Applied Calculus II

Exercise Set 3

Date Due：10：00 AM，Tuesday，the $19^{\text {th }}$ of October 2010
Office hours：Tuesdays and Thursdays，12：00－2：00 PM and on the SAKAI system
Exercise 1．Consider the sequence $\left(a_{n}\right)_{n \in \mathbb{N}}$ given by

$$
\sqrt{2}, \sqrt{2 \sqrt{2}}, \sqrt{2 \sqrt{2 \sqrt{2}}}, \sqrt{2 \sqrt{2 \sqrt{2 \sqrt{2}}}}, \ldots
$$

i）Find a recursive representation of the sequence，i．e．，a value a_{0} and a function f（defined on what domain？） such that $a_{n+1}=f\left(a_{n}\right)$ for all $n \in \mathbb{N}$ ．
ii）Finden an explicit representation of the sequence and use induction to show that this representation is correct（i．e．，it follows from the recursive representation）．
iii）Use induction to show that $\left(a_{n}\right)$ is bounded and increasing，so that the limit $a:=\lim _{n \rightarrow \infty} a_{n}$ exists．Then calculate the limit．
（ $1+1+2$ Marks）

Exercise 2.

i）Let $\left(a_{n}\right)$ be a sequence and $\left(a_{2 n}\right),\left(a_{2 n+1}\right)$ the subsequences of odd－and even－numbered values of $\left(a_{n}\right)$ ． Prove that if $a_{2 n} \rightarrow a$ and $a_{2 n+1} \rightarrow a$ as $n \rightarrow \infty$ then $\left(a_{n}\right)$ converges to a ．
ii）Consider the recursively defined subsequence

$$
a_{1}=1
$$

$$
a_{n+1}=1+\frac{1}{1+a_{n}} .
$$

Show that the subsequence $\left(a_{2 n}\right)$ ．is monotonic and bounded and therefore converges，i．e．，there exists a number $a \in \mathbb{R}$ such that $a_{2 n} \rightarrow a$ ．Then prove that $a^{2}=2$ and argue that $a=+\sqrt{2}$ ．
iii）Do the same for the subsequence $\left(a_{2 n+1}\right)$ ．Conclude from i）that $a_{n} \rightarrow \sqrt{2}$ ．The sequence $\left(a_{n}\right)$ can be written as a continued fraction，

$$
\sqrt{2}=1+\frac{1}{2+\frac{1}{2+\cdots}}
$$

iv）Prove that for any natural numbers a and b

$$
\sqrt{a^{2}+b}=a+\frac{b}{2 a+\frac{b}{2 a+\cdots}}
$$

$(1+3+2+2$ Marks $)$

Exercise 3.

i) Let $a>b \geq 0$ be real numbers and let

$$
a_{1}=\frac{a+b}{2}, \quad b_{1}=\sqrt{a b}
$$

be their arithmetic and geometric mean, respectively. Show that the recursively defined sequences

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad b_{n+1}=\sqrt{a_{n} b_{n}}, \quad n=1,2, \ldots
$$

converge, and that their limits are equal. This limit is called the arithmetic-geometric mean of a and b. You may proceed as follows (but other methods are alsoa cceptable): Show first that $\left(a_{n}\right),\left(b_{n}\right)$ are monotonic (increasing or decreasing?) and hence deduce the existence of $\lim a_{n}$ and $\lim b_{n}$. Then estimate $\left|a_{n+1}-b_{n+1}\right|$ by $\left|a_{n}-b_{n}\right|$, and deduce the equality of the limits.
ii) The harmonic mean b_{1} of $a>b>0$ is defined by

$$
\frac{1}{b_{1}}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right) .
$$

Let a_{1} be the arithmetic mean of $a, b, a>b$ as above and set

$$
a_{n+1}=\frac{a_{n}+b_{n}}{2}, \quad \frac{1}{b_{n+1}}=\frac{1}{2}\left(\frac{1}{a_{n}}+\frac{1}{b_{n}}\right) .
$$

Show that the sequences $\left(a_{n}\right),\left(b_{n}\right)$ converge to the same limit and calculate this limit

(4 + 3 Marks)

Exercise 4. The size of an undisturbed fish population has been modeled by the formula

$$
\begin{equation*}
p_{n+1}=\frac{b p_{n}}{a+p_{n}} \tag{1}
\end{equation*}
$$

where p_{n} is the fish population after n years and a and b are positive constants that depend on the species and its environment. Suppose that the population in year 0 is $p_{0}>0$.
i) Show that if $\left(p_{n}\right)$ is convergent, then the only possible values for its limit are 0 and $b-a$.
ii) Show that if $p_{0}=0$, then $p_{n}=0$ for all $n \in \mathbb{N}$. Similarly, show that if $b>a$ and $p_{0}=b-a$, then $p_{n}=b-a$ for all $n \in \mathbb{N}$. The points 0 and $b-a$ are equilibrium points of (1).
iii) Show that $p_{n+1}<(b / a) p_{n}$. Prove that if $b<a$ and $p_{0}>0$ then $p_{n} \rightarrow 0$ as $n \rightarrow \infty$, i.e., the population dies out.
iv) Now assume that $a<b$. Show that if $p_{0}<b-a$ then $\left(p_{n}\right)$ is increasing and $p_{n}<b-a$ for all $n \in \mathbb{N}$. Show also that if $p_{0}>b-a$ then $\left(p_{n}\right)$ is decreasing and $p_{n}>b-a$ for all $n \in \mathbb{N}$. Deduce that $p_{n} \rightarrow b-a$ whenever $a<b$. The population size $b-a$ is called the carrying capacity of the population.
$(2+2+2+3$ Marks)

