Vv556 Methods of Applied Mathematics I Linear Operators

Assignment 1

Date Due: 2:00 PM, Thursday, the 21st of September 2017

This assignment has a total of (15 Marks).

Exercise 1.1

Let

 $U = \{ x \in \mathbb{R}^4 \colon x_1 + x_2 + x_3 = 0, \ x_1 + 3x_2 = x_4 \}, \qquad V = \{ x \in \mathbb{R}^4 \colon x_1 = x_4 \}, \\ U + V := \{ x \in \mathbb{R}^4 \colon x = u + v, \ u \in U, \ v \in V \}.$

Find dim U, dim V and dim U + V. (3 Marks)

Exercise 1.2

Calculate the pointwise limit, if it exists, for each of the following function sequences $\{f_n\}_{n\in\mathbb{N}}$ on the given domain and decide whether the convergence is uniform.

- i) $f_n(x) = \sqrt[n]{x}, \quad \text{dom } f_n = [0, 1],$ (2 Marks)
- ii) $f_n(x) = \frac{nx}{1+n+x}$, dom $f_n = [0, \infty)$, (2 Marks)
- iii) $f_n(x) = \sqrt{1/n + x} \sqrt{x}, \quad \text{dom } f_n = (0, \infty),$ (2 Marks)

Exercise 1.3

For $p\in\mathbb{N}\setminus\{0\}$ we define the $\ell^p\text{-spaces}$ of real sequences by

$$\ell^p := \left\{ (a_n) \colon \mathbb{N} \to \mathbb{R} \colon \sum_{n=0}^{\infty} |a_n|^p < \infty \right\}$$

- i) Prove that $\ell^p \subset \ell^q$ for p < q. (2 Marks)
- ii) Find a sequence (a_n) such that $(a_n) \in \ell^p$ for all p > 1 but $(a_n) \notin \ell^1$. (2 Marks)
- iii) Find¹ a sequence (a_n) of real numbers such that $\lim_{n \to \infty} a_n = 0$ but $(a_n) \notin \ell^p$ for all $p \in [1, \infty)$. (2 Marks)

 $^{^{1}}Kreyszig$, Section 1.2, question 4