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Office Hours, Email, TAs
▶ Please read the Course Profile, which has been uploaded to the

Resources section on the Canvas course site.
▶ My office is Room 441c in in the Longbin Building.
▶ My email is horst@sjtu.edu.cn and I’ll try to answer email queries

within 24 hours.
▶ Office hours will be announced on Canvas.
▶ Please also make use of the Discussion tab on Canvas for asking

questions, making comments or giving feedback on the course.
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Coursework
▶ There will be weekly coursework (assignments) throughout the term.
▶ You will be randomly assigned into assignment groups of three

students; you are expected to collaborate within each group and hand
in a single, common solution paper to each coursework.

▶ Each student must achieve 60% of the total coursework points by the
end of the term in order to obtain a passing grade for the course.
However, the assignment points have no effect on the course grade.

▶ Each member of an assignment group will receive the same number of
points for each submission. However, there will be an opportunity for
team members to anonymously evaluate each others’ contributions to
the assignments. In cases where one or more group members
consistently do not contribute a commensurate share of the work, a
TA will investigate the situation and individual group members may
lose some or all of their marks.
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Coursework
▶ Please hand in your coursework on time, by the date given on each set

of course work. Late work will not be accepted unless you come to me
personally and I find your explanation for the lateness acceptable.

▶ You can be deducted up to 10% of the awarded marks for an
assignment if you fail to write neatly and legibly.

▶ You are encouraged to compose your coursework solutions in LATEX.
While this is optional, there will be a 10% bonus to the awarded
marks for those assignment handed in as typed LATEX manuscripts.
LATEX is open-source software for mathematical typesetting, and there
are various implementations available. I suggest that you use Baidu or
Google to find a suitable implementation for your computer and OS.
LATEX is widely used for writing theses and scientific papers, so it may
be quite useful for you to learn it.

▶ Further details can be found in the course description.
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Use of Wikipedia and Other Sources; Honor Code Policy
▶ The correct way of using outside sources is to understand the contents

of your source and then to write in your own words and without
referring back to the source the solution of the problem. Your solution
should differ in style significantly from the published solution. If you
are not sure whether you are incorporating too much material from
your source in your solutions, then you must cite the source that you
used.

▶ You may and are required to collaborate freely with other students in
your assignment group. However, you may not communicate at all
about concrete coursework with students from other groups. However,
discussing general questions regarding the lecture contents with any
other student is of course fine and encouraged.
Do not show or explain your solutions to any student outside your
assignment group.
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Use of Wikipedia and Other Sources; Honor Code Policy
In this course, the following actions are examples of violations of the Honor
Code (“another student” means a student outside your assignment group):

▶ Showing another student your written solution to a problem.
▶ Sending a screenshot of your solution via QQ, email or other means to

another student.
▶ Showing another student the written solution of a third student;

distributing some student’s solution to other students.
▶ Viewing another student’s written solution.
▶ Copying your solution in electronic form (LATEX source, PDF, JPG

image etc.) to the computer hardware (flash drive, hard disk etc.) of
another student. Having another student’s solution in electronic form
on your computer hardware.

If you have any questions regarding the application of the Honor Code,
please contact me or any of the TAs.
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Grading Policy
The grade will be composed of the course work and the exams as follows:

▶ First midterm exam: 30 points
▶ Second midterm exam: 30 points
▶ Final exam: 40 points
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Class Attendance and Absence for Medical Reasons
If you are unable to attend an exam or a class, you should notify me. The
following rules apply:

▶ Absence for illness should be supported by a hospital/doctor’s
certificate. A note that a student visited a medical facility is not
sufficient excuse for missing a Tuesday class or an exam. The note
must specifically indicate that the student was incapable of attending
a class or taking the exam due to medical problems.

▶ Late medical excuses must satisfy the following criteria to be valid:
(i) The problem must be confirmed by the doctor to be so severe that the

student could not participate in the exam.
(ii) The problem must have occurred so suddenly that it was impractical to

contact me in advance.
(iii) The student must be in contact with me immediately after the exam or

Tuesday class with the required documentation.
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Literature
We will use various textbook sources for the course. These include

▶ E. Kreyszig, Introductory Functional Analysis with Applications,
Wiley 1989;

▶ K. Jänich, Linear Algebra, Springer 1994.
▶ S. Lang, Linear Algebra, 2nd Ed., Addison-Wesley 1972.
▶ I. Stakgold and M. Holst, Green’s Functions and Boundary Value

Problems, 3rd Ed., Wiley 2011.
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Part I

Infinite-Dimensional Vector Spaces
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Looking back: Finite-Dimensional Vector Spaces
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Introduction
Under certain assumptions (small displacements, no external forces) the
transversal displacement of a vibrating string of length L satisfies the wave
equation

c2uxx − utt = 0, 0 < x < L, t ∈ R, (1.1.1)

where c > 0 is related to the tension and the density of the string. If the
ends of the string are fixed, the boundary conditions

u(0, t) = u(L, t) = 0, t ∈ R

may be imposed. Solutions of the wave equation then have the form

un(x , t) =
(
αn sin(nπct/L) + βn cos(nπct/L)

)
sin(nπx/L), n ∈ N,

where αn,βn ∈ R are constants determined by the initial displacement and
velocity of the string.
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Introduction
Hence, there is a (countably) infinite family of solutions. It also turns out
that there are no other solutions! From the linearity of (1.1.1) it is clear
that any sum of the un is again a solution. However, experiments show
that not all displacements of strings take the form of finite linear
combinations of trigonometric functions. In fact, if the string is initially
displaced according to

u(x , 0) = x(x − L), ut(x , 0) = 0.

can we write

u(x , t) =
∞∑
n=0

(
αn sin(nπct/L) + βn cos(nπct/L)

)
sin(nπx/L)

for certain coefficients αn,βn? If so, we would have

u(x , 0) = x(x − L) =
∞∑
n=0

βn sin(nπx/L)
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Introduction
In what sense can such an identity hold? What types of functions are
permissible for u(x , 0)? Any continuous function? Perhaps even
discontinuous functions?
The same question arises in other differential equations involving Bessel
functions, Legendre polynomials and other exotic functions in place of the
trigonometric sine and cosines. Therefore, it makes sense to tackle this
question from a fundamental point of view:
Can any continuous function be written as an “infinite linear combination”
of a given set of functions? In other words, does there exist an algebraic
basis for the vector space of continuous functions? Such a basis would of
course need to be infinite in size.
We will extend the known methods of linear algebra to tackle this and
other, related questions.
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Prerequisites from Linear Algebra
We assume that the following concepts from linear algebra are familiar:

▶ Vector spaces, norms, scalar products
▶ Linear independence of vectors, bases, dimension of vector spaces
▶ Linear maps, matrices, determinants
▶ Eigenvalue problems for matrices

We may briefly recall some of the definitions, but for details we refer to the
literature.
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Vector Spaces
1.1.1. Definition. A vector space over a field F (we only consider F = R or
C) is a triple (V , +, ·) where

(i) V is any set;
(ii) +: V × V → V is a map (called addition) with the following

properties:
▶ (u + v) + w = u + (v + w) for all u, v ,w ∈ V (associativity),
▶ u + v = v + u for all u, v ∈ V (commutativity),
▶ there exists an element e ∈ V such that v + e = v for all v ∈ V

(existence of a unit element),
▶ for every v ∈ V there exists an element −v ∈ V such that

v + (−v) = e;
(iii) · : F× V → V is a map (called scalar multiplication) with the

following properties:
▶ 1 · u = u for all u ∈ V ,
▶ λ · (u + v) = λ · u + λ · v for all λ ∈ F, u, v ∈ V ,
▶ (λ+ µ) · u = λ · u + µ · u for all λ,µ ∈ F, u ∈ V ,
▶ (λµ) · u = λ · (µ · u) for all λ,µ ∈ F, u ∈ V .
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Subspaces
1.1.2. Definition. Suppose that (V , +, · ) is a vector space and U ⊂ V . If
(U, +, · ) is also a vector space, we say that U is a linear subspace or
sub-vectorspace of V .

1.1.3. Notation.
▶ If the definition of the addition and scalar multiplication in a vector

space is clear from the context, we write simply V instead of
(V , +, · ).

▶ If (U, +, · ) is a subspace of (V , +, · ), we write (U, +, · ) ⊂ (V , +, · )
or just U ⊂ V . Hence, “U ⊂ V ” can indicate either that U (as a set)
is a subset of the set V or that U (as a vector space) is a subspace of
the space V . This ambiguity should not cause any difficulty.



Introduction Slide 19

Vector Spaces
1.1.4. Examples.

(i) The set of n-tuples
Fn := {x = (x1, ... , xn) : x1, ... , xn ∈ F}

is a vector space with the so-called component-wise addition and
scalar multiplication:

x + y = (x1, ... , xn) + (y1, ... , yn)

:= (x1 + y1, ... , xn + yn),

λx = λ(x1, ... , xn)

:= (λx1, ... ,λxn)

for all x , y ∈ Fn and λ ∈ F. We will use both

x =

x1
...
xn

 and x = (x1, ... , xn) interchangeably.
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Vector Spaces
(ii) The set of polynomials of degree at most n ∈ N,

Pn =
{
f : F→ F : f (x) =

n∑
k=0

akx
k , a0, a1 ... , an ∈ R

}
is a vector space with the so-called point-wise addition and scalar
multiplication: for polynomials p and q given by
p(x) = a0 + a1x + · · ·+ anx

n, q(x) = b0 + b1x + · · ·+ bnx
n and

λ ∈ F we define polynomials p + q and λp through

(p + q)(x) := p(x) + q(x) =
n∑

k=0

(ak + bk)x
k ,

(λp)(x) := λ · p(x) =
n∑

k=0

(λak)x
k .
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Vector Spaces
(iii) The set of polynomials of any degree,

P =
{
f : F→ F : f ∈ Pn for some n ∈ N

}
is a vector space with point-wise addition and scalar multiplication. In
particular, the sum of two polynomials of degree m and n,
respectively, is a polynomial of degree max(n,m).

(iv) The set of complex-valued continuous functions on a subset Ω ⊂ Fn,

C (Ω,F) = {f : Ω → C : f is continuous on Ω}

is a vector space with point-wise addition and scalar multiplication.
We often write C (Ω) to abbreviate C (Ω,C).

(v) For any n ∈ N, Pn ⊂ P ⊂ C (F,F). Note that in all three spaces, the
same addition and scalar multiplication (i.e., pointwise) is used.
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Linear Combinations and Span
1.1.5. Definition. Let x1, ... , xn ∈ V and λ1, ... ,λn ∈ F. Then the
expression

n∑
k=1

λkxk = λ1x1 + · · ·+ λnxn

is called a linear combination of the vectors x1, ... , xn.
The set

span{x1, ... , xn} =
{
y ∈ V : y =

n∑
k=1

λkxk , λ1, ... ,λn ∈ F
}

is called the (linear) span of the vectors x1, ... , xn.



Introduction Slide 23

Span of Subsets
More generally, if V is a vector space and M is some subset of V , then we
can define the span of M as the set containing all (finite) linear
combinations of elements of M, i.e.,

spanM :=
{
v ∈ V : ∃

n∈N
∃

λ1,...,λn∈F
∃

m1,...,mn∈M
: v =

n∑
i=1

λimi

}
.

Note that this definition does not presume that M is a subspace, just an
arbitrary subset of V . Furthermore, although only finite linear
combinations are considered, the set M may well be infinite in size.
Moreover, even though M is just any set, spanM will be a subspace of V .
1.1.6. Example. Let M = {f ∈ C (R,R) : f (x) = xn, n ∈ N} denote the set
of all monomials in the space of continuous functions on R. Then
spanM = P, the space of polynomials.
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Linear Independence
1.1.7. Definition. Let V be a real or complex vector space and
x1, ... , xn ∈ V . Then the vectors x1, ... , xn are said to be independent if
for all λ1, ... ,λn ∈ F,

n∑
k=1

λkxk = 0 ⇒ λ1 = λ2 = · · · = λn = 0.

We say that a finite set M ⊂ V is an independent set if the elements of
M are independent.
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Bases and the Standard Basis of Fn

1.1.8. Definition. Let V be a real or complex vector space. An n-tuple
B = (b1, ... , bn) ∈ V n is called an (ordered and finite) basis of V if
every vector v has a unique representation

v =
n∑

i=1

λibi , λi ∈ F.

The numbers λi are called the coordinates of v with respect to B.

1.1.9. Example. The tuple of vectors (e1, ... , en), ei ∈ Rn,

ei = (0, ... 0, 1
↑
ith

entry

, 0, ... , 0), i = 1, ... , n,

is called the standard basis or canonical basis of Rn.
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Characterization of Bases
Sometimes we are not interested in the order of the elements of a basis,
and write B = {b1, ... , bn}, replacing the tuple by a set. This is known as
an unordered basis.
1.1.10. Theorem. Let V be a real or complex vector space. An n-tuple
B = (b1, ... , bn) ∈ V n is a finite basis of V if and only if

(i) the vectors b1, ... , bn are linearly independent, i.e., B is an
independent set, and

(ii) V = spanB.



Introduction Slide 27

Finite- and Infinite-Dimensional Spaces
1.1.11. Definition. A vector space V is said to be finite-dimensional if
either

▶ V = {0} or
▶ V possesses a finite basis.

If V is not finite-dimensional, we say that it is infinite-dimensional.

1.1.12. Example.
(i) The space of polynomials of degree at most n, Pn, is

finite-dimensional, because it has the basis B = (1, x , x2, ... , xn).
(ii) The space of polynomials of any degree, P, is infinite-dimensional.

We omit the proof of the following theorem, which is usually shown in
elementary courses on linear algebra:
1.1.13. Theorem. Let V be a real or complex finite-dimensional vector
space, V ̸= {0}. Then any basis of V has the same length (number of
elements) n.
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Dimension
1.1.14. Definition. Let V be a finite-dimensional real or complex vector
space.

