4+ 2 + 2 Marks)
Exercise 8. In geometrical optics, we consider the problem of refraction at the boundary of two media.

Medium 1 has the index of refraction n;, Medium 2 has the index of refraction ny. (The index of refrac-
tion of a medium is the quotient of the speed of light in vacuum divided by the speed of light in the medium.)

A light ray originating at a point (ag,b;) in Medium 1

will travel in a straight line until it meets the interface
- of the two media, whereupon it will enter Medium 2
(a1,b1) and again travel in a straight line to the point (as,bs).
By Fermat’s principle, the lines are such that the travel
time of the light ray will be minimized.
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(z,0) Write the travel time as a function f of (x,y), where
(z,y) are the coordinates of the point on the interface of
the media where refraction occurs. Note that f needs to
be minimized subject to the constraint g(x,y) =y = 0.
Use the method of Lagrange multipliers to verify Snell’s
law,

n1 sin @7 = ng sin f,.

(3 Marks)

Exercise 9. A ball bearing with 14 balls is to be prestressed in such a
way that when the interior ring is subjected to a load of F' = 3000 N the
maximal ball deformation is minimized:

Every ball in the bearing is subjected to a radial load, pressed and elas-
tically deformed. This prestress presses the interior ring concentrically
against the exterior ring by a distance e (measured in pym). The load F
translates the interior ring downwards by « [pm].

The radial deformation §; of the ith ball is given by

0; = e + x cos ;, i=1,2,...,14,

in first-order approximation. For y € R we define

W)y = y, y>0,
o 0, y<0.

According to the Hertz model, the relationship between the pressing load F; and the deformation §; is given by
F=C-(6)%?

where C' is a constant depending on the geometry of the bearing. Here, C' = 10N /(um?3/2). If we set ¢; =
2r(i—1)/14,i=1,...,14, as in the sketch, we have

= = m(i—- 1)\ x(i-1)
F(e,x):ZFicosgpi=C~Z(e—i—xCOST) CO8 ———
i=1 i=1 +

The maximal load is borne by ball 1 (¢; = 0),

Fi(e,x) = Cle + z)%/2.



i) No prestress: Set e = 0 and calculate = for F' = 3000 N. How large is the maximal ball load F;(0, ) and
how many balls are under load?

i) Optimal prestress: Minimize Fi(e,z) for e > 0, > 0, under the constraint F'(e,z) = 3000 N. How many
balls are under load?

Hint: Eliminate the multiplier and find an equation for £; solve this quation numerically.
The solution will yield that the optimal prestress gives e = 8.182 um and z = 10.88 um. The maximal ball load
is reduced by 11.2% under optimal prestress, but there will always be 11 balls under load.
(2 + 4 Marks)



