

UNIVERSITY OF MICHIGAN

SHANGHAI JIAO TONG UNIVERSITY

Applied Calculus III

Exercise Set 9

Date Due：12：00 PM，Thursday，the $22^{\text {nd }}$ of July 2010
Office hours：Tuesdays，12：00－1：00 PM and on the SAKAI system

Exercise 1．Let $k>0$ and $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ given by $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)^{-k / 2}$ ．
i）Calculate the integral of f on the ring－shaped domain bounded by two circles of radii $0<a<b$ ．
ii）For which values of k does the limit of the integral exist when $a \rightarrow 0$ ？
iii）Give the result of i）and answer ii）when f is replaced with $f: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}$ given by $f\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{-k / 2}$ and the ring－shaped domain is replaced by a shell bounded by spheres of radii $0<a<b$ ．
（ $1+1+2$ Marks）
Exercise 2．The shell bounded by spheres of radii $R_{a} \geq 0$ and $R_{b}>R_{a}$ is given by

$$
S\left(R_{a}, R_{b}\right):=\left\{x \in \mathbb{R}^{3}: R_{a} \leq\|x\| \leq R_{b}\right\}
$$

Assume that the shell has a constant mass density ϱ and mass equal to M ．
i）Calculate the gravitational potential $U(p)$ at a point p with $\|p\|>R_{b}$ ．
ii）Calculate the gravitational potential $U(p)$ at a point p with $\|p\|<R_{a}$ ．
iii）Let $R_{a}=0$ ，so the shell is a ball of radius R_{b} ．What is the potential at p if $\|p\|<R_{a}$ ？
（ $2+2+2$ Marks）
Exercise 3．In electrostatics，the potential at a point p induced by a charged body B with charge density ϱ is given by

$$
V(p)=\frac{1}{4 \pi \varepsilon_{0}} \int_{B} \frac{\rho}{\operatorname{dist}(p, \cdot)}
$$

Let $B=B^{2}=\left\{x \in \mathbb{R}^{3}:\left\|x^{2}\right\| \leq 1\right\}$ ．
i）Calculate the potential $V(r)$ for a point at $(0,0, r), 0 \leq r<\infty$ ．This will be completely analogous to the corresponding calculations of the gravitational potential in the previous exercise and in the lecture．
ii）The potential energy of a charged body B is the electrostatic energy required to＂build up＂or＂put together＂ the body．It is given by the formula

$$
W_{e}=\frac{1}{2} \int_{B} \varrho \cdot V
$$

where ϱ is the charge density and V is the potential．Integration is over all points that comprise the body． Use part i）to calculate the potential energy of a uniformly charged sphere of radius R and total charge Q ．
iii）An electron has mass $m_{e}=9.110 \cdot 10^{-31} \mathrm{~kg}$ and charge $q_{e}=1.602 \cdot 10^{-19} \mathrm{C}$ ．If the self－energy of the electron is given by $E=m_{e} c^{2}$ ，where $c=2.998 \cdot 10^{8} \mathrm{~m} / \mathrm{s}$ is the speed of light in vacuum，and assuming that the electron is a uniformly charged sphere，what would the radius of the electron be？Up to a factor， this radius is called the classical electron radius．
（2 $+4+2$ Marks）

Exercise 4. Let $k>0$ and $f: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ given by $f\left(x_{1}, x_{2}\right)=\left(x_{1}^{2}+x_{2}^{2}\right)^{-k / 2}$.
i) Calculate the integral of f on the ring-shaped domain bounded by two circles of radii $0<a<b$.
ii) For which values of k does the limit of the integral exist when $a \rightarrow 0$?
iii) Give the result of i) and answer ii) when f is replaced with $f: \mathbb{R}^{3} \backslash\{0\} \rightarrow \mathbb{R}$ given by $f\left(x_{1}, x_{2}, x_{3}\right)=$ $\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)^{-k / 2}$ and the ring-shaped domain is replaced by a shell bounded by spheres of radii $0<a<b$.
($1+1+2$ Marks)
Exercise 5. Let

$$
f: \mathbb{R}^{3} \rightarrow \mathbb{R}, \quad f\left(x_{1}, x_{2}, x_{3}\right)=\sin ^{2} x_{1} \cos x_{2}\left(1+\sin x_{3}\right)
$$

Calculate the Taylor polynomial of second order of f at $x=0$, using
i) the multi-index based formula for functions of multiple variables and
ii) the one-dimensional Taylor expansions of the sine and cosine functions.

(4+2 Marks)

Exercise 6. Calculate an approximate value of $1.05^{1.02}$ with an error of less that 10^{-4} by applying Taylor's theorem to the function $f(x, y)=x^{y}$ at the point $(1,1)$ with $p=2$ and estimating the remainder term.
(2 Marks)

