Vv556 Methods of Applied Mathematics I

Linear Operators

Assignment 9

Date Due: 2:00 PM, Thursday, the 23rd of November 2017

This assignment has a total of (14 Marks).

Exercise 9.1

Let $M := \{ u \in L^2([0,1]) \colon u \in C^2(0,1), \ u(0) = u(1) = 0 \}$ and define

$$L = \frac{d^2}{dx^2}$$

on $M \subset L^2([0,1])$. Let $K \colon L^2([0,1]) \to L^2([0,1])$ be given by

$$(Ku)(x) := \int_0^1 g(x,\xi)u(\xi) \, d\xi$$

with

$$g(x,\xi) := \begin{cases} x(1-\xi) & x < \xi, \\ \xi(1-x) & x \ge \xi. \end{cases}$$

It is known that K is compact and self-adjoint. Furthermore, $K = L^{-1}$.

- i) Show that $L = K^{-1}$ if K is restricted to M. (You will have to perform some careful differentiations; use the chain rule.) (2 Marks)
- ii) Consider the eigenvalue equation $Lu = \lambda u$ for $u \in M$. Show that $\lambda \neq 0$ is an eigenvalue for L if and only if $1/\lambda$ is an eigenvalue for K. How are the eigenfunctions of K and L related? (2 Marks)
- iii) Find the eigenvalues $\lambda_n \in \mathbb{C}$ and eigenfunctions $\psi_n \in M$ of L by solving an ordinary differential equation. You will have to prove first that $\lambda_n \in \mathbb{R}$ and then consider the cases $\lambda_n > 0$, $\lambda_n = 0$ and $\lambda_n < 0$. (5 Marks)
- iv) Find the spectrum of K. Is zero an eigenvalue? Find the sequence of eigenvalues (λ_n) such that $\lambda_n \searrow 0$. (3 Marks)
- v) According to the spectral theorem, L²([0, 1]) has an orthonormal basis consisting of eigenfunctions of K. Use this to deduce that a certain Fourier basis is actually a basis.
 (2 Marks)

