Vv556 Methods of Applied Mathematics I
 Linear Operators

Assignment 1

Date Due：2：00 PM，Thursday，the $21^{\text {st }}$ of September 2017

This assignment has a total of（ $\mathbf{1 5}$ Marks）．

Exercise 1.1

Let

$$
\begin{aligned}
U & =\left\{x \in \mathbb{R}^{4}: x_{1}+x_{2}+x_{3}=0, x_{1}+3 x_{2}=x_{4}\right\}, \\
U+V & :=\left\{x \in \mathbb{R}^{4}: x=u+v, u \in U, v \in V\right\}
\end{aligned}
$$

Find $\operatorname{dim} U, \operatorname{dim} V$ and $\operatorname{dim} U+V$ ．
（3 Marks）

Exercise 1.2

Calculate the pointwise limit，if it exists，for each of the following function sequences $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ on the given domain and decide whether the convergence is uniform．
i）$\quad f_{n}(x)=\sqrt[n]{x}, \quad \operatorname{dom} f_{n}=[0,1]$ ， （2 Marks）
ii）$\quad f_{n}(x)=\frac{n x}{1+n+x}, \quad \operatorname{dom} f_{n}=[0, \infty)$ ， （2 Marks）
iii）$\quad f_{n}(x)=\sqrt{1 / n+x}-\sqrt{x}, \quad \operatorname{dom} f_{n}=(0, \infty)$ ，
（2 Marks）

Exercise 1.3

For $p \in \mathbb{N} \backslash\{0\}$ we define the ℓ^{p}－spaces of real sequences by

$$
\ell^{p}:=\left\{\left(a_{n}\right): \mathbb{N} \rightarrow \mathbb{R}: \sum_{n=0}^{\infty}\left|a_{n}\right|^{p}<\infty\right\}
$$

i）Prove that $\ell^{p} \subset \ell^{q}$ for $p<q$ ．
（2 Marks）
ii）Find a sequence $\left(a_{n}\right)$ such that $\left(a_{n}\right) \in \ell^{p}$ for all $p>1$ but $\left(a_{n}\right) \notin \ell^{1}$ ．
（2 Marks）
iii）Find ${ }^{1}$ a sequence $\left(a_{n}\right)$ of real numbers such that $\lim _{n \rightarrow \infty} a_{n}=0$ but $\left(a_{n}\right) \notin \ell^{p}$ for all $p \in[1, \infty)$ ．
（2 Marks）

[^0]
[^0]: ${ }^{1}$ Kreyszig，Section 1．2，question 4

