

UNIVERSITY OF MICHIGAN

Applied Calculus III

Exercise Set 7

Date Due：12：00 PM，Thursday，the $8^{\text {th }}$ of July 2010

Office hours：Tuesdays，12：00－1：00 PM and on the SAKAI system

Exercise 1．In electrostatics，an electrostatic potential $V: \Omega \rightarrow \mathbb{R}, \Omega \subset \mathbb{R}^{3}$ ，induces an electric field，whose electric field intensity at $p \in \Omega$ is given by

$$
E(p)=-\nabla V(p)
$$

i）A point charge $Q \in \mathbb{R}$ at the origin induces the electric field

$$
V: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}, \quad V(x)=\frac{Q}{4 \pi \varepsilon_{0}|x|}
$$

where $\varepsilon_{0}>0$ is the vacuum permittivity．Find the electric field intensity at $p \in \mathbb{R}^{3} \backslash\{0\}$ ．
ii）A dipole $d \in \mathbb{R}^{3}$ with center at $y \in \mathbb{R}^{3}$ induces the electric field

$$
V: \mathbb{R}^{3} \backslash\{y\} \rightarrow \mathbb{R}, \quad V(x)=\frac{\langle d, x-y\rangle}{4 \pi \varepsilon_{0}|x-y|^{3}}
$$

Find the electric field intensity at $p \in \mathbb{R}^{3} \backslash\{y\}$ ．

（1＋2 Marks）

Exercise 2．In electrostatics，a charge distribution on a curve $\mathcal{C} \subset \mathbb{R}^{3}$ induces an electric potential in $\mathbb{R}^{3} \backslash \mathcal{C}$ ． The charge distribution is given by the charge density $\rho: \mathcal{C} \rightarrow \mathbb{R}$ ，and the induced electric potential at $p \in \mathbb{R}^{3} \backslash \mathcal{C}$ is given by

$$
V(p)=\frac{1}{4 \pi \varepsilon_{0}} \int_{\mathcal{C}} \frac{\rho}{\operatorname{dist}(p, \cdot)}
$$

where $\operatorname{dist}(p, x)=|p-x|$ denotes the distance between $p \in \mathbb{R}^{3} \backslash \mathcal{C}$ and $x \in \mathcal{C}$ ．An exercise taken from an electromagnetics textbook reads：

Find the electric field intensity along the axis of a uniform line charge of length L ．The uniform line－charge density is ρ_{l} ．

Here a＂line charge＂is a charge distribution on a straight line，i．e．，you may take

$$
\mathcal{C}=\left\{(x, y, z) \in \mathbb{R}^{3}: x=y=0,-L / 2 \leq z \leq L / 2\right\}
$$

i）Find the potential and field intensity at points on the z－axis，$|z|>L / 2$ ．
ii）Find the potential and field intensity at points on the x－axis，$|x|>0$ ．
Now consider a uniform charge density ρ on the set

$$
\mathcal{C}=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}=R^{2}, z=0\right\} .
$$

iii）Find the potential and field intensity at points on the x－axis，$|x|>R$ ．When x is large $(x \gg R)$ ，compare the field intensity with that induced by a point charge at the origin．
iv）Find the potential and field intensity at points on the z－axis，$|z|>0$ ．When z is large $(z \gg R)$ ，compare the field intensity with that induced by a point charge at the origin．
v) Find the potential at the origin.
vi) Find the potential and field intensity at other points in the disk $D=\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}<1, z=0\right\}$.
($2+2+3+3+1+3$ Marks)
Exercise 3. Check the following functions for differentiability and differentiate them wherever possible.

$$
\begin{array}{lll}
f_{1}: \mathbb{R} \rightarrow \mathbb{R}^{3}, & t \mapsto\left(\begin{array}{c}
\cos t \\
\sin t \\
t
\end{array}\right), & f_{2}:(0, \infty) \times(0, \pi) \times(0,2 \pi) \rightarrow \mathbb{R}^{3}, \quad(r, \varphi, \vartheta) \mapsto\left(\begin{array}{c}
r \cos \varphi \\
r \sin \varphi \cos \vartheta \\
r \sin \varphi \sin \vartheta
\end{array}\right) \\
f_{3}: \mathbb{R}^{n} \rightarrow \mathbb{R}, & x \mapsto|x|, & f_{4}: \mathbb{R}^{n} \backslash\{0\} \rightarrow \mathbb{R}^{n} \backslash\{0\}, \quad x \mapsto \frac{x}{|x|}
\end{array}
$$