1. If V = {0}, we define the dimension of V , to be zero and write
dimV = 0.

2. If V ̸= {0}, we define dimV = n, where n is the length of any basis of
V .

If V is an infinite-dimensional vector space we write dimV = ∞.

1.1.15. Examples.
1. dimRn = n

2. dimPn = n + 1

3. dimP = ∞
4. dim{(x1, x2) ∈ R2 : x2 = 3x1} = 1
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Infinite-Dimensional Spaces of Functions
A typical undergraduate course in linear algebra will focus on
finite-dimensional spaces; these are particularly simple, because they can be
fully characterized by finite bases. However, many vector spaces of
functions are of great practical interest and infinite-dimensional. These
include (Ω ⊂ Fn):

▶ The space of continuous functions, C (Ω,C),
▶ The space of polynomials over the real or complex numbers, P(F).
▶ The space of bounded functions,

L∞(Ω) :=
{
f : Ω → C : sup

x∈Ω
|f (x)| <∞

}
,

▶ The spaces of p-integrable functions, p ≥ 1,

Lp(Ω) :=

{
f : Ω → C :

∫
Ω
|f (x)|p <∞

}
.
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Infinite-Dimensional Spaces of Sequences
We use the notation x = (xn)n∈N or simply (xn) to denote a sequence of
elements x0, x1, x2, .... In the following examples, each xn ∈ C:

▶ The space of null sequences,

c0 =
{
(xn) : xn → 0 as n → ∞

}
▶ The space of bounded sequences,

ℓ∞ :=
{
(xn) : sup

n∈N
|xn| <∞

}
▶ The spaces of p-summable sequences, p ≥ 1,

ℓp =
{
(xn) :

∑
n∈N

|xn|p <∞
}
.
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Pointwise Addition and Scalar Multiplication
For the sets defined above to become vector spaces, we need to introduce
the operations of addition and mutliplication with scalars. The standard
definitions are called point-wise operations, as we simply add the values of
the functions or sequences at each point:

(f + g)(x) := f (x) + g(x), (λf )(x) := λ · f (x),
(a+ b)n := an + bn, (λa)n := λ · an.

for functions f , g , sequences (an), (bn) and scalars λ ∈ F.
It is not immediately obvious that ℓp and Lp(Ω) are vector spaces; is the
sum of two elements again an element of the space? To verify this, we
need some preliminary results.
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Hölder’s Inequality
We begin with an interesting inequality of real numbers:
1.1.16. Lemma. Fix 1 < p <∞ and q such that 1/p + 1/q = 1 and let
a, b ≥ 0. Then

ab ≤ ap

p
+

bq

q
. (1.1.2)

Proof.
To prove (1.1.2), consider the graph of the function

y = F (x) = xq−1.

Since (p − 1)(q − 1) = 1, this is equivalent to

x = F−1(y) = yp−1.
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Hölder’s Inequality
Proof (continued).

b
x

a

y

I

y � xq-1

II

From the graph above it is clear that

Area(I) =
∫ a

0
yp−1 dy =

ap

p
, Area(II) ≤

∫ b

0
xq−1 dx =

bq

q
,

and Area(I) + Area(II) = ab, so (1.1.2) is proven.
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Hölder’s Inequality
We can now prove the Hölder inequality for series:
1.1.17. Hölder’s Inequality. Fix 1 < p <∞ and q such that 1/p + 1/q = 1.
Suppose that x ∈ ℓp and y ∈ ℓq. Then

∞∑
n=0

|xnyn| ≤
( ∞∑
n=0

|xn|p
)1/p( ∞∑

n=0

|yn|q
)1/q

, (1.1.3)

where x = (xn), y = (yn).
For p = q = 2 the inequality (1.1.3) is called the Cauchy-Schwartz
inequality for series:

∞∑
n=0

|xnyn| ≤

√√√√ ∞∑
n=0

|xn|2

√√√√ ∞∑
n=0

|yn|2 (1.1.4)
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Hölder’s Inequality
Proof.
Suppose x ∈ ℓp and y ∈ ℓq are given. Define

x̃ :=
1(∑∞

n=0|xn|p
)1/p x , ỹ :=

1(∑∞
n=0|yn|q

)1/q y ,
so that

∑∞
n=0|x̃n|p =

∑∞
n=0|ỹn|q = 1. By (1.1.2),

|x̃nỹn| ≤
|x̃n|p

p
+

|ỹn|q

q

which implies
∞∑
n=0

|x̃nỹn| ≤
1

p

∞∑
n=0

|x̃n|p︸ ︷︷ ︸
=1

+
1

q

∞∑
n=0

|ỹn|q︸ ︷︷ ︸
=1

=
1

p
+

1

q
= 1.
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Minkowski’s Inequality
Proof (continued).
Since

∞∑
n=0

|x̃nỹn| =
1(∑∞

n=0|xn|p
)1/p 1(∑∞

n=0|yn|q
)1/q ∞∑

n=0

|xnyn|

the proof is complete.
We next prove the Minkowski inequality for series:
1.1.18. Minkowski’s Inequality. For 1 ≤ p <∞ and x , y ∈ ℓp we have( ∞∑

n=0

|xn + yn|p
)1/p

≤
( ∞∑
n=0

|xn|p
)1/p

+
( ∞∑
n=0

|yn|p
)1/p

, (1.1.5)

where x = (xn) and y = (yn).
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Minkowski’s Inequality
Proof.
We write zn := xn + yn for short and consider p > 1 (the case p = 1 is
trivial). Then

|zn|p = |xn + yn| · |zn|p−1 ≤ (|xn|+ |yn|)|zn|p−1.

We can apply this inequality to finite sums, obtaining
N∑

n=0

|zn|p ≤
N∑

n=0

|xn| · |zn|p−1 +
N∑

n=0

|yn| · |zn|p−1

for any N ∈ N. For q = p/(p − 1), Hölder’s inequality gives

N∑
n=0

|xn| · |zn|p−1 ≤
( N∑
n=0

|xn|p
)1/p( N∑

n=0

|zn|p
)1/q

.
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Minkowski’s Inequality
Proof (continued).
Similarly,

N∑
n=0

|yn| · |zn|p−1 ≤
( N∑
n=0

|yn|p
)1/p( N∑

n=0

|zn|p
)1/q

,

so ( N∑
n=0

|zn|p
)1−1/q

≤
( N∑
n=0

|xn|p
)1/p

+
( N∑
n=0

|yn|p
)1/p

Since 1− 1/q = 1/p, we obtain the desired inequality by letting N → ∞.
Since both series on the right converge by assumption, so does the series
on the left.
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Function and Sequence Spaces
Minkowski’s inequality immediately yields that if x , y ∈ ℓp, then
x + y ∈ ℓp. Since clearly λx ∈ ℓp for any λ ∈ F, we see that ℓp is indeed a
vector space. Analogous inequalities can be used to show that the sets Lp

are vector spaces.
In fact, the spaces ℓp and Lp are structurally very similar; while we are
mostly interested in function spaces in applications, the sequence spaces
are easier to discuss technically (the summation of a sequence is simpler
than the integration of a function) and we will use the ℓp spaces to
illustrate many basic ideas.
It is easy to see that the function and sequence spaces we have introduced
can not have a finite basis and are infinite-dimensional. For further
investigations, it becomes necessary to introduce some more structure: we
need the concept of the size of a vector, generalizing the modulus of
complex numbers. Such a generalization is called a norm.
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Normed Vector Spaces
1.2.1. Definition. Let V be a real or complex vector space. Then a map
∥ · ∥ : V → R is called a norm on V if for all u, v ∈ V and all λ ∈ F,

(i) ∥v∥ ≥ 0 for all v ∈ V and ∥v∥ = 0 if and only if v = 0,
(ii) ∥λ · v∥ = |λ| · ∥v∥,
(iii) ∥u + v∥ ≤ ∥u∥+ ∥v∥ (triangle inequality).
The pair (V , ∥ · ∥) is called a normed vector space or a normed linear
space.

1.2.2. Examples.
▶ In Fn, we can define norms by

∥x∥p :=
( n∑
k=1

|xk |p
)1/p

, x = (x1, ... , xn) ∈ Fn,

for any p ≥ 1. Minkowski’s inequality (1.1.5) is then simply the
triangle inequality for the norm. The case p = 2 corresponds to the
euclidean or canonical norm.
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Normed Vector Spaces
▶ More generally, in each space ℓp, p ≥ 1, a nor is defined by

∥x∥p :=
( ∞∑
k=1

|xk |p
)1/p

, x = (x0, x1, x2, ...) ∈ ℓp,

▶ In any ℓp, 1 ≤ p ≤ ∞, we can define a norm by

∥x∥∞ := sup
n∈N

|xk |.

▶ Similarly, in C (Ω,C) for a bounded set Ω ∈ Fn we can define the
norms (1 ≤ p <∞)

∥f ∥p :=

(∫
Ω
|f (x)|p dx

)1/p

, ∥f ∥∞ := sup
x∈Ω

|f (x)|.
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Open Balls, Open and Closed Sets
Having introduced a norm, we can define open balls and open sets:
1.2.3. Definition. Let (V , ∥ · ∥) be a normed vector space. Then

(i) For r > 0 and x ∈ V , the set

Br (x) :=
{
y ∈ V : ∥x − y∥ < r

}
is called an open ball of radius r centered at x .

(ii) A set Ω ⊂ V is said to be open if for every x ∈ Ω there exists an
ε > 0 such that Bε(x) ⊂ Ω.

(iii) A set Ω ⊂ V is said to be closed if Ωc := V \ Ω is open.

1.2.4. Examples.
▶ For any fixed point x ∈ V and any r > 0, the open ball Br (x) is an

open set.
▶ The empty set ∅ is (vacuously) open.
▶ The entire space V is open.
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Boundary Points and Closure
▶ The empty set ∅ is closed.
▶ The entire space V is closed.
▶ For any x ∈ V the one-element set {x} ⊂ V is closed.

We see that a set can be open, closed, both open and closed, or neither
open nor closed.
1.2.5. Definition and Theorem. Let (V , ∥ · ∥) be a normed vector space and
Ω ⊂ V .

(i) A point x ∈ V is a boundary point of Ω if for any ε > 0,
Bε(x) ∩ Ω ̸= ∅ and Bε(x) ∩ Ωc ̸= ∅.

The set of boundary points is denoted by ∂Ω.
(ii) The closure of Ω is defined as

Ω := Ω ∪ ∂Ω.

The closure is the smallest closed set that contains Ω. In particular,
Ω is closed if and only if it contains its boundary points.
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Boundary Points and Closure
Proof.
Suppose that Ω is closed. Then Ωc is open and can not contain a
boundary point, since any point of the complement must have the property
that a sufficiently small ε-ball (ball of radius ε) centered at that point is
contained fully in the complement. Therefore, ∂Ω ⊂ Ω.
Conversely, suppose ∂Ω ⊂ Ω. Then for any point x /∈ Ω it is true that for
any ε > 0 the ball Bε(x) intersects the complement Ωc . But since such a
point can not be a boundary point, there must be an ε0 such that
Bε0(x) ∩ Ω = ∅, i.e., Bε0(x) ⊂ Ωc . Since this is true for any x ∈ Ωc , the
complement of Ω is open and Ω is closed.
The following lemma is an immediate result of the definitions and the
proof is left to the reader:
1.2.6. Corollary. Let (V , ∥ · ∥) be a normed vector space and Ω ⊂ V . Then
x ∈ Ω if and only if Bε(x) ∩ Ω ̸= ∅ for any ε > 0.
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Sequences in Vector Spaces
Recall that a sequence of complex numbers (xn) converges to a limit x if
and only if

∀
ε>0

∃
N∈N

∀
n>N

|xn − x | < ε.

An analogous definition can be used for sequences in normed vector spaces:
1.2.7. Definition. A sequence in a normed vector space (V , ∥ · ∥) is a map
(xn) : N→ V .

(i) We say that (xn) converges to an element x ∈ V if

∀
ε>0

∃
N∈N

∀
n>N

∥xn − x∥ < ε

(ii) We say that (xn) is a Cauchy sequence if

∀
ε>0

∃
N∈N

∀
m,n>N

∥xn − xm∥ < ε
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Sequences of Continuous Functions
1.2.8. Example. Consider C ([0, 1]), the vector space of continuous
functions on the interval [0, 1] ⊂ R, imbued with the norm

∥f ∥∞ := sup
x∈[0,1]

|f (x)|, f ∈ C ([0, 1]).

Then a sequence in C ([0, 1]) is a sequence of functions (fn) and fn → f if

∀
ε>0

∃
N∈N

∀
n>N

sup
x∈[0,1]

|fn(x)− f (x)|︸ ︷︷ ︸
=∥fn−f ∥∞

< ε.

In calculus, one says that (fn) converges to f uniformly. This is just the
ordinary norm convergence in the vector space.
Uniform convergence is in contrast to point-wise convergence: fn → f
pointwise if fn(x) → f (x) as n → ∞ for all x .
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Sequences of Continuous Functions
For example, the sequence of functions (fn) given by

fn(x) =

{
1− 2n|x − 1/2n| 0 ≤ x < 1/n,

0 1/n ≤ x ≤ 1,

does not converge to f (x) = 0 uniformly, even though lim
n→∞

fn(x) = 0 for
all x ∈ [0, 1]. This is because

∥fn − f ∥∞ = sup
x∈[0,1]

|fn(x)− f (x)| = 1 ̸→ 0

as n → ∞.
An alternative norm on C ([0, 1]) is given by

∥f ∥1 :=
∫ 1

0
|f (x)| dx , f ∈ C ([0, 1]).
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Sequences of Continuous Functions
We say that a sequence of functions (fn) converges in the mean to a
function f if

∀
ε>0

∃
N∈N

∀
n>N

∫ 1

0
|fn(x)− f (x)| dx < ε.