Exercise 5. A sequence ${ }^{1}$ that arises in ecology as a model for population growth is defined by the logistic difference equation

$$
p_{n+1}=k p_{n}\left(1-p_{n}\right) .
$$

where p_{n} measures the size of the population of the nth generation of a single species. To keep the numbers manageable, p_{n} is a fraction of the maximal size of the population, so $0 \leq p_{n} \leq 1$. This discrete model is preferable to a continuous model for modeling (e.g.) insect populations, where mating and death occur in a periodic fashion.
An ecologist is interested in predicting the size of the population as time goes on, and asks these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or will it exhibit random behavior?
Write a program or use computer software (e.g., MatLab, Mathematica, Maple) to compute the first n terms of this sequence starting with an initial population p_{0}, where $0<p_{0}<1$. then do the following:
i) Calculate 20 or 30 terms of the sequence for $p_{0}=1 / 2$ and for two values of k such that $1<k<3$. Graph the sequences. Do they appear to converge? Repeat for a different value of p_{0} between 0 and 1 . Does the limit depend on the choice of p_{0} ? Does it depend on the choice of k ?
ii) Calculate terms of the sequence for a value of k between 3 and 3.4 and plot them. What do you notice about the behavior of the terms?
iii) Experiment with values of k between 3.4 and 3.5. What happens to the terms?
iv) For values of k between 3.6 and 4, compute and plot at least 100 terms and comment on the behavior of the sequence. What happens if you change p_{0} by 0.001 ? This type of behavior is called chaotic and is exhibited by insect populations under certain conditions.
$(4+2+2+3$ Marks $)$
Exercise 6. Evaluate the following limits, if they exist:
i) $\lim _{x \rightarrow 1} \frac{x^{3}-1}{x^{2}-1}$,
ii) $\lim _{h \rightarrow 0} \frac{(2+h)^{3}-8}{h}$,
iii) $\lim _{h \rightarrow 0} \frac{\sqrt{1+h}-1}{h}$,
iv) $\lim _{x \rightarrow 2} \frac{x^{4}-16}{x-2}$,
v) $\lim _{t \rightarrow 0}\left(\frac{1}{t}-\frac{1}{t^{2}+t}\right)$
vi) $\lim _{h \rightarrow 0}\left(\frac{1}{h(3+h)}-\frac{1}{3 h}\right)$,
vii) $\lim _{x \rightarrow 1} \frac{\sqrt{x}-x^{2}}{1-\sqrt{x}}$,
viii) $\lim _{x \rightarrow 2} \frac{\sqrt{6-x}-2}{\sqrt{3-x}-1}$,
ix) $\lim _{x \rightarrow 0} \frac{x}{\sqrt{1+3 x}-1}$
(9×1 Marks)
Exercise 7. For fixed $a, b, c \in \mathbb{R}$, find $\alpha, \beta \in \mathbb{R}$, such that

$$
\lim _{x \rightarrow \infty}\left(\sqrt{a x^{2}+b x+c}-\alpha x-\beta\right)=0
$$

Having found such $\alpha, \beta \in \mathbb{R}$, can there exist different numbers $\alpha^{\prime}, \beta^{\prime} \in \mathbb{R}$ such that $\lim _{x \rightarrow \infty}\left(\sqrt{a x^{2}+b x+c}-\alpha^{\prime} x-\right.$ $\left.\beta^{\prime}\right)=0$? Explain!
(2 +1 Marks)
Exercise 8. Prove the following statements:
i) $x+x^{2}=O(x)$ as $x \rightarrow 0$,
ii) $\frac{1}{x^{2}+x}=O\left(\frac{1}{x}\right)$ as $x \rightarrow 0$,
iii) $\frac{1}{x}=O\left(\frac{1}{x^{2}}\right)$ as $x \rightarrow 0$,
iv) $x+x^{2}=O\left(x^{2}\right)$ as $x \rightarrow \infty$,
v) $\frac{1}{x^{2}+x}=O\left(\frac{1}{x}\right)$ as $x \rightarrow \infty$,
vi) $\frac{1}{x^{2}}=O\left(\frac{1}{x}\right)$ as $x \rightarrow \infty$,
vii) $x+x^{2}=o(\sqrt{x})$ as $x \rightarrow 0$,
viii) $\frac{1}{x^{2}+x}=o\left(\frac{1}{x^{3}}\right)$ as $x \rightarrow 0$,
ix) $\frac{1}{x}=o\left(\frac{1}{x^{2}}\right)$ as $x \rightarrow 0$.
(9×1 Mark)

[^0]
[^0]: ${ }^{1}$ see Stewart, Lab Project "Logistic Sequences".

