Applied Calculus II

Exercise Set 9

Date Due：4：00 PM，Thursday，the $2^{\text {nd }}$ of December 2010
Office hours：Tuesdays and Thursdays，12：00－2：00 PM and on the SAKAI system
Exercise 1．Through trigonometric substitution integrands of the form $\sqrt{ \pm x^{2} \pm \beta^{2}}$ may be treated．The substitutin rules are listed below：

Expression	Substitution	Identity
$\sqrt{\beta^{2}-x^{2}}$	$x=\beta \sin \theta, \quad-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$	$1-\sin ^{2} \theta=\cos ^{2} \theta$
$\sqrt{\beta^{2}+x^{2}}$	$x=\beta \tan \theta, \quad-\frac{\pi}{2}<\theta<\frac{\pi}{2}$	$1+\tan ^{2} \theta=1 / \cos ^{2} \theta$
$\sqrt{x^{2}-\beta^{2}}$	$x=\beta / \cos \theta, \quad 0 \leq \theta<\frac{\pi}{2}$ or $\pi \leq \theta<\frac{3 \pi}{2}$	$1 / \cos ^{2} \theta-1=\tan ^{2} \theta$

Use trigonometric substitution to calculate the indefinite integral

$$
I(a)=\int \frac{d x}{\sqrt{a^{2}-x^{2}}}, \quad a>1
$$

where your solution should not include any trigonometric functions but may be expressed in terms of roots and logarithms．
（3 Marks）
Exercise 2．Prove that

$$
\int_{0}^{1} \frac{1}{x^{\alpha}} d x
$$

converges if $\alpha<1$ and diverges if $\alpha \geq 1$ ．
（2 Marks）
Exercise 3．If a function $f:[a, b] \rightarrow \mathbb{R}$ is unbounded near a point $x_{0} \in(a, b)$ the improper integral $\int_{a}^{b} f(x) d x$ may not exist．In this case one may still attempt to make sense of the integral by defining the Cauchy principal value of the integral as

$$
\text { p.v. } \int_{a}^{b} f:=\lim _{\varepsilon \searrow 0}\left(\int_{a}^{x_{0}-\varepsilon} f+\int_{x_{0}+\varepsilon}^{b} f\right),
$$

i）Show that p．v． $\int_{-1}^{1} \frac{1}{x} d x=0$ ．
ii）Show that p．v． $\int_{-1}^{1} \frac{f(x)}{x} d x=0$ if f is an even function．
iii）Calculate p．v． $\int_{-1}^{1} \frac{f(x)}{x} d x$ for $f(x)=x^{2}-2 x+1$ ．
iv）Will the principal value p．v． $\int_{-1}^{1} \frac{f(x)}{x} d x$ exist for any differentiable function f ？Why or why not？Explain！ $(1+1+2+3$ Marks $)$

Exercise 4. Use the Mean Value Theorem (of differential calculus) to prove the Mean Value Theorem of integral calculus: Let $[a, b] \subset \mathbb{R}$ be a closed interval and $f:[a, b] \rightarrow \mathbb{R}$ a real function. Then there exists a $\xi \in(a, b)$ such that

$$
\int_{a}^{b} f(x) d x=(b-a) f(\xi)
$$

(2 Marks)

Exercise 5. We consider the so-called complete elliptic integral of the first kind,

$$
T(a, b):=\frac{2}{\pi} \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}, \quad a, b>0
$$

(This integral plays an important role when computing the exact period of a pendulum. We will study this at a later date.)
i) Substitute $t:=b \tan \theta$ to obtain

$$
T(a, b)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d t}{\sqrt{\left(a^{2}+t^{2}\right)\left(b^{2}+t^{2}\right)}}
$$

ii) Substitute $u:=(t-a b / t) / 2$ to obtain

$$
T(a, b)=\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{d u}{\sqrt{\left(\left(\frac{a+b}{2}\right)^{2}+u^{2}\right)\left(a b+u^{2}\right)}}
$$

iii) Let $M(a, b)$ denote the arithmetic-geometric mean of $a, b>0$ (see Exercise 3 on Exercise Set 3). Use i) and ii) above to show that

$$
T(a, b)=\frac{1}{M(a, b)}
$$

($2+2+3$ Marks)

Exercise 6. Some of the pioneers of calculus, such as Kepler and Newton, were inspired by the problem of finding the volumes of wine barrels. (In fact, Kepler published a book Stereometria doliorum in 1715 devoted to methods for finding the volumes of barrels.) They often approximated the shape of the sides by parabolas.
i) A barrel with height h and maximum radius R is constructed by rotating about the x-axis the parabola $y=R-c x^{2}, x \in\left[-\frac{h}{2}, \frac{h}{2}\right], c>0$. Show that the radius of each end of the barrel is $r=R-d$, where $d=c h^{2} / 4$.
ii) Show that the volume enclosed by the barrel is

$$
V=\frac{\pi h}{3}\left(2 R^{2}+r^{2}-\frac{2}{5} d^{2}\right)
$$

(2 + 4 Marks)

Exercise 7. By integrating the areas of the circular cross-sections, find the volume of the torus pictured below:

(3 Marks)

