

UNIVERSITY OF MICHIGAN

SHANGHAI JIAO TONG UNIVERSITY

Applied Calculus III

Exercise Set 12

Date Due：12：00 PM，Tuesday，the $19^{\text {th }}$ of August 2010
Office hours：Tuesdays，12：00－1：00 PM and on the SAKAI system

Exercise 1．Calculate the line integrals $\int_{S} L$（here $S \subset \mathbb{R}^{n}$ is a curve that，if no orientation is given，is oriented such that the resulting integral is positive and L is a differential form on \mathbb{R}^{n} ）：
i）$L=\left(x^{2}-2 x y\right) d x+\left(y^{2}-2 x y\right) d y$ along the parabola $y=x^{2}$ joining $(-2,4)$ and $(1,1)$ ．
ii）$L=x d x+y d y+(x z-y) d z$ along the straight line from $(0,0,0)$ to $(1,2,4)$ ．
iii）$L=x^{2} y^{2} d x+x y^{2} d y$ along the closed curve consisting of the straight line $x=1$ and the parabola $y^{2}=x$ （oriented positively，i．e．，in the counter－clockwise direction）．
iv）$L=-y /\left(x^{2}+y^{2}\right) d x+x /\left(x^{2}+y^{2}\right) d y$ along the positively oriented circle $x^{2}+y^{2}=r^{2}$ ．Verify that the components L_{1} and L_{2} of the vector field $L=L_{1} d x+L_{2} d y$ satisfy $\partial_{y} L_{1}=\partial_{x} L_{2}$ ．Why does the integral along the circle not vanish？
$(2+2+2+(2+1)$ Marks $)$
Exercise 2．Let $F(x, y)=\left(2 x \cos y,-x^{2} \sin y\right)$ be a vector field in \mathbb{R}^{2} ．Show that F is a gradient field by checking $\partial_{y} F_{1}=\partial_{x} F_{2}$ and find a potential function u for F ．Next，calculate the integral of F along the curve given by $\gamma(t)=\left(e^{t}-1, t \sin \frac{\pi}{t}\right), t \in[0,1]$ ．
$((1+2)+1$ Marks $)$
Exercise 3．Calculate the integrals

$$
\begin{array}{ll}
\int_{G}(x y+y z+z x) d x d y d z, & G=\left\{(x, y, z) \in \mathbb{R}^{3}: x, y, z \geq 0, x^{2}+y^{2}+z^{2} \leq 1\right\} \\
\int_{\partial Q}\left\langle\left(x, y^{2}, z^{3}\right), N\right\rangle d \sigma, & Q=[-1,1]^{3}, \quad N=\text { outward-pointing normal }
\end{array}
$$

i）directly and
ii）using the divergence theorem．
$(2 \times(2+2)=8$ Marks $)$
Exercise 4．Calculate the circulation $\int_{S}\langle\operatorname{rot} F, N\rangle d \sigma$ of the vector field $F(x, y, z)=(x, x+y, x+y+z)$ directly and using Stokes＇s theorem．Here S is the surface given by $x^{2}+y^{2}+z^{2}=1, z \geq 0$ ，and N is the normal vector pointing in positive z－direction．
（2＋ 2 Marks）