Continuing our example, we see that

∥fn − f ∥1 =
∫ 1

0
|fn(x)− f (x)| dx =

∫ 1/n

0
(1− 2n|x − 1/2n|) dx

=
1

n
− 2n

2

1

n2
=

1

2n
n→∞−−−→ 0.

We see that the convergence of a sequence in a vector space in general
depends on the norm that is used!
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Sequences of Continuous Functions
We finally remark that since

∥f ∥1 =
∫ 1

0
|f (x)| dx ≤ sup

x∈[0,1]
|f (x)| = ∥f ∥∞

uniform convergence implies convergence in the mean, i.e.,

∥fn − f ∥∞ → 0 ⇒ ∥fn − f ∥1 → 0

Our example has shown that the converse is false, i.e., mean convergence
does not imply uniform convergence.
In the same way, (fn) converges to f uniformly only if fn → f pointwise,
i.e.,

∥fn − f ∥∞ → 0 ⇒ |fn(x)− f (x)| → 0 for all x .
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Sequences and Closed Sets
We may also use sequences to give a more direct description of closed sets:
1.2.9. Theorem. Let (V , ∥ · ∥) be a normed vector space, Ω ⊂ V
non-empty and Ω the closure of Ω.

(i) Then x ∈ Ω if and only if there exists a sequence (xn) with xn ∈ Ω
for all n ∈ N and xn → x as n → ∞.

(ii) The set Ω is closed if and only if the limit x ∈ V of all convergent
sequences (xn) with xn ∈ Ω for all n ∈ N actually lies in Ω.

Proof.
(i) By Corollary 1.2.6, x ∈ Ω if and only if for every n there exists an

xn ∈ Ω such that xn ∈ B1/n(x). These points define a sequence (xn)
such that ∥xn − x∥ < 1/n, i.e., a sequence converging to x .

(ii) By (i), x ∈ Ω. Suppose that Ω is closed. Then Ω = Ω and x ∈ Ω. If
Ω is not closed, there exists a boundary point y not in Ω. But then
we can find a sequence (xn) with xn ∈ Ω that converges to y .
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An Example of a Subspace that is Not Closed
1.2.10. Example. Consider (C ([0, 1]), ∥ · ∥∞), the space of continuous
functions on the interval [0, 1] imbued with the supremum-norm. Then
P([0, 1]), the set of polynomials on the interval [0, 1], is a subspace of
C ([0, 1]). As a set, P([0, 1]) is not closed in C ([0, 1]).
We can see this easily, since the sequence (pn) of polynomials given by

pn(x) =
n∑

k=0

(
−1

2

)k

xk

converges to the function f /∈ P([0, 1]) given by f (x) = 1
1+x/2 :∥∥∥ 1

1 + x/2
−

n∑
k=0

(
−1

2

)k

xk
∥∥∥
∞

= sup
x∈[0,1]

∣∣∣ 1

1 + x/2
− 1− (−x/2)n+1

1 + x/2

∣∣∣
≤ sup

x∈[0,1]

(x
2

)n n→∞−−−→ 0.

Hence, by Theorem 1.2.9 (ii), P([0, 1]) is not closed.
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Dense Sets in Normed Vector Spaces
1.2.11. Definition. Let (V , ∥ · ∥) be a normed vector space and Ω ⊂ V .
Then Ω is said to be dense in V if Ω = V .

1.2.12. Remark. From Corollary 1.2.6 it follows that Ω is dense in V if and
only if for any x ∈ V and any ε > 0 there exists an y ∈ Ω such that
∥x − y∥ < ε. We say that for any x ∈ V there is an arbitrarily close y ∈ Ω.

1.2.13. Example. The set of rational numbers Ω = Q is dense in the set of
real numbers V = (R, | · |): for any real number x and for any ε > 0 we
can find a rational number y such that |x − y | < ε. This is achieved, e.g.,
by truncating the decimal expansion of x at a suitable position and letting
y be this truncated number.
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The Weierstraß Approximation Theorem
We have seen in Example 1.2.10 that the set of polynomials on a closed
interval is not closed in the set of continuous functions, since its boundary
points may be continuous, non-polynomial functions. In fact, we now show
that all continuous functions are boundary points of the set of polynomials:
1.2.14. Weierstraß Approximation Theorem. The set P([a, b]) is dense in
C ([a, b]), i.e., for every continuous function f and every ε > 0 there exists
a polynomial p such that

∥f − p∥∞ = sup
x∈[a,b]

|f (x)− p(x)| < ε.

We say that every continuous function can be approximated uniformly and
arbitrarily well by a polynomial. Note that this is a stronger statement than
usually encountered in calculus: Taylor’s Theorem, for example, allows only
the uniform approximation of smooth (infinitely often differentiable)
functions.
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The Weierstraß Approximation Theorem
There are many proofs of the Weierstraß Approximation Theorem, most
using advanced mathematical techniques. We will repeat here a beautiful
elementary proof given by Lebesgue in his first published paper at age 23
(he received his doctorate four years later).
Proof.
We use the fact that a continuous function f on a closed interval [a, b] is
also uniformly continuous, i.e.,

∀
ε>0

∃
δ>0

∀
x ,y∈[a,b]

|x − y | < δ ⇒ |f (x)− f (y)| < ε/4. (1.2.1)

This fact is usually proven in elementary calculus classes and we won’t
repeat the proof here. We need to show that for any ε > 0 and any
f ∈ C ([a, b]) we can find a polynomial p ∈ P such that ϱ(f , p) < ε, i.e.,

sup
x∈[a,b]

|f (x)− p(x)| < ε.
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The Weierstraß Approximation Theorem
Proof (continued).
Fix ε > 0 and f ∈ C ([a, b]). Then we can find some δ > 0 so that (1.2.1)
holds. We choose a partition (a0, a1, ... , an) of the interval [a, b], i.e., a set
of numbers with the properties

a0 = a, an = b, 0 < ak − ak−1 < δ, k = 1, ... , n.

< Ε � 4

< ∆

y � f HxL

a0 a1 a2 a3 a4 a5 a6 a7 a8

x

y
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The Weierstraß Approximation Theorem
Proof (continued).
We then define a piecewise linear function ψ by joining the points
(ak , f (ak)) with straight lines:

y � ΨHxL

a0 a1 a2 a3 a4 a5 a6 a7 a8

x

y

Then |ψ(ak)− ψ(x)| < |f (ak)− f (ak−1)| <
ε

4
for ak−1 < x < ak .
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The Weierstraß Approximation Theorem
Proof (continued).
Furthermore, by (1.2.1),

|f (ak)− f (x)| < ε

4
for ak−1 < x < ak .

Since f (ak) = ψ(ak), the triangle inequality yields

|ψ(x)− f (x)| < ε

4
+
ε

4
=
ε

2
for ak−1 < x < ak .

and hence

∥f − ψ∥∞ = sup
x∈[a,b]

|ψ(x)− f (x)|

= max
1≤k≤n

sup
x∈[ak−1,ak ]

|ψ(x)− f (x)| < ε

2
.
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The Weierstraß Approximation Theorem
Proof (continued).
We have therefore reduced the problem to approximating the piecewise
linear function ψ by a polynomial p, since if we can find a p such that

∥ψ − p∥∞ <
ε

2
, (1.2.2)

then
∥f − p∥∞ ≤ ∥f − ψ∥∞ + ∥ψ − p∥∞ ≤ ε

2
+
ε

2
= ε.

As a first step, we shift and scale ψ: define

φ(x) := ψ((b − a)x + a).

Then φ is a piecewise linear function φ : [0, 1] → R.
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The Weierstraß Approximation Theorem
Proof (continued).
If we find a polynomial q : [0, 1] → R such that

sup
x∈[0,1]

|φ(x)− q(x)| < ε,

then (1.2.2) holds for
p(x) := q

(
x − a

b − a

)
.

We now discuss how to approximate a piecewise linear function on [0, 1].
Set

φk(x) = αk

(
(x − βk) + |x − βk |

)
=

{
0 x < βk ,

2αk(x − βk) x ≥ βk ,
(1.2.3)

where αk ,βk ∈ R.
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The Weierstraß Approximation Theorem
Proof (continued).
The piecewise linear function φ : [0, 1] → R can then be represented in the
form

φ(x) = f (a) + φ1(x) + φ2(x) + · · ·+ φn(x)

for certain functions φk as in (1.2.3). It follows that

φ(x) = f (a) +
n∑

k=1

αk(x − βk)︸ ︷︷ ︸
polynomial

+
n∑

k=1

αk |x − βk |

It is hence sufficient to approximate the modulus |x | by a polynomial,
because that can then be shifted and translated to approximate each term
αk |x − βk | in the sum, yielding finally a polynomial approximation to φ.
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The Weierstraß Approximation Theorem
Proof (continued).
We will use the binomial series to approximate the square root:

√
1− z = 1−

∞∑
n=1

1

22n−1

(
2n − 2

n − 1

)
zn

n
(1.2.4)

In the assignments you will check that (1.2.4) holds and that the series
converges whenever |z | < 1. It also converges when |z | = 1, since

N∑
n=1

1

22n−1n

(
2n − 2

n − 1

)
= lim

x↗1

N∑
n=1

1

22n−1n

(
2n − 2

n − 1

)
xn

≤ 1− lim
x↗1

√
1− x = 1 (1.2.5)
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The Weierstraß Approximation Theorem
Proof (continued).
We note that it is sufficient to consider x ∈ [−1, 1], where

|x | =
√
x2 =

√
1− (1− x2) = 1−

∞∑
n=1

1

22n−1

(
2n − 2

n − 1

)
(1− x2)n

n
.

The convergence of the series is even uniform on [−1, 1] (why?), so that
truncating the series at a suitable high term yields a polynomial that
approximates |x | uniformly. This completes the proof.
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Infinite Bases in Normed Vector Spaces
Colloquially, we might define an “infinite basis” in a normed vector space
as consisting of a sequence (bn)n∈N such that every vector v has a unique
representation in the form

v =
∞∑
n=0

λnbn (1.2.6)

for certain numbers λn, n ∈ N. However, this equation is not as simple as
it looks, since the infinite sum (series) poses questions of convergence:

▶ Does the right-hand side of (1.2.6) converge for any sequence of
numbers (λn)?

▶ In what sense does the equality in (1.2.6) hold?
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Schauder Bases
To highlight these issues, we make the following, more precise, definition:
1.2.15. Definition. Let (V , ∥ · ∥) be a normed vector space. A sequence of
vectors (vn) in V is called a Schauder basis if for every v ∈ V there exists
a unique sequence of scalars (λn) such that

v = lim
N→∞

N∑
n=0

λnvn,

or, equivalently, ∥∥v − λ0v0 − λ1v1 − · · · − λNvN
∥∥ N→∞−−−−→ 0.

This definition should be compared with Definition 1.1.8. Since
convergence plays an essential role, a Schauder basis can only be defined in
a normed vector space.
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Monomials
Let us discuss a first example: in (C ([a, b]), ∥ · ∥∞) consider the sequence
of monomials on an interval,

mn ∈ C ([a, b]), mn(x) = xn, n ∈ N.
In order for the sequence (mk) to be a basis of C ([a, b]), we need to verify
that every continuous function u on [a, b] has a representation

u(x) =
∞∑
n=0

λnx
n

with uniquely determined coefficients λn ∈ R.
The existence of such a representation follows from the Weierstraß
Approximation Theorem: for any ε > 0 there exists N ∈ N and numbers
λn ∈ R such that ∥∥∥u −

N∑
n=0

λnmn

∥∥∥
∞
< ε.

However, the uniqueness of the coefficients λn is far from clear.
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Monomials
Recall from Theorem 1.1.10 that a basis in a finite-dimensional space is
characterized by the following two conditions:

▶ the span of the basis vectors is equal to the entire space,
▶ the basis vectors are linearly independent.

In an infinite-dimensional space, the first condition may be amended to
stating that

▶ the span of the vectors of a Schauder basis is dense in the space
since we are considering limits of linear combinations instead of exact
equalities.
However, it is not immediately clear how to translate the condition of
linear independence (which guarantees the uniqueness of a basis
representation) into the infinite-dimensional case. Linear independence is
based on finite linear combinations and extending these to infinite linear
combinations is problematical.
A way out is to consider a more restrictive approach, based on
orthogonality of vectors. This requires the introduction of a scalar product.
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Inner Product Spaces
1.3.1. Definition. Let V be a real or complex vector space. Then a map
⟨ · , · ⟩ : V × V → F is called a scalar product or inner product if for all
u, v ,w ∈ V and all λ ∈ F

(i) ⟨v , v⟩ ≥ 0 and ⟨v , v⟩ = 0 if and only if v = 0,
(ii) ⟨u, v + w⟩ = ⟨u, v⟩+ ⟨u,w⟩,
(iii) ⟨u,λv⟩ = λ⟨u, v⟩,
(iv) ⟨u, v⟩ = ⟨v , u⟩.
The pair (V , ⟨ · , · ⟩) is called an inner product space.

1.3.2. Remark. Properties (iii) and (iv) imply that

⟨λu, v⟩ = ⟨v ,λu⟩ = λ⟨v , u⟩ = λ⟨u, v⟩.

We say that the inner product is linear in the second component and
anti-linear in the first component.
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The Induced Norm
1.3.3. Examples.

▶ In Rn we define the canonical or standard scalar product

⟨x , y⟩ :=
n∑

i=1

xiyi , x , y ∈ Rn. (1.3.1)

▶ In Cn we can define the inner product

⟨x , y⟩ :=
n∑

i=1

xiyi , x , y ∈ Cn.

▶ In C ([a, b]), the space of complex-valued, continuous functions on the
interval [a, b], we can define an inner product by

⟨f , g⟩ :=
∫ b

a
f (x)g(x) dx , f , g ∈ C ([a, b]).
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The Induced Norm
1.3.4. Definition. Let (V , ⟨·, ·⟩) be an inner product space. The map

∥ · ∥ : V → R, ∥v∥ =
√

⟨v , v⟩
is called the induced norm on V .