(4×2 Mark)

Exercise 4.

i) Calculate the Jacobian J_{f} of $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}^{2}, f(x, y)=\left(-y / \sqrt{x^{2}+y^{2}}, x / \sqrt{x^{2}+y^{2}}\right)$.
ii) We define polar coordinates through the map $\Phi: \mathbb{R}_{+} \times(0,2 \pi) \rightarrow \mathbb{R}^{2} \backslash\{0\},(r, \varphi) \mapsto(r \cos \varphi, r \sin \varphi)$. Calculate the derivative $\left.D \Phi\right|_{(r, \phi)}$.
iii) Give an explicit expression for the composition $f \circ \Phi$ and calculate $\left.D(f \circ \Phi)\right|_{(r, \phi)}$.
iv) Verify the chain rule, i.e., $\left.D(f \circ \Phi)\right|_{(r, \phi)}=\left.\left.D f\right|_{\Phi(r, \phi)} D \Phi\right|_{(r, \phi)}$.

(4×1 Mark)

Exercise 5. Let $f(x, y)$ be a differentiable function over $[a, b] \times[c, d]$ and let $\alpha, \beta: \mathbb{R} \ni[c, d] \rightarrow[a, b] \in \mathbb{R}$ be differentiable. Then the integral

$$
I(y)=\int_{\alpha(y)}^{\beta(y)} f(x, y) d x
$$

is a differentiable function of y in $[c, d]$. Assuming that $\frac{\partial f}{\partial y}(x, y)$ is continuous and $\alpha^{\prime}(y), \beta^{\prime}(y)$ exist in $[a, b] \times[c, d]$, give a formula for $I^{\prime}(y)$.
Hint: Consider the function $I\left(y_{1}, y_{2}, y_{3}\right)=\int_{y_{1}}^{y_{2}} f\left(x, y_{3}\right) d x: \mathbb{R}^{3} \rightarrow \mathbb{R}$ and apply the chain rule.
(3 Points)
Exercise 6. Consider the function $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
g\left(x_{1}, x_{2}\right)= \begin{cases}\left(x_{1}^{2}+x_{2}^{2}\right) \sin \left(\left(x_{1}^{2}+x_{2}^{2}\right)^{-\frac{1}{2}}\right), & \left(x_{1}, x_{2}\right) \neq(0,0), \\ 0, & \left(x_{1}, x_{2}\right)=(0,0)\end{cases}
$$

i) Prove directly that g is continuous at the origin $(0,0)$.
ii) Calculate the partial derivatives $\partial_{x_{1}} g$ and $\partial_{x_{2}} g$. Are they continuous at the origin (proof!)?
iii) Is g differentiable at the origin? If yes, find $\left.D g\right|_{(0,0)}$. If not, prove that $\left.D g\right|_{(0,0)}$ doesnt exist.

($1+2+2$ Marks)

Exercise 7. For any $x \in \mathbb{R}^{n} \backslash\{0\}$ we have a polar decomposition of the form $x=r \omega$, where $r \in(0, \infty)$ and $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in \mathbb{R}^{n}$ with $|\omega|=1$. (So ω is on the unit circle $S^{n-1}=\left\{x \in \mathbb{R}^{n}:|x|=1\right\}$). This decomposition is achieved by setting

$$
r=|x|, \quad \omega=\frac{x}{|x|}
$$

Verify that $|\omega|=1$ and show that for $f \in C\left(\mathbb{R}^{n}, \mathbb{R}\right)$,

$$
\frac{\partial}{\partial r} f(r \omega)=\left.\sum_{i=1}^{n} \omega_{i} \frac{\partial f}{\partial x_{i}}\right|_{x=r \omega}
$$

(3 Marks)

