## Vv556 Methods of Applied Mathematics I

## Linear Operators

## Assignment 7

Date Due：2：00 PM，Thursday，the $9^{\text {th }}$ of November 2017

This assignment has a total of（ $\mathbf{1 8}$ Marks）．

## Exercise 7.1

Consider again the left－and right－shift operators $L$ and $R$ on $\ell^{2}$ ．The goal of this exercise is to show directly that the numbers $\lambda \in \mathbb{C}$ with $|\lambda|=1$ lie in the continuous spectrum of these operators．

An eigenvector for the left－shift operator satisfying $L e_{\lambda}=\lambda \cdot e_{\lambda}$ is given by

$$
e_{\lambda}=\left(1, \lambda, \lambda^{2}, \lambda^{3}, \ldots\right)
$$

However，for $|\lambda|=1$ this vector is not in $\ell^{2}$ ．Consider instead the＂almost－eigenvector＂

$$
e_{\lambda}^{(N)}:=\frac{1}{N+1}\left(1, \lambda, \lambda^{2}, \ldots, \lambda^{N}, 0, \ldots\right)
$$

for $|\lambda|=1$ ．
i）Show that $\left\|e_{\lambda}^{(N)}\right\|_{2}=1$ ．
（0．5 Marks）
ii）Calculate $(L-\lambda I) e_{\lambda}^{(N)}$ and show that $\left\|(L-\lambda I) e_{\lambda}^{(N)}\right\|_{2} \rightarrow 0$ ．as $N \rightarrow \infty$ ． （1 Mark）
iii）Deduce that $\lambda \in \sigma_{\text {continuous }}(L)$ ． （0．5 Marks）
iv）Find a sequence of almost－eigenvectors for the right－shift operator $R$ and show that all $\lambda \in \mathbb{C}$ with $|\lambda|=1$ lie in $\sigma_{\text {continuous }}(R)$ ．
（2 Marks）

## Exercise 7.2

Let $L: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ be given by

$$
(L u)(x)=x \cdot u(x)
$$

i）Show that the domain of the inverse $\left(L^{-1} u\right)(x)=\frac{1}{x} u(x)$ is dense．Hint：the domain surely includes the set

$$
M=\left\{u \in L^{2}([0,1]): \underset{\varepsilon>0}{\exists} \underset{0 \leq x \leq \varepsilon}{\forall} u(x)=0\right\} .
$$

and you can show that $M$ is dense by hand．
（2 Marks）
ii）Show that $L$ is bounded，find $\|L\|$ and verify that $L^{-1}$ is unbounded．
（3 Marks）
iii）Find the state of $L$ and of $L^{-1}$ ．
（2 Marks）
iv）Is $L$ self－adjoint？
（1 Mark）
v）Find the spectrum of $L$ ．
（3 Marks）

## Exercise 7.3

On $L^{2}([0,1])$ consider the operator $L$ defined by

$$
(L f)(x)=\int_{0}^{x} f(y) d y
$$

i) Show that the state of $L$ is $\left(\mathrm{II}, 1_{n}\right)$. Hint: does the range of $L$ contain the set of polynomials? (2 Marks)
ii) Find the adjoint of $L$.
(1 Mark)
The following exercise is just to fill a gap in the lecture slides. There is no need to complete it.

## Exercise 7.4

For two sequences $\left(a_{n}\right),\left(b_{n}\right) \in \ell^{1}$ the Cauchy product of their series is defined as

$$
\left(\sum_{n=0}^{\infty} a_{n}\right)\left(\sum_{n=0}^{\infty} b_{n}\right)=\sum_{n=0}^{\infty} c_{n}
$$

where

$$
c_{n}:=\sum_{i+j=n} a_{i} b_{j}=\sum_{i=0}^{n} a_{i} b_{n-i} .
$$

(It can be shown that the equality holds and that $\left(c_{n}\right) \in \ell^{1}$.) The sequence $\left(c_{n}\right)$ is said to be the convolution of $\left(a_{n}\right)$ and $\left(b_{n}\right)$ and we write

$$
\left(c_{n}\right)=\left(a_{n}\right) *\left(b_{n}\right)
$$

Prove Young's convolution inequality:

$$
\left\|\left(a_{n}\right) *\left(b_{n}\right)\right\|_{p} \leq\left\|\left(a_{n}\right)\right\|_{p} \cdot\left\|\left(b_{n}\right)\right\|_{1} \quad 1 \leq p<\infty
$$

Instructions: for the case $p>1$, write

$$
\left|c_{n}\right| \leq \sum_{i=0}^{n}\left(\left|a_{i}\right| \cdot\left|b_{n-i}\right|^{1 / p}\right) \cdot\left|b_{n-i}\right|^{1 / q}
$$

and apply Hölder's inequality.

