Vv556 Methods of Applied Mathematics I

Linear Operators

Assignment 5

Date Due：2：00 PM，Thursday，the $\mathbf{2 6}^{\text {th }}$ of October 2017

This assignment has a total of（8 Marks）．

Exercise 5.1

Let $x \in \ell^{2}$ ，i．e．，$x=\left(x_{n}\right)$ is a square－summable sequence．Define the operator $L: \ell^{2} \rightarrow \ell^{2}$ by $L x=y$ ，

$$
y_{n}=\sum_{m=1}^{\infty} a_{n m} x_{m}, \quad n=1,2,3, \ldots
$$

where the coefficients $a_{n m}, n, m \in \mathbb{N} \backslash\{0\}$ satisfy $\sum_{m, n=1}^{\infty}\left|a_{n m}\right|^{2}=: M^{2}<\infty$ ．Any such L is called a Hilbert－ Schmidt operator on ℓ^{2} ．
i）Verify that $y \in \ell^{2}$ ，i．e．，that L is well－defined．
（2 Marks）
ii）Find the matrix elements $L_{i j}:=\left\langle e_{i}, L e_{j}\right\rangle$ of L with respect to the standard basis $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ ，with $e_{n}:=$ $(0, \ldots, 0,1,0, \ldots)$ ，where the 1 is in the nth position．
（1 Mark）
iii）Show that L is bounded with $\|L\| \leq M$ ． （2 Marks）
iv）Show that L defined by

$$
L x=\left(x_{1}, \frac{1}{2} x_{2}, \frac{1}{3} x_{3}, \frac{1}{4} x_{4}, \ldots\right)
$$

is a Hilbert－Schmidt operator．Find the operator norm $\|L\|$ ．
（3 Marks）

