Applied Calculus II

Exercise Set 4

Date Due：10：00 AM，Thursday，the $28^{\text {th }}$ of October 2010
Office hours：Tuesdays and Thursdays，12：00－2：00 PM and on the SAKAI system
Exercise 1．The actual definition for the statement $f(x)=O\left(g(x)\right.$ as $x \rightarrow x_{0}$ is the following：there exist constants $C>0$ and $\varepsilon>0$ such that

$$
f(x)<C \cdot g(x) \quad \text { for all } x \text { with }\left|x-x_{0}\right|<\varepsilon
$$

（It can be shown that if $\lim _{x \rightarrow x_{0}} f(x) / g(x)=\alpha$ for some $\alpha \in \mathbb{R}$ ，then the above statement is true．However，the converse is not necessarily the case．）Similarly，the actual definition for the statement $f(x)=o\left(g(x)\right.$ as $x \rightarrow x_{0}$ is the following：for every $C>0$ there exists an $\varepsilon>0$ such that

$$
f(x) \leq C \cdot g(x) \quad \text { for all } x \text { with }\left|x-x_{0}\right|<\varepsilon
$$

（This statement is actually equivalent to $\lim _{x \rightarrow x_{0}} f(x) / g(x)=0$ ．）
Interpret and prove the following relations as $x \rightarrow x_{0} \in \mathbb{R}$ ：

$$
\begin{aligned}
O(f(x))+O(g(x)) & =O(|f(x)|+|g(x)|), \\
O(f(x)) O(g(x)) & =O(f(x) g(x)), \\
O(f(x)) o(g(x)) & =o(f(x) g(x)), \\
O(O(f(x))) & =O(f(x)) \\
o(O(f(x)) & =o(f(x))
\end{aligned}
$$

$(1+1+1+2+2$ Marks $)$

Exercise 2．Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a real function．
i）Prove that if f is even，then f^{\prime} is odd．
ii）Prove that if f is odd，then f^{\prime} is even．

（ $1+1$ Marks）

Exercise 3．Differentiate the following functions $f: \Omega \rightarrow \mathbb{R}$ ，where Ω is their maximal domain：

$$
\begin{aligned}
& f(x)=\sqrt{30}, \\
& f(x)=-4 x^{10}, \\
& f(x)=\sqrt{x}(1-x), \quad \quad f(x)=\frac{x^{2}-2 \sqrt{x}}{x}, \\
& f(x)=\left(x^{2}+1\right) \sqrt[3]{x^{2}+2}, \quad f(x)=\sqrt{x+\sqrt{x+\sqrt{x}}}, \\
& \begin{array}{ll}
f(x)=5 x^{8}-2 x^{5}+6, & f(x)=\sqrt{x}-\frac{1}{\sqrt{x}}, \\
f(x)=\sqrt{3} x-\sqrt{2 x}, & f(x)=\sqrt[3]{x^{2}}-\sqrt[2]{x^{3}} \\
f(x)=\frac{(x-1)^{4}}{\left(x^{2}+2 x\right)^{5}}, & f(x)=\frac{1}{\sqrt{1+x^{2}}}
\end{array}
\end{aligned}
$$

（12×1 Mark）

