

UNIVERSITY OF MICHIGAN

## Applied Calculus III

## Exercise Set 5

Date Due：12：00 PM，Tuesday，the 22nd of June 2010
Office hours：Tuesdays，12：00－1：00 PM and on the SAKAI system
Exercise 1．Consider the cube with the eight corners located at $( \pm 1, \pm 1, \pm 1) \in \mathbb{R}^{3}$ ．We select four points on the edges of the cube，
$A=(1, a,-1), \quad B=(b, 1,-1), \quad C=(-1,-a, 1), \quad D=(-b,-1,1)$
i）Show that $A, B, C, D$ are coplanar．
ii）Show that the four points form a parallelogram by verifying that opposite sides are parallel．
iii）Find conditions for the four points to form a square．What is the area of this square？
（ $1+1+2$ Marks）


Exercise 2．Show that the equation for a circle through three points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right) \in \mathbb{R}^{2}$ is given by

$$
\operatorname{det}\left(\begin{array}{cccc}
x^{2}+y^{2} & x & y & 1 \\
x_{1}^{2}+y_{1}^{2} & x_{1} & y_{1} & 1 \\
x_{2}^{2}+y_{2}^{2} & x_{2} & y_{2} & 1 \\
x_{3}^{2}+y_{3}^{2} & x_{3} & y_{3} & 1
\end{array}\right)=0
$$

（3 Marks）
Exercise 3．We use the following notation to denote planes $P$ and lines $L$ in $\mathbb{R}^{3}$ ：

$$
P\left[u, v ; x_{0}\right]:=\left\{x \in \mathbb{R}^{3} \mid x=x_{0}+\alpha \cdot u+\beta \cdot v, \alpha, \beta \in \mathbb{R}\right\}, \quad L\left[w ; y_{0}\right]:=\left\{x \in \mathbb{R}^{3} \mid x=y_{0}+\alpha \cdot w, \alpha \in \mathbb{R}\right\}
$$

for vectors $u, v, w, x_{0}, y_{0} \in \mathbb{R}^{3}$ ．（A plane is a two－dimensional，a line a one－dimensional affine subspace of $\mathbb{R}^{3}$ ．）
i）Give the equation of the plane containing the three points $\left\{\left(\begin{array}{c}1 \\ 2 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right\}$ and find the line that intersects this plane orthogonally in $\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ ．
ii）Find the intersection of $P\left[\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right),\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right) ;\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)\right]$ and $P\left[\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right) ;\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)\right]$ ．
iii）Find the plane that intersects $L\left[\left(\begin{array}{l}1 \\ 2 \\ 1\end{array}\right) ;\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right]$ orthogonally in $\left(\begin{array}{c}0 \\ -1 \\ 0\end{array}\right)$ ．
（3＋2＋2 Marks）
Exercise 4．Show that the equation for a plane through three points $\left(x_{1}, y_{1}, z_{1}\right),\left(x_{2}, y_{2}, z_{2}\right),\left(x_{3}, y_{3}, z_{3}\right) \in \mathbb{R}^{3}$ is given by

$$
\operatorname{det}\left(\begin{array}{lll}
x_{1}-x & y_{1}-y & z_{1}-z \\
x_{2}-x & y_{2}-y & z_{2}-z \\
x_{3}-x & y_{3}-y & z_{3}-z
\end{array}\right)=0
$$

（2 Marks）

Exercise 5. Match the parametrizations $\gamma: \mathbb{R} \rightarrow \Gamma$ with the curves $\Gamma$ (labeled I through VI):
a) $\gamma(t)=\left(\begin{array}{c}\cos (4 t) \\ t \\ \sin (4 t)\end{array}\right)$,
b) $\gamma(t)=\left(\begin{array}{c}t \\ t^{2} \\ e^{-t}\end{array}\right)$,
c) $\gamma(t)=\left(\begin{array}{c}t \\ 1 /\left(1+t^{2}\right) \\ t^{2}\end{array}\right)$,
d) $\gamma(t)=e^{-t}\left(\begin{array}{c}\cos (10 t) \\ \sin (10 t) \\ 1\end{array}\right)$,
e) $\gamma(t)=\left(\begin{array}{c}\cos t \\ \sin t \\ \sin (5 t)\end{array}\right)$,
f) $\gamma(t)=\left(\begin{array}{c}\cos t \\ \sin t \\ \ln t\end{array}\right)$.


## ( $6 \times 1 / 2$ Mark)

Exercise 6. For each of the curves $\Gamma \subset \mathbb{R}^{n}, n=2$ or 3 , given by the following parametrizations $\gamma: \mathbb{R} \rightarrow \Gamma$ do the following:

- Create a sketch (by hand, not computer) and indicate the orientation of the curve by an arrow.
- Determine if the curves are simple, smooth and/or closed.
- Find the unit tangent vector $T \circ \gamma(t)$ at $\gamma(t)$.
- Find the parametric equation for the tangent line at $\gamma(1)$.
- Find the unit normal vector $N \circ \gamma(t)$ at $\gamma(t)$
a) $\gamma(t)=\binom{t^{4}+1}{t}$,
b) $\gamma(t)=\binom{t^{3}}{t^{2}}$,
c) $\gamma(t)=\left(\begin{array}{c}t \\ \cos (2 t) \\ \sin (2 t)\end{array}\right)$,
d) $\gamma(t)=\left(\begin{array}{c}1+t \\ 3 t \\ -t\end{array}\right)$,
e) $\gamma(t)=\left(\begin{array}{c}t \\ t \\ \cos t\end{array}\right)$,
f) $\gamma(t)=\left(\begin{array}{c}\sin t \\ \sin t \\ \sqrt{2} \cos t\end{array}\right)$.
$(6 \times(1+1 / 2+1+1+1)$ Marks $)$
Exercise 7. The angle between two lines $L\left[w ; y_{0}\right]$ and $L\left[w^{\prime} ; y_{0}^{\prime}\right]$ (see Exercise 3) is defined as the angle between $w$ and $w^{\prime}$. Suppose that two curves $\Gamma_{1}$ and $\Gamma_{2}$ intersect at some point $x_{0} \in \Gamma_{1} \cap \Gamma_{2}$. Then the angle of intersection of the curves at this point is the angle between the tangent vectors at $x_{0}$. At which point do the curves parametrized by $\gamma_{1}, \gamma_{2}: \mathbb{R} \rightarrow \mathbb{R}^{3}$,

$$
\gamma_{1}(t)=\left(\begin{array}{c}
t \\
1-t \\
3+t^{2}
\end{array}\right) \quad \text { and } \quad \gamma_{2}(t)=\left(\begin{array}{c}
3-t \\
t-2 \\
t^{2}
\end{array}\right)
$$

intersect? Find the angle of intersection at this point.
(2 Marks)
Exercise 8. Let $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be two functions. Then

$$
h(x)=\langle f(x), g(x)\rangle
$$

defines a function $\mathbb{R} \rightarrow \mathbb{R}$. Prove the product rule for the scalar product,

$$
h^{\prime}(x)=\left\langle f^{\prime}(x), g(x)\right\rangle+\left\langle f(x), g^{\prime}(x)\right\rangle .
$$

(2 Marks)

