Vv556 Methods of Applied Mathematics I Linear Operators

Assignment 2

Date Due：2：00 PM，Thursday，the $28^{\text {th }}$ of September 2017

This assignment has a total of（12 Marks）．

Exercise 2.1

i）Let $\left(V,\langle\cdot, \cdot\rangle_{\mathbb{R}}\right)$ be a real inner product space and $\|x\|=\sqrt{\langle x, x\rangle}$ the norm induced by the inner product． Prove the real polarisation identity：

$$
\langle x, y\rangle_{\mathbb{R}}=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)
$$

（2 Marks）
ii）Let $\left(V,\langle\cdot, \cdot\rangle_{\mathbb{C}}\right)$ be a complex inner product space and $\|x\|=\sqrt{\langle x, x\rangle}$ the norm induced by the inner product． Prove the complex polarisation identity：

$$
\langle x, y\rangle_{\mathbb{C}}=\frac{1}{4}\left(\|x+y\|^{2}-\|x-y\|^{2}\right)+\frac{i}{4}\left(\|x-i y\|^{2}-\|x+i y\|^{2}\right)
$$

（2 Marks）
iii）Let V be a real or complex vector space．Show that every norm on V ，if it is induced by some inner product，satsfies the parallelogram rule：

$$
\|x+y\|^{2}+\|x-y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right) \quad \text { for all } x, y \in V
$$

（2 Marks）
iv）Prove that the norm $\|\cdot\|_{\infty}: f \mapsto \sup _{x \in[a, b]}|f(x)|$ on $C([a, b])$ is not induced by an inner product，i．e．，there exists no inner product $\langle\cdot, \cdot\rangle$ such that $\|\cdot\|_{\infty}=\sqrt{\langle\cdot, \cdot\rangle}$ ．
（2 Marks）
v）Show that every norm that satisfies the parallelogram rule is induced by an inner product．For simplicity， consider a real vector space only．Instructions：
－Use the polarization identity to define an inner product from the norm．
－Show that the so－defined inner product satisfies $\langle x, y+z\rangle=\langle x, y\rangle+\langle x, z\rangle$ ．
－Then deduce that $\langle x, \lambda y\rangle=\lambda\langle x, y\rangle$ for rational $\lambda \in \mathbb{Q}$ ．
－Use the continuity of the norm to conclude that the equality holds in fact for $\lambda \in \mathbb{R}$ ．
－Verify the other properties for an inner product．
（4 Marks）

