

Applied Calculus III

Exercise Set 9

Date Due: 12:00 PM, Thursday, the 22nd of July 2010

Office hours: Tuesdays, 12:00-1:00 PM and on the SAKAI system

Exercise 1. Let k > 0 and $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ given by $f(x_1, x_2) = (x_1^2 + x_2^2)^{-k/2}$.

- i) Calculate the integral of f on the ring-shaped domain bounded by two circles of radii 0 < a < b.
- ii) For which values of k does the limit of the integral exist when $a \to 0$?
- iii) Give the result of i) and answer ii) when f is replaced with $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ given by $f(x_1, x_2, x_3) = (x_1^2 + x_2^2 + x_3^2)^{-k/2}$ and the ring-shaped domain is replaced by a shell bounded by spheres of radii 0 < a < b.

(1 + 1 + 2 Marks)

Exercise 2. The shell bounded by spheres of radii $R_a \ge 0$ and $R_b > R_a$ is given by

$$S(R_a, R_b) := \{ x \in \mathbb{R}^3 \colon R_a \le \|x\| \le R_b \}.$$

Assume that the shell has a constant mass density ρ and mass equal to M.

- i) Calculate the gravitational potential U(p) at a point p with $||p|| > R_b$.
- ii) Calculate the gravitational potential U(p) at a point p with $||p|| < R_a$.
- iii) Let $R_a = 0$, so the shell is a ball of radius R_b . What is the potential at p if $||p|| < R_a$?

(2 + 2 + 2 Marks)

Exercise 3. In electrostatics, the potential at a point p induced by a charged body B with charge density ρ is given by

$$V(p) = \frac{1}{4\pi\varepsilon_0} \int_B \frac{\rho}{\operatorname{dist}(p,\,\cdot\,)}$$

Let $B = B^2 = \{x \in \mathbb{R}^3 : ||x^2|| \le 1\}.$

- i) Calculate the potential V(r) for a point at (0, 0, r), $0 \le r < \infty$. This will be completely analogous to the corresponding calculations of the gravitational potential in the previous exercise and in the lecture.
- ii) The *potential energy of a charged body* B is the electrostatic energy required to "build up" or "put together" the body. It is given by the formula

$$W_e = \frac{1}{2} \int_B \varrho \cdot V,$$

where ρ is the charge density and V is the potential. Integration is over all points that comprise the body. Use part i) to calculate the potential energy of a uniformly charged sphere of radius R and total charge Q.

iii) An electron has mass $m_e = 9.110 \cdot 10^{-31}$ kg and charge $q_e = 1.602 \cdot 10^{-19}$ C. If the self-energy of the electron is given by $E = m_e c^2$, where $c = 2.998 \cdot 10^8$ m/s is the speed of light in vacuum, and assuming that the electron is a uniformly charged sphere, what would the radius of the electron be? Up to a factor, this radius is called the *classical electron radius*.

(2 + 4 + 2 Marks)

Exercise 4. Let k > 0 and $f: \mathbb{R}^2 \setminus \{0\} \to \mathbb{R}$ given by $f(x_1, x_2) = (x_1^2 + x_2^2)^{-k/2}$.

- i) Calculate the integral of f on the ring-shaped domain bounded by two circles of radii 0 < a < b.
- ii) For which values of k does the limit of the integral exist when $a \to 0$?
- iii) Give the result of i) and answer ii) when f is replaced with $f: \mathbb{R}^3 \setminus \{0\} \to \mathbb{R}$ given by $f(x_1, x_2, x_3) = (x_1^2 + x_2^2 + x_3^2)^{-k/2}$ and the ring-shaped domain is replaced by a shell bounded by spheres of radii 0 < a < b.

(1 + 1 + 2 Marks)

Exercise 5. Let

$$f: \mathbb{R}^3 \to \mathbb{R}, \qquad f(x_1, x_2, x_3) = \sin^2 x_1 \cos x_2 (1 + \sin x_3)$$

Calculate the Taylor polynomial of second order of f at x = 0, using

- i) the multi-index based formula for functions of multiple variables and
- ii) the one-dimensional Taylor expansions of the sine and cosine functions.

(4+2 Marks)

Exercise 6. Calculate an approximate value of $1.05^{1.02}$ with an error of less that 10^{-4} by applying Taylor's theorem to the function $f(x, y) = x^y$ at the point (1, 1) with p = 2 and estimating the remainder term. (2 Marks)