1.3.5. Examples.
▶ The induced norm in Rn and Cn is given by

∥x∥ =
√
⟨x , x⟩ =

√√√√ n∑
i=1

|xi |2 = ∥x∥2, (1.3.2)

which is the usual euclidean norm.
▶ The induced norm on C ([a, b]) is

∥f ∥ =
√

⟨f , f ⟩ =

√∫ b

a
|f (x)|2 dx = ∥f ∥2

which is just the 2-norm.
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The Cauchy-Schwartz Inequality
1.3.6. Cauchy-Schwarz Inequality. Let (V , ⟨ · , · ⟩) be an inner product
vector space. Then

|⟨u, v⟩| ≤ ∥u∥ · ∥v∥ for all u, v ∈ V

where ∥ · ∥ is the induced norm.

Proof.
Let e := v/∥v∥. Then ⟨e, e⟩ = ⟨v , v⟩/∥v∥2 = 1 and

0 ≤ ∥u − ⟨e, u⟩e∥2 = ⟨u − ⟨e, u⟩e, u − ⟨e, u⟩e⟩
= ∥u∥2 − |⟨e, u⟩|2

It follows that

|⟨u, v⟩|2 = ∥v∥2 · |⟨u, e⟩|2 ≤ ∥u∥2 · ∥v∥2.
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The Induced Norm
1.3.7. Corollary. The induced norm is actually a norm, i.e., it satisfies

1. ∥x∥ ≥ 0, ∥x∥ = 0 ⇔ x = 0,
2. ∥λx∥ = |λ| · ∥x∥,
3. ∥x + y∥ ≤ ∥x∥+ ∥y∥

for all x , y ∈ V and λ ∈ R.

Proof.
All properties except for the triangle inequality are easily checked. By the
Cauchy-Schwarz inequality, we have

∥x + y∥2 = ∥x∥2 + ∥y∥2 + 2Re⟨x , y⟩
≤ ∥x∥2 + ∥y∥2 + 2|⟨x , y⟩|
≤ ∥x∥2 + ∥y∥2 + 2∥x∥∥y∥
= (∥x∥+ ∥y∥)2.
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Angle Between Vectors
1.3.8. Definition. Let V be an inner product space and u, v ∈ V . We
define the angle α(u, v) ∈ [0,π] between u and v by

cosα(u, v) =
⟨u, v⟩
∥u∥∥v∥

. (1.3.3)

This definition makes sense, since by the Cauchy-Schwarz inequality∣∣∣∣ ⟨u, v⟩
∥u∥∥v∥

∣∣∣∣ = |⟨u, v⟩|
∥u∥∥v∥

≤ 1.

In R2 and R3 the expression (1.3.3) corresponds to the geometric notion of
the (cosine of the) angle between two vectors.
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Angle Between Vectors
1.3.9. Example. For x , y ∈ R2 we have ∢(x , y) = α(x , y).
We may assume that ∥x∥ = ∥y∥ = 1 and we consider the case

x =

(
cosφ1

sinφ1

)
, y =

(
cosφ2

sinφ2

)
, 0 < φ1 < φ2 < π.

Then ∢(x , y) = φ2 − φ1 and

cos∢(x , y) = cos(φ2 − φ1) = cosφ2 cosφ1 + sinφ2 sinφ1

= ⟨x , y⟩ = cosα(x , y)

In a similar manner, one can prove that ∢(x , y) = α(x , y) for x , y ∈ R3.
In applications, we are nearly exclusively interested in whether or not two
vectors are at right-angles to each other, i.e., whether they are
perpendicular.
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Orthogonality and Pythagoras’s Theorem
1.3.10. Definition. Let (V , ⟨ · , · ⟩) be an inner product vector space.

(i) A vector v ∈ V is said to be normed (or normalized) if ⟨v , v⟩ = 1.
This is equivalent to ∥v∥ = 1.

(ii) Two vectors u, v ∈ V are said to be orthogonal or perpendicular if
⟨u, v⟩ = 0. We then write u ⊥ v .

1.3.11. Pythagoras’s Theorem. Let (V , ⟨ · , · ⟩) be an inner product space,
x , y ∈ V such that x ⊥ y and z = x + y . Then

∥z∥2 = ∥x∥2 + ∥y∥2.

Proof.
We see directly that

∥z∥2 = ⟨z , z⟩ = ⟨x + y , x + y⟩ = ⟨x , x⟩+ ⟨x , y⟩︸ ︷︷ ︸
=0

+ ⟨y , x⟩︸ ︷︷ ︸
=0

+⟨y , y⟩

= ∥x∥2 + ∥y∥2.
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Orthonormal Systems
1.3.12. Definition. Let (V , ⟨ · , · ⟩) be an inner product vector space. A
family of vectors {vn}n∈I ⊂ V , I ⊂ N, is called an orthonormal system if

⟨vm, vn⟩ = δmn =

{
1 for m = n,

0 for m ̸= n,
, j , k ∈ I ,

i.e., if ∥vn∥ = 1 and vm ⊥ vn for m ̸= n.

1.3.13. Example. The standard basis vectors in R3,

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 ,

are an orthonormal system (e1, e2, e3) with respect to the scalar product
(1.3.1).
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Orthogonal Polynomials
1.3.14. Example. Consider the space C ([−1, 1]) of complex-valued
continuous functions imbued with the scalar product given by

⟨u, v⟩ =
∫ 1

−1
u(x)v(x) dx . (1.3.4)

Let us regard the monomials
m0(x) = 1, m1(x) = x , m2(x) = x2.

Then

⟨m0,m1⟩ =
∫ 1

−1
m0(x)m1(x) dx =

∫ 1

−1
1 · x dx = 0,

⟨m0,m2⟩ =
∫ 1

−1
1 · x2 dx =

2

3
,

⟨m1,m2⟩ =
∫ 1

−1
x · x2 dx = 0.

Thus, m0 ⊥ m1 and m1 ⊥ m2 but m0 ̸⊥ m2.
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Orthonormal Systems
1.3.15. Example. In ℓ2 a scalar product can be defined by

⟨x , y⟩ :=
∞∑
n=0

xnyn.

Then the set (en)n∈N is an orthonormal system, where

en = (0, ... , 0, 1, 0, ...)

is a sequence equal to zero in every entry except for the nth entry, where it
equals one. In other words,

(en)k =

{
1 k = n,

0 k ̸= n.
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Orthonormal Bases
1.3.16. Definition and Theorem. Let (V , ⟨ · , · ⟩) be an inner product vector
space and {en}n∈I ⊂ V , I ⊂ N an orthonormal system in V . If span{en} is
dense in V , then the ordered set (en) is a Schauder basis of V . In
particular, any v ∈ V has the unique representation

v =
∑
n∈I

⟨en, v⟩en (1.3.5)

We say that {en} is an orthonormal basis (ONB) of V .

Proof.
Since the span of {en} is dense in V , every v ∈ V has a representation in
the form

v =
∑
n∈I

λnen

for certain λn ∈ F. It remains to show (1.3.5).
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Orthonormal Bases
Proof (continued).
We prove only the case I = N. Let

vN :=
N∑

n=0

λnen.

Then ∥vN − v∥ → 0 as N → ∞. Furthermore, for any m ∈ N and any
N > m,

⟨em, vN⟩ =
N∑

n=0

λn⟨em, en⟩ = λm

so we see that λn = ⟨en, vN⟩ for n ≤ N. Fix n ∈ N and choose N ≥ n.
Then

|λn − ⟨en, v⟩| = |⟨en, vN − v⟩| ≤ ∥vN − v∥ N→∞−−−−→ 0

by the Cauchy-Schwartz inequality. This shows (1.3.5).
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Fourier-Euler Basis
We now have a useful concept of basis in an infinite-dimensional inner
product space: a system of vectors that is orthogonal and whose span is
dense. There are two basic examples worth mentioning now:
1.3.17. Example. The functions bn ∈ C ([0, 2π]) given by

bn(x) =
1√
2π

e inx , n ∈ Z, (1.3.6)

give an orthonormal system {bn}n∈Z with respect to the scalar product

⟨u, v⟩ =
∫ 2π

0
u(x)v(x) dx .

The span of {bn}n∈Z is also dense in C ([0, 2π]), but we have not proved
this yet. The proof is quite complicated and will have to be postponed.
The basis (1.3.6) is called the Fourier-Euler basis of the continuous
functions. We will analyze it more closely in a later section.
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A Polynomial Basis?
1.3.18. Example. The span of the functions mn ∈ C ([−1, 1]) given by

mn(x) = xn, n ∈ N, (1.3.7)

is dense in C ([−1, 1]) (by the Weierstraß Approximation theorem), but the
functions are not orthogonal (see Example 1.3.14. In order to construct an
orthonormal basis for C ([1, 1]), we need to orthonormalize them. This is
done using the Gram-Schmidt process, which we now describe.
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Orthogonal Complement
1.3.19. Definition. If M ⊂ V is a subspace, the set

M⊥ :=
{
v ∈ V : ∀

u∈M
⟨v , u⟩ = 0

}
is called the orthogonal complement of M.

1.3.20. Lemma. M⊥ is a subspace of V .

Proof.
If v1, v2 ∈ M⊥, then

⟨v1 + v2, u⟩ = ⟨v1, u⟩+ ⟨v2, u⟩ = 0 + 0 = 0

for all u ∈ M, so v1 + v2 ∈ M⊥. Similarly, if v ∈ M⊥ and λ ∈ F, then
⟨λv , u⟩ = λ⟨v , u⟩ = 0, so λv ∈ M⊥. Thus M⊥ is a subspace of V .
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Projection Theorem
1.3.21. Projection Theorem. Let (V , ⟨ · , · ⟩) be an inner product space and
u1, ... , un a finite orthonormal system in V , i.e.,

⟨uj , uk⟩ = δjk =

{
1 for j = k,

0 for j ̸= k,
, j , k = 1, ... , n.

Let U := span{u1, ... , un}. Then for every v ∈ V there exists a unique
representation

v = u + w where u =
n∑

i=1

⟨ui , v⟩ui ∈ U and w ∈ U⊥.
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Projection Theorem
Proof.
We first show the uniqueness of the decomposition: Assume
v = u + w = u′ + w ′. Then by Pythagoras’s theorem,

0 = ∥u − u′ + (w − w ′)∥2 = ∥u − u′∥2 + ∥w − w ′∥2,

so ∥u − u′∥ = ∥w − w ′∥ = 0. Thus u = u′ and w = w ′. Regarding the
existence of such a decomposition, it is clear that u lies in U. We need to
show that w = v − u ∈ U⊥. For this, it is sufficient to show that
⟨w , uj⟩ = 0 for j = 1, ... , n, since (u1, ... , un) is a basis of U. Now for
j = 1, ... , n we have

⟨w , uj⟩ = ⟨v , uj⟩ − ⟨u, uj⟩ = ⟨v , uj⟩ −
r∑

i=1

⟨ui , v⟩ ⟨ui , uj⟩︸ ︷︷ ︸
=δij

= ⟨v , uj⟩ − ⟨v , uj⟩ = 0.
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Bessel’s Inequality
As a consequence of the Projection Theorem 1.3.21 and Pythagoras’s
Theorem 1.3.11 we obtain the following important result:
1.3.22. Bessel Inequality. Let (V , ⟨ · , · ⟩) be an inner product space and
{ek}n∈I ⊂ V , I ⊂ N, be an orthonormal system in V . Then, for any
v ∈ V , ∑

n∈I
|⟨en, v⟩|2 ≤ ∥v∥2. (1.3.8)
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Bessel’s Inequality
Proof.
Let us assume first that I = {1, ... ,N} is finite. Let v ∈ V be any vector.
Then, by the projection theorem, we can write

v = u + w =
N∑

n=0

⟨en, v⟩en + w

where u ⊥ (v − u). Then, by Pythagoras’s theorem,

0 ≤ ∥v − u∥2 = ∥v∥2 − ∥u∥2 = ∥v∥2 −
N∑

n=0

|⟨en, v⟩|2. (1.3.9)

This proves (1.3.8) for the case of finite N. If I = N, we can let N → ∞
on both sides of the estimate (1.3.9) and again obtain (1.3.8).
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The Riemann-Lebesgue Lemma
An immediate corollary of the Bessel inequality is the followinG:
1.3.23. Riemann-Lebesgue Lemma. Let (V , ⟨ · , · ⟩) be an inner product
space and {ek}n∈I ⊂ V , I ⊂ N, an infinite orthonormal system in V .
Then, for any v ∈ V ,

⟨en, v⟩
n→∞−−−→ 0. (1.3.10)

The result follows from the fact that the series in (1.3.8) can only converge
if the sequence of summands converges to zero.
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Gram-Schmidt Orthonormalization
The goal of Gram-Schmidt orthonormalization is to obtain an orthonormal
system from any family of vectors.
Assume that we have a family of vectors {vk}k∈I ⊂ V , I ⊂ N, in an inner
product space V . We wish to construct a new family {wk}k∈I ⊂ V ,
I ⊂ N, that is orthonormal. We start with v1 and norm it, defining

w1 :=
v1
∥v1∥

Next, we want to obtain from v2 a vector w2 such that w1 ⊥ w2. By
Theorem 1.3.21, v2 has a unique representation as a sum v2 = x + y ,
where x ∈ span{w1} and y ∈ (span{w1})⊥. Now x = ⟨w1, v2⟩w1, so

y = v2 − ⟨w1, v2⟩w1 ∈ (span{w1})⊥.

(Of course, y is independent and even orthogonal to w1.)
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Gram-Schmidt Orthonormalization
It just remains to normalize y , and we define

w2 :=
v2 − ⟨w1, v2⟩w1

∥v2 − ⟨w1, v2⟩w1∥
.

