Vv556 Methods of Applied Mathematics I

Linear Operators

Assignment 8

Date Due：2：00 PM，Thursday，the $16^{\text {th }}$ of November 2017

This assignment has a total of（20 Marks）．

Exercise 8.1

Define the operator $L: \ell^{2} \rightarrow \ell^{2}$ by

$$
L\left(x_{n}\right)=\left(x_{1}, \frac{1}{\sqrt{2}} x_{2}, \frac{1}{\sqrt{3}} x_{3}, \frac{1}{\sqrt{4}} x_{4}, \ldots\right) .
$$

i）Show that L is not a Hilbert－Schmidt operator．
（1 Mark）
ii）Show that L is self－adjoint．
（1 Mark）
iii）Show that L is compact．
（2 Marks）
iv）Find upper and lower bounds for the spectrum of L ．
（2 Marks）
v）Find the spectrum of L ．
（4 Marks）

Exercise 8.2

Let $M:=\left\{u \in L^{2}([0,1]): u \in C^{2}(0,1), u(0)=u(1)=0\right\}$ and

$$
L=\frac{d^{2}}{d x^{2}}
$$

Let $K: L^{2}([0,1]) \rightarrow L^{2}([0,1])$ be given by

$$
(K u)(x):=\int_{0}^{1} g(x, \xi) u(\xi) d \xi
$$

with

$$
g(x, \xi):= \begin{cases}x(1-\xi) & x<\xi \\ \xi(1-x) & x \geq \xi\end{cases}
$$

i）Show that K is the inverse of L ，i．e．，$K L=I$ on M ．（This requires some elementary calculations with the integral．）
（2 Marks）
ii）Show that L is unbounded．
（2 Marks）
iii）Show that K is compact．
（2 Marks）
iv）Show that $g(x, \xi)=g(\xi, x)$ and deduce that K is self－adjoint．
（2 Marks）
v）Find the upper and lower bounds of the Rayleigh quotient for K ．
（2 Marks）

