Vv556 Methods of Applied Mathematics I

Linear Operators

Assignment 7

Date Due: 2:00 PM, Thursday, the 9th of November 2017

This assignment has a total of (18 Marks).

Exercise 7.1

Consider again the left- and right-shift operators L and R on ℓ^2 . The goal of this exercise is to show directly that the numbers $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ lie in the continuous spectrum of these operators.

An eigenvector for the left-shift operator satisfying $Le_{\lambda} = \lambda \cdot e_{\lambda}$ is given by

$$e_{\lambda} = (1, \lambda, \lambda^2, \lambda^3, \ldots).$$

However, for $|\lambda| = 1$ this vector is not in ℓ^2 . Consider instead the "almost-eigenvector"

$$e_{\lambda}^{(N)} := \frac{1}{N+1}(1,\lambda,\lambda^2,\dots,\lambda^N,0,\dots)$$

for $|\lambda| = 1$.

- i) Show that $||e_{\lambda}^{(N)}||_{2} = 1$. (0.5 Marks)
- ii) Calculate $(L \lambda I)e_{\lambda}^{(N)}$ and show that $\|(L \lambda I)e_{\lambda}^{(N)}\|_2 \to 0$. as $N \to \infty$. (1 Mark)
- iii) Deduce that $\lambda \in \sigma_{\text{continuous}}(L)$. (0.5 Marks)
- iv) Find a sequence of almost-eigenvectors for the right-shift operator R and show that all $\lambda \in \mathbb{C}$ with $|\lambda| = 1$ lie in $\sigma_{\text{continuous}}(R)$. (2 Marks)

Exercise 7.2

Let $L: L^{2}([0,1]) \to L^{2}([0,1])$ be given by

$$(Lu)(x) = x \cdot u(x)$$

i) Show that the domain of the inverse $(L^{-1}u)(x) = \frac{1}{x}u(x)$ is dense. *Hint:* the domain surely includes the set

$$M = \left\{ u \in L^2([0,1]) \colon \underset{\varepsilon > 0}{\exists} \forall u(x) = 0 \right\}.$$

and you can show that M is dense by hand. (2 Marks)

- ii) Show that L is bounded, find ||L|| and verify that L^{-1} is unbounded. (3 Marks)
- iii) Find the state of L and of L^{-1} . (2 Marks)
- iv) Is L self-adjoint? (1 Mark)
- v) Find the spectrum of L. (3 Marks)

Exercise 7.3

On $L^2([0,1])$ consider the operator L defined by

$$(Lf)(x) = \int_0^x f(y) \, dy.$$

- i) Show that the state of L is (II, 1_n). *Hint:* does the range of L contain the set of polynomials? (2 Marks)
- ii) Find the adjoint of L.(1 Mark)

The following exercise is just to fill a gap in the lecture slides. There is no need to complete it.

Exercise 7.4

For two sequences $(a_n), (b_n) \in \ell^1$ the Cauchy product of their series is defined as

$$\left(\sum_{n=0}^{\infty} a_n\right)\left(\sum_{n=0}^{\infty} b_n\right) = \sum_{n=0}^{\infty} c_n$$

where

$$c_n := \sum_{i+j=n} a_i b_j = \sum_{i=0}^n a_i b_{n-i}.$$

(It can be shown that the equality holds and that $(c_n) \in \ell^1$.) The sequence (c_n) is said to be the *convolution* of (a_n) and (b_n) and we write

$$(c_n) = (a_n) * (b_n).$$

Prove Young's convolution inequality:

$$||(a_n) * (b_n)||_p \le ||(a_n)||_p \cdot ||(b_n)||_1 \qquad 1 \le p < \infty.$$

Instructions: for the case p > 1, write

$$|c_n| \le \sum_{i=0}^n (|a_i| \cdot |b_{n-i}|^{1/p}) \cdot |b_{n-i}|^{1/q}$$

and apply Hölder's inequality.