Now we can write

v3 = ⟨w1, v3⟩w1 + ⟨w2, v3⟩w2 + y ,

where y ∈ (span{w1,w2})⊥. Thus

w3 :=
v3 − ⟨w2, v3⟩w2 − ⟨w1, v3⟩w1

∥v3 − ⟨w2, v3⟩w2 − ⟨w1, v3⟩w1∥

will be normed and orthogonal to w1 and w2.
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Gram-Schmidt Orthonormalization
Proceeding in this way, we set

w1 :=
v1

∥v1∥

wk :=
vk −

∑k−1
j=1 ⟨wj , vk⟩wj

∥vk −
∑k−1

j=1 ⟨wj , vk⟩wj∥
, k = 2, 3, 4, ... ,

and hence obtain an orthonormal system as desired.
1.3.24. Example. Continuing the discussion in Examples 1.3.14 and 1.3.18,
we consider the monomials

m0(x) = 1, m1(x) = x , m2(x) = x2

in C ([−1, 1]).
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Orthogonal Polynomials
We apply the orthonormalization procedure to obtain

q0(x) =
m0(x)

∥m0∥
=

1√∫ 1
−1|1|2 dx

=
1√
2
,

q1(x) =
m1(x)− ⟨q0,m1⟩q0(x)
∥m1 − ⟨q0,m1⟩q0∥

=
x√∫ 1

−1|x |2 dx
=

√
3

2
x ,

q2(x) =
m2(x)− ⟨q1,m2⟩q1(x)− ⟨q0,m2⟩q0(x)

∥m2 − ⟨q1,m2⟩q1 − ⟨q0,m2⟩q0∥

=
x2 − 1/3√∫ 1

−1|x2 − 1/3|2 dx
=

3
√
5

2
√
2
(x2 − 1/3).

This procedure can be applied to all monomials mn(x) = xn to yield a
system of orthonormal polynomials in C ([−1, 1]), called the Legendre
polynomials. Since the set of all polynomials is dense, the Legendre
polynomials constitute an ONB of C ([−1, 1]).
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Best Approximation
The use of an orthonormal basis (as opposed to any Schauder basis) also
has significant advantages in practical approximation problems. In
applications, one usually wants to use only a few basis vectors to
approximately represent a given vector. The question is now how to select
the coefficients optimally. More precisely:
Let (V , ⟨ · , · ⟩) be an inner product space, v ∈ V and B = {en} an
orthonormal system in V . We seek to approximate v using a linear
combination of the first N ∈ N elements of B,

v ≈
N∑

n=1

λnen, λ1, ... ,λN ∈ F. (1.3.11)

The goal is to choose the coefficients λ1, ... ,λN in such a way as to
minimize the approximation error∥∥∥v −

N∑
i=1

λnen

∥∥∥.
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Best Approximation
Note that∥∥∥v −

N∑
i=1

λnen

∥∥∥2 = ∥v∥2 +
N∑

n=1

|λn|2 −
N∑

n=1

λn⟨v , en⟩ −
N∑

n=1

λn⟨en, v⟩

= ∥v∥2 +
N∑

n=1

∣∣⟨en, v⟩ − λn
∣∣2 − N∑

n=1

|⟨en, v⟩|2. (1.3.12)

It is clear that (1.3.12) is minimal if λn = ⟨en, v⟩, i.e., the coefficients in
(1.3.11) are just the coefficients of a basis expansion. We also see that

∥∥∥v −
n∑

i=1

⟨ei , v⟩ei
∥∥∥ ≤

∥∥∥v −
N∑
i=1

⟨ei , v⟩ei
∥∥∥ for n > N, (1.3.13)

so the approximation can only improve when we add further elements of
the orthonormal system B to the approximation. The previous coefficients
do not need to be recalculated when more orthonormal vectors are added.



Legendre Polynomials and Applications Slide 96

Introduction

Normed Vector Spaces

Bases and Inner Product Spaces

Legendre Polynomials and Applications

Hilbert Spaces

The Space of Square-Integrable Functions

Fourier Series

Looking back: Finite-Dimensional Vector Spaces



Legendre Polynomials and Applications Slide 97

The Legendre Polynomials
1.4.1. Definition. For n ∈ N the function

Pn : [−1, 1] → R, Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]. (1.4.1)

is said to be the nth Legendre polynomial.

1.4.2. Remark. The expression (1.4.1) is known as Rodrigues’s formula
for the Legendre polynomials. The Legendre polynomials can also be
defined as the unique bounded solution to the Legendre differential
equation for x ∈ (−1, 1),

d

dx

(
(x2 − 1)

dy

dx

)
= n(n + 1)y , with y(1) = 1. (1.4.2)

This equation occurs naturally in the study of partial differential equations.
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The Legendre Polynomials
It can be easily seen from Rodriques’s formula that each Pn is a polynomial
of degree n. We plot the first six Legendre polynomials below:

P0(x) = 1, P1(x) = x , P2(x) =
1

2
(3x2 − 1)

P3(x) =
1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3),

P5(x) =
1

8
(63x5 − 70x3 + 15x)

-1 1
x

-1

1

y
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Orthogonality of the Legendre Polynomials
1.4.3. Theorem. The Legendre polynomials are orthogonal with respect to
the scalar product (1.3.4), i.e.,

⟨Pn,Pm⟩ =
∫ 1

−1
Pn(x)Pm(x) dx = 0, n ̸= m. (1.4.3)

Proof.
Since Pn is a polynomial of degree n, it is sufficient to show that Pn is
orthogonal to any monomial

mk : [−1, 1] → R, mk(x) = xk , (1.4.4)

of degree k < n. We define un(x) := (x2 − 1)n so

Pn(x) =
1

2nn!

dn

dxn
[(x2 − 1)n] =

1

2nn!
u
(n)
n (x).
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Orthogonality of the Legendre Polynomials
Proof (continued).
Note that for any k < n, u(k)n (−1) = u

(k)
n (1) = 0. Let 0 ≤ k < n. Then,

integrating by parts, we find

⟨mk ,Pn⟩ =
1

2nn!

∫ 1

−1
xku

(n)
n (x) dx

=
1

2nn!
u
(n−1)
n (x)xk

∣∣∣∣1
−1︸ ︷︷ ︸

=0

− k

2nn!

∫ 1

−1
xk−1u

(n−1)
n (x) dx .

Repeatedly integrating by parts, we obtain

⟨mk ,Pn⟩ =
(−1)kk!

2nn!

∫ 1

−1
u
(n−k)
n (x) dx =

(−1)kk!

2nn!
u
(n−k−1)
n (x)

∣∣∣∣1
−1

= 0.

This completes the proof.
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Legendre Polynomials and Orthonormalized Monomials
It turns out that (up to normalization) the Legendre polynomials are
precisely the polynomials obtained from monomials through
orthonormalization.
1.4.4. Theorem. Let (en)n∈N denote the sequence of polynomials obtained
from the monomials

mk : [−1, 1] → R, mk(x) = xk ,

through Gram-Schmidt orthonormalization. Then

en =
1

∥Pn∥
Pn. (1.4.5)
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Legendre Polynomials and Orthonormalized Monomials
Proof.
Fix n ∈ N and define the space of all real polynomials of degree less than
or equal to n,

Pn :=
{
p : [−1, 1] → R : p(x) =

n∑
k=0

akx
k
}
.

Then {e0, e1, ... , en−1, en} is a basis of Pn and we have the basis
representation

Pn(x) =
n−1∑
k=0

λkek(x) + λnen(x), λ1, ... ,λn ∈ R.

Since (en) is an orthonormal basis, we have

λk = ⟨ek ,Pn⟩.
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Legendre Polynomials and Orthonormalized Monomials
Proof (continued).
As Pn is orthogonal to all monomials of degree less than n, we see that

Pn(x) = λnen(x)

for some λn ∈ R. Using ∥en∥ = 1,

∥Pn∥ = ∥λnen∥ = |λn|,

so
1

∥Pn∥
Pn(x) = ±en(x).

To determine the sign, note that the coefficients of xn in Pn(x) and en(x)
are both positive (why?), so (1.4.5) holds.
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The Fourier-Legendre Basis
Thus, any function f ∈ C ([−1, 1]) can be expanded in a series of the form

f (x) =
∞∑
n=0

1

∥Pn∥2
⟨Pn, f ⟩Pn(x),

where

⟨Pn, f ⟩ =
∫ 1

−1
f (x)Pn(x) dx and ∥Pn∥2 =

∫ 1

−1
(Pn(x))

2 dx .

In the assignments, we will establish

∥Pn∥ =

√
2

2n + 1
.

Hence, for any f ∈ C ([−1, 1]),

f (x) =
∞∑
n=0

2n + 1

2
⟨Pn, f ⟩Pn(x) (1.4.6)

The expansion (1.4.6) is known as a Fourier-Legendre series for f .
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Fourier-Legendre Series
1.4.5. Example. Using Mathematica, we expand the function

f : [−1, 1] → R, f (x) = |x − 1/2|

in a Fourier-Legendre series of polynomials. Note that this is an example of
a polynomial approximation where a Taylor series would not be applicable,
because f is not differentiable at x = 1/2.

p@x_, m_D := â
n=0

m 2 n + 1

2
à

-1

1

LegendreP@n, yD Abs@y - 1 � 2D â y LegendreP@n, xD;

Simplify@p@x, 4DD

3923 - 8656 x + 1890 x2
+ 5040 x3

+ 2835 x4

8192

Simplify@p@x, 8DD
1

33 554 432
I17 117 153 - 35 623 456 x - 17 089 380 x2

+ 8 981 280 x3
+

102 972 870 x4
+ 44 108 064 x5

- 104 108 004 x6
- 35 212 320 x7

+ 34 459 425 x8M
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Fourier-Legendre Approximation of f (x) = |x − 1/2|
We illustrate the effect of the first 12 terms in the series:

-1 1
x

1

3

2

y
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Fourier-Legendre Approximation of f (x) = |x − 1/2|
At 40 terms, the approximation is quite good:

-1
1

2
1

x

1

1

2

3

2

y
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Recurrence Relations
Many sequences of orthogonal polynomials can be constructed recursively
through so-called recurrence relations. For example, the Legendre
polynomials satisfy the relation

(2n + 1)xPn(x) = (n + 1)Pn+1(x) + nPn−1(x). (1.4.7)

There exist a large variety of such recurrence relations, some of which we
list without proof below:

(i) Pn(x) = P ′
n+1(x)− 2xP ′

n(x) + P ′
n−1(x),

(ii) P ′
n+1(x)− P ′

n−1(x) = (2n + 1)Pn(x),
(iii) xP ′

n(x)− P ′
n−1(x) = nPn(x),

(iv) P ′
n(x)− xP ′

n−1(x) = nPn−1(x),
(v) (x2 − 1)P ′

n(x) = nxPn(x)− nPn−1(x).
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Recurrence Relations
Proof of (1.4.7).
The proof is based on Rodrigues’s formula (1.4.1) and the fact that

x
dn

dxn
=

dn

dxn
x − n

dn−1

dxn−1
(1.4.8)

as is easily seen by applying the Leibniz rule of differentiation to
dn

dxn (xf (x)). It follows that

xPn(x) =
1

2nn!

dn

dxn
[x(x2 − 1)n]− n

2nn!

dn−1

dxn−1
(x2 − 1)n

=
1

2n+1(n + 1)!

dn+1

dxn+1
(x2 − 1)n+1 − n

2nn!

dn−1

dxn−1
(x2 − 1)n

= Pn+1(x)−
n

2nn!

dn−1

dxn−1
(x2 − 1)n (1.4.9)
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Recurrence Relations
Proof (continued).
Now

xPn(x) =
x

2nn!

dn

dxn
(x2 − 1)n =

x

2n−1(n − 1)!

dn−1

dxn−1
[x(x2 − 1)n−1]

Applying (1.4.8), we obtain

xPn(x) =
1

2n−1(n − 1)!

dn−1

dxn−1
[x2(x2 − 1)n−1]

− n − 1

2n−1(n − 1)!

dn−2

dxn−2
[x(x2 − 1)n−1]

=
1

2n−1(n − 1)!

dn−1

dxn−1
[(x2 − 1 + 1)(x2 − 1)n−1]

− n − 1

2nn!

dn−1

dxn−1
(x2 − 1)n
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The Generating Function
Proof (continued).
Expanding and gathering, we have

xPn(x) = Pn−1 +
n + 1

2nn!

dn−1

dxn−1
(x2 − 1)n. (1.4.10)

Taking (1.4.9) divided by n, (1.4.10) divided by n + 1 and adding the two
identities, we obtain the result.
From the recurrence formula (1.4.7) we obtain the generating function for
the Legendre polynomials, which will be the basis for our discussion of
potentials..
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The Generating Function
1.4.6. Theorem. The Legendre polynomials Pn(x) can be obtained from
the generating function

1√
1− 2xt + t2

=
∞∑
n=0

Pn(x)t
n (1.4.11)

which for every x ∈ [−1, 1] has radius of convergence 1.

