

UNIVERSITY OF MICHIGAN

Applied Calculus III

Exercise Set 3

Date Due：12：00 PM，Thursday，the 3rd of June 2010
Office hours：Tuesdays，12：00－1：00 PM and on the SAKAI system

Exercise 1．Consider the three maps $T_{i}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}, i=1,2,3$ ，given by

$$
\begin{aligned}
& T_{1}((x, y, z))=(x-3 y,-2 x+4 y+z,-2 y+z) \\
& T_{2}((x, y, z))=(3 x+y-2 z,-2 x+5 y+z, x+6 y-z) \\
& T_{3}((x, y, z))=(x+y, y+z, x+z)
\end{aligned}
$$

For each of the three maps，
i）write T_{i} as a 3×3 matrix，
ii）determine the kernel $\operatorname{ker} T_{i}:=\left\{v \in \mathbb{R}^{3}: T_{i}(v)=0\right\}$ ，
iii）find an orthonormal basis of $\operatorname{ker} T_{i}$ ，
iv）determine the range $\operatorname{ran} T_{i}:=\left\{w \in \mathbb{R}^{3}\right.$ ：for some $\left.v \in \mathbb{R}^{3}, T_{i}(v)=w\right\}$ ，
v）find an orthonormal basis of $\operatorname{ran} T_{i}$ ．
$\left(3 \times\left(\frac{1}{2}+1+1 \frac{1}{2}+1+1 \frac{1}{2}\right)\right.$ Marks $)$
Exercise 2．Let

$$
A=\left(\begin{array}{ccc}
-3 & 1 & 5 \\
2 & 7 & 1 \\
1 & -3 & 2
\end{array}\right), \quad B=\left(\begin{array}{cccc}
8 & -3 & 1 & 2 \\
-5 & 1 & 2 & 7 \\
1 & -3 & 8 & 25
\end{array}\right), \quad C=\left(\begin{array}{ccc}
4 & 2 & 3 \\
-20 & -10 & -15 \\
-1 & 7 & -2 \\
-13 & 1 & -11
\end{array}\right)
$$

i）Find the rank of A, B and C ．
ii）Calculate the products $A B, B C$ and $C B$ ．
iii）Calculate A^{-1} ．
$\left(3 \times\left(1+\frac{1}{2}\right)+\frac{1}{2}\right.$ Mark $)$

Exercise 3. The transpose of a matrix $A=\left(a_{i j}\right) \in \operatorname{Mat}(m \times n, \mathbb{C})$ is defined as $A^{T}:=\left(a_{j i}\right) \in \operatorname{Mat}(n \times m, \mathbb{C})$. For example,

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right) \quad \text { gives } \quad A^{T}=\left(\begin{array}{ccc}
a_{11} & a_{21} & a_{31} \\
a_{12} & a_{22} & a_{32} \\
a_{13} & a_{32} & a_{33} \\
a_{14} & a_{24} & a_{34}
\end{array}\right)
$$

i) Show that for $A \in \operatorname{Mat}(n \times n, \mathbb{C})$ and $x, y \in \mathbb{C}^{n}$

$$
\langle x, A y\rangle=\left\langle A^{*} x, y\right\rangle
$$

where $A^{*}=\overline{A^{T}}$ is the (component-wise) complex conjugate of A^{T}. We write $A^{*}:=\overline{A^{T}}$ and call A^{*} the adjoint of A.
ii) Show that for $A \in \operatorname{Mat}(m \times n, \mathbb{C}), B \in \operatorname{Mat}(n \times l, \mathbb{C})$,

$$
(A B)^{T}=B^{T} A^{T}
$$

iii) A matrix $A \in \operatorname{Mat}(n \times n, \mathbb{C})$ such that $A=A^{T}$ is called symmetric. If $A=A^{*}$ it is called self-adjoint. Give an example of a self-adjoint but not symmetric matrix.
iv) A matrix $A \in \operatorname{Mat}(n \times n ; \mathbb{R})$ is called orthogonal if $A^{T}=A^{-1}$. Show that the column vectors of an orthogonal matrix are othonormal with respect to the standard scalar product in \mathbb{R}^{n}. If $A \in \operatorname{Mat}(n \times n ; \mathbb{C})$ and $A^{*}=A^{-1}$ the matrix is called unitary and its columns are orthogonal w.r.t. the standard scalar product in \mathbb{C}^{n}.
$(1+1+1+2$ Marks $)$
Exercise 4. Find real 2×2 matrices with the following properties:
i) $A=A^{T}=A^{-1}, A \neq 1$
ii) $\quad B^{T}=B^{-1}, B \neq B^{T}$
iii) $\quad C^{T}=C^{-1}, C \neq C^{-1}$
($3 \times \frac{1}{2}$ Mark)
Exercise 5. For $A=\left(a_{i j}\right)_{i, j=1}^{n} \in \operatorname{Mat}(n \times n, \mathbb{C})$ we define the $\operatorname{trace} \operatorname{tr} A:=\sum_{i=1}^{n} a_{i i}$.
i) Prove that $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ for $A, B \in \operatorname{Mat}(n \times n, \mathbb{C})$ and give an example to show that, in general, $\operatorname{tr}(A B) \neq \operatorname{tr} A \operatorname{tr} B$.
ii) Verify that $\langle A, B\rangle_{\operatorname{tr}}:=\operatorname{tr}\left(A^{*} B\right)$ defines a scalar product on $\operatorname{Mat}(n \times m, \mathbb{C}), n, m \in \mathbb{N}$. Give an explicit formula for the induced norm $\|A\|_{\text {tr }}:=\sqrt{\langle A, A\rangle_{\text {tr }}}$ in terms of the matrix components $a_{i j}$.
iii) Show that the Pauli spin matrices

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

form a basis of the complex vector space $\operatorname{Mat}(2 \times 2, \mathbb{C})$ and that they are mutually orthogonal with respect to the scalar product $\langle\cdot, \cdot\rangle_{\text {tr }}$.

($2+2+2$ Marks)

Exercise 6. Let $R: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the reflection about the line through $y=\binom{3}{2}$. Find the matrix for R. (3 Marks)
Exercise 7. Let $D_{\theta}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ denote the rotation by $\theta \in[0,2 \pi)$ in the counter-clockwise direction in \mathbb{R}^{2}.
i) Find the matrix for D_{θ}.
ii) Prove that $D_{\varphi} D_{\theta}=D_{\theta+\phi}$ for any $\phi, \theta \in[0,2 \pi)$.
(2+1 Marks)

