Vv556 Methods of Applied Mathematics I

Linear Operators

Assignment 4

Date Due：2：00 PM，Thursday，the $19^{\text {th }}$ of October 2017

This assignment has a total of（14 Marks）．

Exercise 4.1

Calculate the Fourier－sine series of the function f defined on $[0, \pi]$ and given by $f(x)=x(\pi-x)$ ．Evaluate the series at a suitable point to find the value of the series

$$
\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(2 k+1)^{3}}
$$

（4 Marks）

Exercise 4.2

i）Show that

$$
\mathcal{B}=\left\{\frac{1}{\sqrt{\pi}}, \sqrt{\frac{2}{\pi}} \cos (n x)\right\}_{n=1}^{\infty}
$$

is an orthonormal system in $L^{2}([0, \pi])$ ．
（2 Marks）
ii）Show ${ }^{1}$ that $\cos ^{k} x, k \in \mathbb{N}$ ，is a linear combination of $\{1, \cos x, \cos (2 x), \ldots, \cos (k x)\}$ ，so that

$$
\operatorname{span}\left\{1, \cos x, \cos ^{2} x, \ldots, \cos ^{k} x\right\}=\operatorname{span}\{1, \cos x, \cos (2 x), \ldots, \cos (k x)\}
$$

（2 Marks）
iii）Let $f \in C([0, \pi])$ ．Consider the change of variables $y=\cos x, x \in[0, \pi]$ ，and define $\widetilde{f} \in C([-1,1])$ by $\widetilde{f}(y)=f(\arccos y)$ ．Use the Weierstraß Approximation Theorem to approximate uniformly \widetilde{f} by polynomials，and show that this means that f can be approximated uniformly by finite linear combinations of $1, \cos x, \cos (2 x), \ldots$ ．
（2 Marks）
iv）Conclude that span \mathcal{B} is dense in $C([0, \pi])$ in the $\|\cdot\|_{\infty}$－norm．
（2 Marks）
v）Further deduce that $\operatorname{span} \mathcal{B}$ is dense in $C([0, \pi])$ in the $\|\cdot\|_{L^{2}}$－norm．
（1 Mark）
vi）Further deduce that $\operatorname{span} \mathcal{B}$ is dense in $L^{2}([0, \pi])$ in the $\|\cdot\|_{L^{2}-\text { norm（use }} C([0, \pi])$ is by definition dense in $\left.L^{2}([0, \pi])\right)$ ．Hence， \mathcal{B} is an orthonormal basis of $L^{2}([-\pi, \pi])$ ．
（1 Mark）

[^0]
[^0]: ${ }^{1}$ See Stakgold，Ex．4．6．3