Proof.
The proof is based on the recurrence formula (1.4.7) and is part of the
assignments.
The generating function (1.4.11) occurs naturally in potential problems in
physics (which is how it was discovered by Legendre). This includes
problems involving the gravitational or electrostatic potentials. We will
formulate examples in the electrostatic context, but they can easily be
transferred to other setting.
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The Electrostatic Potential induced by a Charged Body
A charged body in R3 induces an electrostatic field E⃗ , which can be
described as the gradient of the electrostatic potential V . Suppose that
the charged body can be described through a charge distribution
ϱ : R3 → [0,∞), which we assume to be a piecewise continuous function.
(This excludes ideal point charges and surface charges.)
In electrostatic cgs units (where 4πε0 = 1), the electrostatic potential
induced at a point p ∈ R3 is given by

V (p) =

∫∫∫
R3

ϱ(q)

|p − q|
dq. (1.4.12)

(This integral can be derived as a so-called fundamental solution of
Poisson’s partial differential equation ∆V = ϱ in R3. This will be
performed in detail in the course Vv557 Methods of Applied Math II.)
Evaluating the integral (1.4.12) is often quite difficult. We now study this
in more detail.
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Spherical Coordinates
We aim to evaluate (1.4.12) for some fixed p ∈ R3. Let us choose an
origin and coordinate axes so that p lies on the z-axis at p = (0, 0, ζ) with
ζ > 0. We further introduce spherical coordinates

x = r cosϕ sin θ, y = r sinϕ sin θ, z = r cos θ

with (r ,ϕ, θ) ∈ [0,∞)× [0, 2π)× [0,π]. Hence, θ is the angle between a
point q ∈ R3 and the fixed point p.
For q = (r cosϕ sin θ, r sinϕ sin θ, r cos θ) we have

|p − q| =
√

(0− r cosϕ sin θ)2 + (0− r sinϕ sin θ)2 + (ζ − r cos θ)2

=
√

r2 + ζ2 − 2ζr cos θ (1.4.13)

Hence, in spherical coordinates, (1.4.12) becomes

V (0, 0, ζ) =: v(ζ) =

∫ ∞

0

∫ 2π

0

∫ π

0

ϱ(r ,ϕ, θ)r2 sin θ dθ dϕ dr√
r2 + ζ2 − 2ζr cos θ



Legendre Polynomials and Applications Slide 115

The Multipole Expansion
Let us assume that the charged body is finite, so |ϱ(q)| = 0 if |q| > a for
some a > 0. If ζ > a, then

V (z) =

∫ a

0

∫ 2π

0

∫ π

0

ϱ(r ,ϕ, θ)r2 sin θ dθ dϕ dr

ζ
√
1 + (r/ζ)2 − 2(r/ζ) cos θ

where r/ζ < 1. Using the expansion (1.4.11), we can write

v(ζ) =
1

ζ

∫ a

0

∫ 2π

0

∫ π

0
ϱ(r ,ϕ, θ)r2 sin θ

∞∑
n=0

Pn(cos θ)

(
r

ζ

)n

dθ dϕ dr

=
∞∑
n=0

qn
ζn+1

with
qn =

∫ a

0

∫ 2π

0

∫ π

0
ϱ(r ,ϕ, θ)rn+2 sin θPn(cos θ) dθ dϕ dr .
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The Multipole Expansion
We can write this expansion in coordinate-free form as

V (p) =
∞∑
n=0

qn(θ)

|p|n+1
, (1.4.14)

where θ = ∠(p, q) is the angle between p and q and

qn(θ) =

∫∫∫
R3

|q|nϱ(q)Pn(cos θ) dq.

The series (1.4.14) is called the multipole expansion of the potential. It
gives a power series in terms of the distance from the origin. The
coefficients qn, n ∈ N, have various physical interpretations.
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The Monopole Moment
The coefficient q0 is called the monopole moment and represents the
total charge,

q0(θ) =

∫∫∫
R3

ϱ(q)P0(cos θ) dq =

∫∫∫
R3

ϱ(q) dq =: Q. (1.4.15)

Hence,

V (p) =
Q

|p|
+

∞∑
n=1

qn(θ)

|p|n+1
.

The potential induced by an ideal point charge at the origin is exactly

Vpoint(p) =
Q

|p|
(1.4.16)

so the leading-order (dominating) term in the multipole expansion is the
potential of a point charge with the total charge equal to that of the body
under consideration.
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An Ideal Monopole
1.4.7. Example. Consider a uniformly charged ball of radius a > 0, centered
at the origin and with charge density ϱ0 > 0. The monopole moment is the
total charge,

q0 =

∫∫∫
R3

ϱ(x) dx =
4

3
πa3 · ϱ0.

All other moments vanish, because for n ≥ 1,

qn =

∫ a

0

∫ 2π

0

∫ π

0
ϱ0r

n+2 sin θPn(cos θ) dθ dϕ dr

=
2πϱ0
n + 3

an+3

∫ π

0
sin θPn(cos θ) dθ

=
2πϱ0
n + 3

an+3

∫ 1

−1
1 · Pn(t) dt =

2πϱ0
n + 3

an+3⟨P0,Pn⟩L2 = 0.

We see that a uniformly charged ball induces exactly the same potential as
a point charge.
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A Shifted Point Charge
Now suppose that a point charge is shifted from the origin to the position
q. Then the potential at a point p = (0, 0, ζ), ζ > |q| > 0, is given by

Vpoint(p) =
Q

|p − q|
Using polar coordinates for q we again have (1.4.13), so

Vpoint(p) =
Q√

r2 + ζ2 − 2ζr cos θ
=

Q

ζ

∞∑
n=0

Pn(cos θ)

(
r

ζ

)n

Suppose that |q| < ζ. Using again the expansion (1.4.11), we obtain

Vpoint(p) =
Q

|p|
+

∞∑
n=1

Pn(cos θ)
Q|q|n

|p|n+1
,

where θ = ∠(p, q) is the angle between p and q. We now have a much
more complicated expansion than (1.4.16). However, note that the term q0
(the total charge) has stayed the same.
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A Shifted Point Charge
1.4.8. Remark. The monopole moment (1.4.15) is independent of the
choice of origin (or, equivalently, a position shift of the charged body): if
q′ = q +∆q is the position of the shifted body, then the total charge
q0 = Q does not change.
Now consider two point charges: a positive charge q+ at position q ∈ Rn

and an opposite charge q− at position −q. In spherical coordinates,

q =

r cosϕ sin θ
r sinϕ sin θ
r cos θ

 , −q =

−r cosϕ sin θ
−r sinϕ sin θ
−r cos θ

 =

r cosϕ sin(θ + π)
r sinϕ sin(θ + π)
r cos(θ + π)

 .

We now let
r :=

d

2

for d > 0.
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A Physical Dipole
This arrangement is called a physical dipole. The potential is induced by
these charges at p = (0, 0, ζ) is given by

Vphys. dipole(p) = Vpoint;q+(p) + Vpoint;q−(p)

=
∞∑
n=0

Pn(cos θ)
q+|q|n

|p|n+1
+

∞∑
n=0

Pn(− cos θ)
q−|q|n

|p|n+1

=
∞∑
n=0

Pn(cos θ)
q+dn

2n|p|n+1
+

∞∑
n=0

(−1)nPn(cos θ)
q−dn

2n|p|n+1

=
q+ + q−

|p|
+

(q+ − q−)d cos θ

2|p|2

+
∞∑
n=2

(q+ + (−1)nq−)Pn(cos θ)
dn

2n|p|n+1

where we have used that Pn(−x) = (−1)nPn(x).
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A Mathematical Dipole
Note that if q− = −q+, then the total charge of the dipole is zero and the
dominating term of the potential is

(q+ − q−)d cos θ

2|p|2
=

q+d cos θ

|p|2
=

q+|p|d cos θ

|p|3
=

q+⟨2q, p⟩
|p|3

.

The vector

u := q+ · (2q) (1.4.17)

is called the dipole moment. (Here 2q is the vector pointing from −q to
q.) An ideal or mathematical dipole is obtained by letting d → 0 while
u remains constant (i.e., (q+ − q−) → ∞). This can be made
mathematically precise using the theory of distributions, but we omit this
here. One then obtains

Vmath. dipole(p) =
⟨u, p⟩
|p|3

.
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The Dipole Moment
In the general multipole expansion the second coefficient is

q1(θ) =

∫∫∫
R3

ϱ(q) · |q|P1(cos θ) dq =

∫∫∫
R3

ϱ(q)|q| cos∠(p, q) dq

=
1

|p|

∫∫∫
R3

ϱ(q)⟨p, q⟩ dq =
⟨p, u⟩
|p|

where

u :=

∫∫∫
R3

q ϱ(q) dq (1.4.18)

is called the dipole moment, generalizing (1.4.17). Note that while the
monopole moment q0 is a (constant) scalar, the dipole moment (1.4.18) is
a vector. It is independent of p and enters into q1 by taking the scalar
product with p/|p|.
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Higher-Order Terms and Dependence on Coordinates
While the monopole moment describes the total charge, the dipole
moment describes the charge distribution within the body. This is also true
of the higher-order terms, such as q2 (related to the quadrupole
moment, a tensor) and q3 (related to the octupole moment).
The dipole moment is not in general independent of the choice of origin
(or, equivalently, a position shift of the charged body): if q′ = q +∆q is
the position of the shifted body and u′ denotes the dipole moment of the
shifted body, we have

u′ =

∫∫∫
R3

q ϱ(q +∆q) dq =

∫∫∫
R3

(q −∆q) ϱ(q) dq = u − Q∆q.

Hence, if the total charge Q vanishes, the dipole moment is independent of
the choice of origin. If not, then the origin needs to be explicitly stated for
the dipole moment to be defined.
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An Ideal Dipole
1.4.9. Example. Consider a ball of unit radius with charge density

ϱ(x , y , z) =
z√

x2 + y2 + z2
.

Let p = (0, 0, ζ), ζ > 1.

qn =

∫ 1

0

∫ 2π

0

∫ π

0
ϱ0r

n+2 cos θ sin θPn(cos θ) dθ dϕ dr

=
2π

n + 3

∫ π

0
cos θ sin θPn(cos θ) dθ

=
2π

n + 3

∫ 1

−1
t · Pn(t) dt

=
2π

n + 3
⟨P1,Pn⟩L2 =

{
π
3 n = 1,

0 n ̸= 1

so on the z-axis the only non-zero term is the dipole term.
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On Convergence
In the previous sections, we have imbued the space of continuous functions
C ([a, b]) with the scalar product defined by

⟨u, v⟩ :=
∫ b

a
u(x)v(x) dx . (1.5.1)

The induced norm is then

∥u∥2 :=

√∫ b

a
|u(x)|2 dx (1.5.2)

which is different from the more commonly used

∥u∥∞ := sup
x∈[a,b]

|u(x)|.
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Cauchy Sequences
To understand the implications of the choice of norm, we consider the
general setting. A sequence (un) in any normed vector space (V , ∥ · ∥)
converges to a limit u ∈ V if and only if

∥un − u∥ → 0

It is then also true (why?) that

∀
ε>0

∃
N∈N

∀
n,m>N

∥un − um∥ < ε, (1.5.3)

i.e., the terms of the sequence are arbitrarily close to each other if N is
sufficiently large. A sequence satisfying (1.5.3) is said to be a Cauchy
sequence.
Hence, every convergent sequence is a Cauchy sequence, but is the
converse true? Does every Cauchy sequence converge to some limit?
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Cauchy Sequences
For illustration, consider a sequence (un) of rational numbers, for example

un =
n∑

k=1

1

k2

We see that, for n > m > N,

|un − um| =
n∑

k=m+1

1

k2
≤

n∑
k=m+1

1

(k − 1)k
=

1

m
− 1

n
<

1

N

so (un) is a Cauchy sequence. But (un) converges to an rational number
(π2/6). Hence, if we were only considering the set of rational numbers, the
sequence (un) would not have a limit.
This illustrates that whether or not every Cauchy sequence is a convergent
sequence is a property of the normed vector space.
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Completeness, Banach and Hilbert Spaces
1.5.1. Definition. A normed vector space (V , ∥ · ∥) is said to be complete
if every Cauchy sequence in V has a limit in V .

(i) A complete normed vector space is called a Banach space.
(ii) An inner product space that is complete with respect to the induced

norm is called a Hilbert space.
We will often denote Hilbert spaces by the letter H.
The completeness of a vector space is essential for many basic properties
to hold. For example, we can answer the following question: given an
orthonormal sequence (en) in a Hilbert space, can we choose any numbers
λn and write out the sum

∞∑
n=0

λnen

to obtain a meaningful element in H? (In the finite-dimensional case, this
is of course trivially the case.)
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Convergence and Absolute Convergence of Series
To illustrate the usefulness of the concept of completeness, we give a result
concerning series. Given a sequence (an) of elements in a Banach space X ,
we might ask for a condition that ensures that the series

∞∑
n=0

an

converges to some element of X . A useful concept here is that of absolute
convergence:
1.5.2. Definition. Let (an) be a sequence in a Banach space X . Then we
say that the sequence is absolutely summable or that the series

∑∞
n=0 an

is absolutely convergent if
∞∑
n=0

∥an∥ <∞.
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Convergence and Absolute Convergence of Series
1.5.3. Lemma. Let (an) be a sequence in a Banach space X . Then

∞∑
n=0

an converges if
∞∑
n=0

∥an∥ <∞

Proof.
Let

Sn =
n∑

k=0

ak , sn =
n∑

k=0

∥ak∥.

Then,

∥Sn − Sm∥ =
∥∥∥ n∑
k=m

ak

∥∥∥ ≤
n∑

k=m

∥ak∥ = |sn − sm|.

If (sn) converges, then (sn) is Cauchy and so is (Sn). Since X is complete,
this implies that (Sn) converges.
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Convergence of Orthonormal Sequences
1.5.4. Theorem. Let H be a Hilbert space and (en) an orthonormal
sequence in H.

(i) The series
∞∑
n=0

λnen

converges to an element v ∈H if and only if
∞∑
n=0

|λn|2 <∞.

(ii) For any v ∈H, the sequence
∞∑
n=0

⟨en, v⟩en

converges.
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Convergence of Orthonormal Sequences
For the proof, we use the fact that the real numbers are complete (every
real Cauchy sequence converges to some real number). This is usually
proven in first-semester calculus.
Proof.

(i) Let

Sn =
n∑

k=0

λkek , sn =
n∑

k=0

|λk |2.

Then, by Pythagoras’s Theorem 1.3.11,

∥Sn − Sm∥2 =
∥∥∥ n∑
k=m

λkek

∥∥∥2 = n∑
k=m

∥λkek∥2 =
n∑

k=m

|λk |2 = |sn − sm|.

Hence (Sn) is Cauchy if and and only if (sn) is Cauchy, i.e., if and
only if (sn) converges.
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Convergence of Orthonormal Sequences
Proof (continued).

