Vv556 Methods of Applied Mathematics I

Linear Operators

Assignment 6

Date Due: 2:00 PM, Thursday, the 2nd of November 2017

This assignment has a total of (10 Marks).

Exercise 6.1

A Hilbert-Schmidt operator on $L^2([a, b])$ has the form

$$(Ku)(x) := \int_a^b k(x, y)u(y) \, dy,$$

where the kernel k satisfies $\int_a^b \int_a^b |k(x,y)|^2 dx dy =: M^2 < \infty$. Now consider the operator L on $L^2([0,1])$ defined by

$$(Lf)(x) = \int_0^x f(y) \, dy.$$

- i) Show that L is a Hilbert-Schmidt operator and that $||L|| \le 1/\sqrt{2}$ from a basic Hilbert-Schmidt estimate. (you just need to follow Examples 6 and 7 on pages 300/301 of Stakgold's book). (2 Marks)
- ii) Recall that $\mathcal{B} = \{e_n\}_{n \in \mathbb{N}}$, where

$$e_n = \sqrt{2}\cos\left(\frac{2n+1}{2}\pi x\right),$$

is an orthonormal basis on $L^2([0,1])$. Use the basis expansion of f in terms of \mathcal{B} to show that $||Lf|| \le (2/\pi)||f||$. (2 Marks)

- iii) Show that $||L|| = 2/\pi$. (3 Marks)
- iv) Calculate the matrix elements of L with respect to \mathcal{B} . (2 Marks)
- v) Find the adjoint of L. (1 Mark)