(i) Since H is complete, (Sn) converges if and only if (sn) converges.
(ii) From the Bessel inequality (1.3.8) we have

∞∑
n=0

|⟨en, v⟩|2 ≤ ∥v∥2 <∞,

so applying (i) with λn = ⟨en, v⟩ the series
∞∑
n=0

⟨en, v⟩en

converges.
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Criterion for Orthonormal Bases
In Hilbert spaces, we also have a very useful criterion for when an
orthonormal system is also a basis.
1.5.5. Theorem. Let H be a Hilbert space. The span of an orthonormal
system {en} ⊂H is dense in H if and only if the only vector orthogonal
to all en is the zero vector, i.e., if and only if

∀
n
v ⊥ en ⇒ v = 0

for any v ∈H.

Proof.
(⇒) Suppose that span{en} is dense in H. Then {en} is a basis and

v =
∞∑
n=1

⟨en, v⟩en.

Hence, if ⟨v , en⟩ = 0 for all n, then v = 0.
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Criterion for Orthonormal Bases
Proof (continued).
(⇐) By Remark 1.2.12 span{en} is dense if and only if

∀
ε>0

∀
w∈H

∃
v∈span{en}

∥v − w∥ < ε.

Suppose that span{en} is not dense in H. We will show that then
there exists a vector that is orthogonal to all the en. First,

∃
ε>0

∃
w∈H

∀
v∈span{en}

∥v − w∥ ≥ ε.

Choose such an ε > 0 and a w ∈H. This w can not be the zero
element (why?), so w ̸= 0. Now define the sequence (vn) by

vn :=
n∑

i=1

⟨ei ,w⟩ei ∈ span{en}.
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Criterion for Orthonormal Bases
Proof (continued).
(⇐) Then ∥w − vn∥ ≥ ε for all n. By Theorem 1.5.4, the sequence (vn)

converges, ∥∥∥w −
∞∑
i=1

⟨ei ,w⟩ei
∥∥∥ ≥ ε.

Define u := w −
∑∞

i=1⟨ei ,w⟩ei . Since ∥u∥ ≥ ε, u ̸= 0 and

⟨ek , u⟩ = ⟨ek ,w⟩ − ⟨ek ,w⟩ = 0

for all ek ∈ {en}. Hence, ∀
n
u ⊥ en ̸⇒ u = 0.
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Parseval’s Theorem
Another important consequence is Parseval’s identity:
1.5.6. Parseval’s Theorem. Let H be a Hilbert space and {en} an
orthonormal sequence in H. Then

∥v∥2 =
∞∑
n=0

|⟨en, v⟩|2 for all v ∈H (1.5.4)

if and only if span{en} is dense in H.
For the proof, we refer to [Kreyszig, Theorem 3.6-3].
Many other results we will develop later also depend on the completeness if
the inner product space, so it is important to discuss the completeness of
the main application so far, the set of continuous functions on an interval.
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Completeness of the Space of Continuous Functions
We will show that

▶ (C ([a, b], ∥ · ∥∞) is complete but
▶ (C ([a, b], ∥ · ∥2) is not complete.

Before we prove these statements we remark that they have serious
implications:
The norm ∥ · ∥2 is induced by a scalar product and we can use it together
with orthonormal bases. However, because the space is not complete, we
will have difficulty proving certain results later on.
On the other hand, the space of continuous functions is complete with
respect to ∥ · ∥∞, but we can prove that ∥ · ∥∞ is not induced by any scalar
product, so this norm does not work well with orthonormal bases.
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Completeness of C ([a, b]) with ∥ · ∥∞
We will first show that C ([a, b]) is complete in the norm ∥ · ∥∞. For this,
we need a preliminary result, which should be familiar from calculus.
1.6.1. Theorem. Let [a, b] ⊂ R be a closed interval. Let (fn) be a sequence
of continuous functions defined on [a, b] such that fn(x) converges to some
f (x) ∈ R as n → ∞ for every x ∈ [a, b]. If the sequence (fn) converges
uniformly to the thereby defined function f : [a, b] → R, then f is
continuous.

Proof.
We need to show that f is continuous for all x ∈ [a, b]. We will here deal
only with x ∈ (a, b); the cases x = a and x = b are left to you.
Fix x ∈ (a, b). We will show that for any ε > 0 there exists a δ > 0 such
that |h| < δ implies |f (x + h)− f (x)| < ε (for h so small that
x + h ∈ (a, b)).
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Completeness of C ([a, b]) with ∥ · ∥∞
Proof (continued).
Fix ε > 0. Then there exists some N ∈ N such that

∥fn − f ∥∞ = sup
x∈[a,b]

|fn(x)− f (x)| < ε

3
.

for all n > N. Since each fn is continuous on [a, b], there exists some δ > 0
such that |h| < δ implies

|fn(x)− fn(x + h)| < ε

3
.

Then for |h| < δ we have

|f (x + h)− f (x)| ≤ |f (x + h)− fn(x + h)|+ |fn(x + h)− fn(x)|
+ |fn(x)− f (x)|

<
ε

3
+
ε

3
+
ε

3
= ε.
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Completeness of C ([a, b]) with ∥ · ∥∞
1.6.2. Theorem. The normed vector space (C ([a, b]), ∥ · ∥∞) is complete.

Proof.
Let (fn) be a Cauchy sequence in C ([a, b]). We will show that lim

n→∞
fn(x)

exists for every x ∈ [a, b]. First, by definition, for every ε > 0 we have

∥fn − fm∥∞ = sup
x∈[a,b]

|fn(x)− fm(x)| < ε

for n,m sufficiently large. But then, for every fixed x ∈ [a, b], we have

|fn(x)− fm(x)| < ε

for n,m sufficiently large. This implies that for every x ∈ [a, b] the
sequence or real numbers (fn(x)) is Cauchy. Since the real numbers are
complete, (fn(x)) converges.
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Completeness of C ([a, b]) with ∥ · ∥∞
Proof (continued).
Hence we can define the limit f (x) := lim

n→∞
fn(x) for every x ∈ [a, b].

Now fix ε > 0 and choose N so that ∥fn − fm∥ < ε for n,m > N. Then for
fixed n > N we have

∥f − fn∥∞ = sup
x∈[a,b]

|f (x)− fn(x)|

= sup
x∈[a,b]

lim
m→∞

|fm(x)− fn(x)|

≤ sup
x∈[a,b]

sup
m>N

|fm(x)− fn(x)|

= sup
m>N

sup
x∈[a,b]

|fm(x)− fn(x)| < sup
m≥N

ε = ε.

Finally, by Theorem 1.6.1, f is continuous, so f ∈ C ([a, b]).
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Incompleteness of C ([a, b]) with ∥ · ∥2
We will first show that (C ([a, b], ∥ · ∥2) is not complete by exhibiting a
Cauchy sequence that does not converge to a continuous function.
Consider the sequence (un) in C ([0, 1]) given by

un(x) =

{
4
√
n 0 ≤ x ≤ 1/n,

1/ 4
√
x 1/n < x ≤ 1.

For m > n > N

∥un − um∥22 =
∫ 1

0
|un(x)− um(x)|2 dx ≤

∫ 1/N

0

1√
x
dx =

2√
N

so (un) is a Cauchy sequence.
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Incompleteness of C ([a, b]) with ∥ · ∥2
Note that a pointwise limit of the sequence does not exist, since

lim
n→∞

un(0) = lim
n→∞

4
√
n = ∞.

By itself, this alone does not preclude a continuous function u from
existing such that un → u in the norm ∥ · ∥2.
Suppose a function u ∈ C ([0, 1]) exists such that ∥un − u∥2 → 0 as
n → ∞. Then u is bounded, so u(x) ≤ M for some M ∈ N and all
x ∈ [0, 1]. Furthermore, un(x) ≥ 2M for all x ∈ [0, 1/(2M)4] if n ≥ (2M)4.
Hence,

∥un − u∥2 ≥
∫ 1/(2M)4

0
|un(x)− u(x)|2 dx ≥ 1

16M2
̸→ 0

as n → ∞, giving a contradiction. Hence, the Cauchy sequence (un) does
not have a limit in C ([0, 1]).
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Completion of a Vector Space
If a vector space is not complete, then there are some Cauchy sequences
that don’t have limits. One then tries to construct the completion of the
vector space, i.e., a slightly larger space in which the original one is
embedded and that contains all the missing limits. We illustrate how this is
done using the example of the rational numbers.
Given Q, we may consider the space of all sequences in Q that converge to
a limit. Denote this space by Conv(Q). Each sequence (an) ∈ Conv(Q) is
associated uniquely to a number a ∈ Q, namely its limit. We can now say
that two sequences are equivalent if they have the same limit, i.e.,

(an) ∼ (bn) :⇔ lim
n→∞

an = lim
n→∞

bn. (1.6.1)

(This is an equivalence relation.) We then denote the set of all sequences
with the same limit as a sequence (an) by [a(an)]. Such a set is called a
(equivalence) class and the set of all classes is denoted Conv(Q)/ ∼.
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Construction of the Real Numbers
Since each rational number is represented by a class (why?) we have that

Q ≃ Conv(Q)/ ∼ .

This is just a formal way of saying that the set of rational numbers
corresponds to the set of all convergent sequences of rational numbers, if
any two sequences with the same limit are considered equivalent. Any
rational number corresponds to exactly one class of sequences and
vice-versa.
We can now consider a large class of sequences, that of Cauchy sequences
of rational numbers, denoted by Cauchy(Q). Since every convergent
sequence is a Cauchy sequence, Conv(Q) ⊂ Cauchy(Q). Furthermore, we
say that two Cauchy sequences are equivalent not if they have the same
limit (because they might not converge) but rather if their difference
converges to zero:

(an) ∼ (bn) :⇔ lim
n→∞

(an − bn) = 0. (1.6.2)
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Construction of the Real Numbers
Of course, (1.6.2) is equivalent to (1.6.1) for convergent sequences. We
now have the larger set

Cauchy(Q)/ ∼ ⊃ Conv(Q)/ ∼ ≃ Q

This larger set now incorporates the rational numbers and by its
construction every Cauchy sequence (an) in the set has a limit, namely
precisely the object represented by the class [(an)]. We denote

R := Cauchy(Q)/ ∼

and call this set the real numbers.
1.6.3. Example. Every rational number has a finite decimal representation.
We can think of a real number as having an “infinite decimal
representation.” For example, the sequence

3, 3.1, 3.14, 3.141, 3.1415, 3.14159, 3.141592, ...

may converge to π if the following terms are chosen appropriately.
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Construction of the Real Numbers
This “infinite decimal representation” is just the way that real numbers are
introduced in middle school. As another example, the sequences

(an) := (0.4, 0.49, 0.499, 0.4999, 0.49999, ...)

and
(bn) := (0.5, 0.5, 0.5, 0.5, 0.5, ...)

are equivalent in the sense of (1.6.2), since
|an − bn| = 10−(n+1) n→∞−−−→ 0.

Hence, 0.499999 ... and 0.5 are considered to represent the same real
number.
Now the general procedure for the completion of a vector space is exactly
the same as for the rational numbers: one takes the set of all Cauchy
sequences and defines two Cauchy sequences to be equivalent under the
relation (1.6.2). This set is then called the completion of the original space
and the original space is embedded in it in a natural way.
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The Spaces of p-Integrable Functions
1.6.4. Definition and Theorem. For any p ≥ 1 the vector space of
p-integrable functions on an interval [a, b] is defined as the closure of
C ([a, b]) with respect to the norm given by

∥u∥p :=

(∫ b

a
|u(x)|p dx

)1/p

.

This space is denoted by Lp([a, b]). Furthermore,
(i) The elements of Lp([a, b]) are equivalence classes of functions, where

two functions are in the same class if they have the same values
almost everywhere.

(ii) The Riemann integral can be extended to the so-called Lebesgue
integral such that the integral of |u|p exists for all elements of
Lp([a, b]) (see Example 2.1.12 in the next part). In fact,

Lp([a, b]) =

{
u : [a, b] → C :

∫ b

a
|u(x)|p dx <∞

}
. (1.6.3)
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The Spaces of p-Integrable Functions
1.6.5. Remarks.

(i) We will consider two functions identical if they differ only at a finite
number of points, e.g., the functions

u1(x) =


0 x ≤ 0,

1 0 < x < 1,

0 x ≥ 1,

u2(x) =


0 x < 0,

1 0 < x < 1,

0 x > 1,

1/2 x = 0 or x = 1,

are in the same class and considered to be the same function. This is
analogous to considering the numbers 0.4999 ... and 0.5 to be the
same number.
Actually, two functions are considered identical if they are the same
almost everywhere. This means that they differ only on a set of
measure zero, for example at countably infinitely many points.
However, the technical definition is not important for us at this point.
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The Spaces of p-Integrable Functions
(ii) The above convention leads to functions that are not necessarily

Riemann integrable. For example, the Riemann integral of the
Dirichlet function

χ : [0, 1] → R, χ(x) =

{
1 if x is rational,
0 if x is irrational.

does not exist, although the Dirichlet function is in the same class as
the zero function. This (very technical) problem can be solved by
introducing the Lebesgue integral, which agrees with the Riemann
integral where the latter exists and also allows functions such as the
Dirichlet function to be integrated.
We will not go into the technical construction of the Lebesgue
integral here. The final result is that all functions in the same class
have the same integral, so we may just choose an arbitrary
representative from each class when calculating an integral.
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The Fourier-Legendre Basis
We are particularly interested in L2([a, b]), since it is the only Lp space
possessing a norm induced by a scalar product. From now on, we will
formulate all of our results in L2 spaces. As a first step, we will verify that
the (normalized) Legendre polynomials give a basis of L2([−1, 1]).
1.6.6. Theorem. Let en := Pn/∥Pn∥2, where Pn is the nth Legendre
polynomial. Then B = (en)n∈N is an orthonormal basis of L2([−1, 1]).
This basis is called the Fourier-Legendre basis of L2([−1, 1]).

Proof.
We already know that B is an orthonormal sequence in L2([−1, 1]). We
need to show that spanB is also dense in L2([−1.1]). Now

spanB = span {m0,m1,m2, ...}︸ ︷︷ ︸
=:M

where mk(x) = xk , k ∈ N.
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The Fourier-Legendre Basis
Proof (continued).
The Weierstraß Approximation Theorem 1.2.14 states that spanM is
dense (in the ∥ · ∥∞ norm) in C ([−1, 1]), so the same is true for spanB.
Hence, for any ε > 0 and any u ∈ C ([−1, 1]) there exists a polynomial
p ∈ spanB such that

∥u − p∥∞ = sup
x∈[−1,1]

|u(x)− p(x)| < ε.

However, since

∥u − p∥2 =
(∫ 1

−1
|u(x)− p(x)|2 dx

)1/2

≤
√
2 sup
x∈[−1,1]

|u(x)− p(x)|

=
√
2∥u − p∥∞

we see that spanB is also dense in C ([−1, 1]) in the L2-norm.
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The Fourier-Legendre Basis
Proof (continued).
Thus, the closure of spanB in L2([a, b]) contains at least all continuous
functions, i.e.,

C ([−1, 1]) ⊂ spanB
∥ · ∥2 .

Since L2([−1, 1]) := C ([−1, 1])
∥ · ∥2 , we can take the closure on both sides

of the above subset relation and obtain

L2([−1, 1]) ⊂ spanB
∥ · ∥2 .

But since spanB
∥ · ∥2 ⊂ L2([−1, 1]) by definition,

spanB
∥ · ∥2 = L2([−1, 1])

so spanB is dense in L2([−1, 1]).
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Weighted Square-integrable Functions
In applications, we will often use a slightly generalized version of L2([a, b]),
as follows:
1.6.7. Definition. Let I ⊂ R be an interval. A continuous function
r : I → [0,∞) such that r(x) > 0 almost everywhere is called a weight
function on I .

1.6.8. Definition and Theorem. Let I ⊂ R be an interval and
r : I → [0,∞) a weight function on I . Then the set

L2(I ; r(x) dx) :=
{
u : I → C :

∫
I
|u(x)|2 r(x) dx <∞

}
defines the vector space of square-integrable functions f with respect
to the weight function r . If r ≡ 1, we write L2(I ) for short.
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Weighted Square-integrable Functions
1.6.9. Definition and Theorem. Let r : I → [0,∞) be a weight function on
I . Then the map ⟨ · , · ⟩L2(I ;r(x) dx) : L2(I ; r(x) dx)× L2(I ; r(x) dx) → C

given by

⟨u, v⟩L2(I ;r(x) dx) :=
∫
I
u(x)v(x) r(x) dx , (1.6.4)

where u(x) denotes the complex conjugate of u(x), defines a scalar
product on L2(I ; r(x) dx)

1.6.10. Remark. We can construct L2(I ; r(x) dx) either directly as in
Definition 1.6.8 using the concept of the Lebesgue integral or as the
completion of C (I ), the space of continuous functions on I ⊂ R, with
respect to the norm induced by the scalar product (1.6.4).
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Other Orthonormal Systems
There are numerous common orthonormal systems in L2(I , r(x) dx) that
occur in various applications. Some examples are given below:

I r(x) Complete Orthonormal System
[−π,π] 1 Fourier Basis
[0, 1] x dilated & scaled Bessel functions
[−1, 1] 1 normalized Legendre polynomials
(−1, 1) 1√

1−x2
normalized Chebychev polynomials

[0,∞) e−x normalized Laguerre polynomials

(−∞,∞) e−x2 normalized Hermite polynomials

Hermite and Laguerre polynomials are discussed in [Kreyszig, Section 3.7].



Fourier Series Slide 161

Introduction

Normed Vector Spaces

Bases and Inner Product Spaces

Legendre Polynomials and Applications

Hilbert Spaces

The Space of Square-Integrable Functions

Fourier Series

Looking back: Finite-Dimensional Vector Spaces



Fourier Series Slide 162

The Real Fourier-Euler Basis of L2([−π, π])

One of the most important orthonormal bases in L2([−π,π]) is the real
Fourier-Euler basis given by

BF =
{ 1√

2π
,

1√
π
cos(nx),

1√
π
sin(nx)

}∞

n=1
. (1.7.1)

It is easy to check (see assignments) that these functions are actually
orthonormal, i.e., for m, n ∈ N,

1

π

∫ π

−π
sin(mx) sin(nx) dx =

{
0 n ̸= m,

1 n = m,

1

π

∫ π

−π
cos(mx) cos(nx) dx =


0 n ̸= m,

1 n = m ̸= 0,

2 n = m = 0,

1

π

∫ π

−π
sin(mx) cos(nx) dx = 0
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The Real Fourier-Euler Basis of L2([−π, π])

Although (1.7.1) is easily seen to be an orthonormal system, the proof that
BF is a basis, i.e., that its span is dense in L2([−π,π]), is more
complicated. We will defer this proof for now.
1.7.1. Theorem. The orthonormal system{

1√
b − a

,

√
2

b − a
cos

(
2πn(x − a)

b − a

)
,

√
2

b − a
sin

(
2πn(x − a)

b − a

)}∞

n=1

is a basis of L2([a, b]).
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The Real Fourier-Euler Basis of L2([−π, π])

We would now expect that any function f ∈ L2([−π,π]) can then be
expanded in terms of the basis functions:

f (x) =

⟨
1√
2π

, f

⟩
L2

1√
2π

+
∞∑
n=1

⟨
1√
π
cos(nx), f

⟩
L2

1√
π
cos(nx)

+
∞∑
n=1

⟨
1√
π
sin(nx), f

⟩
L2

1√
π
sin(nx)

=
⟨f , 1⟩L2
2π

+
∞∑
n=1

⟨cos(nx), f ⟩L2
π

cos(nx) +
∞∑
n=1

⟨sin(nx), f ⟩L2
π

sin(nx)

(1.7.2)

Such an expansion is called the Fourier-Euler series of f . However, the
actual situation is slightly more complicated, as the following example
shows.
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Fourier-Euler Series
1.7.2. Example. We calculate the Fourier series for the function
f ∈ L2([0, 2]) given by

f (x) =

{
1 0 ≤ x < 1,

0 1 ≤ x ≤ 2.

The representation of f as a Fourier series is

f (x) =
⟨f , 1⟩L2

2
+

∞∑
n=1

⟨cos(nπx), f ⟩L2 cos(nπx)

+
∞∑
n=1

⟨sin(nπx), f ⟩L2 sin(nπx)
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Fourier-Euler Series

-2 -1 1 2

x

1

y

⟨f , 1⟩L2 = 1,

⟨f , cos(nπx)⟩L2 =
∫ 1

0
1 · cos(nπx) dx =

1

nπ
sin(nπ · 1)− 1

nπ
sin(nπ · 0)

= 0,

⟨f , sin(nx)⟩L2 =
∫ 1

0
1 · sin(nπx) dx =

1

nπ
cos(nπ · 0)− 1

nπ
cos(nπ · 1)

=
1− (−1)n

nπ
.
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Fourier-Euler Series
Hence, the Fourier series gives

f (x) =
1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sin(nπx) =

1

2
+

2

π

∞∑
k=0

sin((2k + 1)πx)

2k + 1

For x = 1/2 we obtain the well-known formula
π

4
= 1− 1

3
+

1

5
−+ ...

-2 -1 1 2

x

y

The Fourier expansion with just one term in the series.
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Fourier-Euler Series
Hence, the Fourier series gives

f (x) =
1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sin(nπx) =

1

2
+

2

π

∞∑
k=0

sin((2k + 1)πx)

2k + 1

-2 -1 1 2

x

y

The Fourier expansion with five terms in the series.
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Fourier-Euler Series
Hence, the Fourier series gives

f (x) =
1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sin(nπx) =

1

2
+

2

π

∞∑
k=0

sin((2k + 1)πx)

2k + 1

-2 -1 1 2

x

y

The Fourier expansion with nine terms in the series.



Fourier Series Slide 170

Fourier-Euler Series
Hence, the Fourier series gives

f (x) =
1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sin(nπx) =

1

2
+

2

π

∞∑
k=0

sin((2k + 1)πx)

2k + 1

-2 -1 1 2

x

y

The Fourier expansion with nineteen terms in the series.
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Fourier-Euler Series
It follows that

f (x) =
1

2
+

1

π

∞∑
n=1

1− (−1)n

n
sin(nπx) =

1

2
+

2

π

∞∑
k=0

sin((2k + 1)πx)

2k + 1

-1 1

x

1

y

The Fourier expansion with one hundred terms in the series.
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Convergence of Fourier Series
It becomes obvious from this example that a Fourier series does not need
to converge uniformly to the function; the height of the “peaks” near the
jump discontinuities does not decrease. (The occurrence of these peaks is
known as the Gibbs phenomenon.)
The reason for this is that convergence is only with respect to the L2 norm,
i.e., for f ∈ L2([−π,π])

∥SN − f ∥2L2([−π,π]) =

∫ π

−π
|SN(x)− f (x)|2 dx N→∞−−−−→ 0, (1.7.3)

where

SN(x) =
⟨f , 1⟩L2
2π

+
N∑

n=1

⟨cos(nx), f ⟩L2
π

cos(nx) +
N∑

n=1

⟨sin(nx), f ⟩L2
π

sin(nx).

Hence (1.7.3) does not imply pointwise convergence, i.e., that
SN(x) → f (x) for all x ∈ [0, 2]. In fact, due to the jump discontinuity of f ,
this is plainly impossible.
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Convergence of Fourier Series
We see that care must be taken when writing that “f equals its Fourier
series.” The precise analysis of the convergence is quite complicated. For
example, there exist continuous functions that are nowhere equal to their
Fourier series!
The discussion of Fourier series in terms of basis functions gives a good
background for understanding which functions can in principle be expanded
in terms of trigonometric series. However, for a deep understanding the
“abstract generalities” of vector space theory are not sufficient and one
needs to do some hard analysis using the specific properties of the sine and
cosine functions. This is typical of our current subject: the unifying
approach of the abstract theory gives a basic understanding of phenomena,
but does not absolve us of concrete, precise calculations when it comes to
discussing the more subtle points.
However, in the case of Fourier analysis (which would merit an entire
course by itself) we lack the time to go into these details. We merely
quote one of the most basic theorems regarding pointwise convergence.
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Convergence of Fourier Series
The following result (which we will not prove) clarifies the question of
convergence for many applications:
1.7.3. Theorem. Let f ∈ L2([a, b]) be piecewise continuously differentiable.
Then

(i) On any subinterval [a′, b′] ⊂ [a, b] with a′ > a, b′ < b on which f is
continuous the Fourier series converges uniformly towards f .

(ii) At any point x ∈ [a, b], we have the pointwise limit

SN(x)
N→∞−−−−→

lim
y↗x

f (y) + lim
y↘x

f (y)

2
.

(This is known as Dirichlet’s rule.)

Thus, at jump discontinuities of f the Fourier series converges pointwise
towards the “mean value” of f near this point. This is precisely what we
have observed in the previous example.
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Pure Sine and Cosine Fourier Bases
Other orthonormal bases that are related to the real Fourier basis for
L2([0, L]) are the following:

1. The complex Fourier-Euler Basis:

B1 :=
{ 1√

L
e2πinx/L

}∞

n=−∞
(1.7.4)

2. The Fourier-Cosine Basis:

B2 :=
{ 1√

L
,

√
2

L
cos
(πnx

L

)}∞

n=1
(1.7.5)

3. The Fourier-Sine Basis:

B3 :=
{√2

L
sin
(πnx

L

)}∞

n=1
(1.7.6)
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Relationship to Linear Algebra?
Looking back over the previous sections, one may well ask, why certain
topics are not discussed in an undergraduate linear algebra course:

▶ open and closed sets are important in calculus, but are never
mentioned in linear algebra

▶ convergence of sequences, completeness of vector spaces is not a topic
of linear algebra

▶ norms are defined, but the influence of the choice of a norm for a
given vector space is never discussed

The reason for these omissions is simple: linear algebra is the study of
finite-dimensional vector spaces, and in such spaces all the above issues
vanish. The questions we have dealt with are truly relevant only for
infinite-dimensional spaces (although our theorems are of course also valid
for finite-dimensional spaces).
We will now discuss this in more detail.
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Equivalent Norms
1.8.1. Definition. Let V be a vector space on which we may define two
norms ∥ · ∥1 and ∥ · ∥2. Then the two norms are said to be equivalent if
there exist two constants C1,C2 > 0 such that

C1∥x∥1 ≤ ∥x∥2 ≤ C2∥x∥1 for all x ∈ V . (1.8.1)

1.8.2. Example. In Rn we have (amongst others) the following two
possible choices of norms:

∥x∥2 :=
( n∑
i=1

|xi |2
)1/2

, ∥x∥∞ := max
1≤i≤n

|xi |. (1.8.2)

It is easily verified that for all x ∈ Rn,
1√
n
∥x∥2 ≤ ∥x∥∞ ≤ ∥x∥2,

so the two norms are equivalent.
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Equivalent Norms
If two norms ∥ · ∥1 and ∥ · ∥2 are equivalent, the vector space V endowed
with either of these norms, i.e., (V , ∥ · ∥1) and (V , ∥ · ∥2) has the same
topology. That means, for example, that a sequence (vn) converges in
(V , ∥ · ∥1) if and only if it converges in (V , ∥ · ∥2). Similarly, a set Ω ⊂ V is
open in (V , ∥ · ∥1) if and only if it is open in (V , ∥ · ∥2).
Therefore, the following theorem is of fundamental importance:
1.8.3. Theorem. In a finite-dimensional vector space, all norms are
equivalent.
A major consequence of Theorem 1.8.3 is that if we have several norms at
our disposal in a finite-dimensional space, then we can freely choose a
convenient one in order to show openness of sets, convergence of
sequences, etc.
The proof of Theorem 1.8.3 requires some preliminary work.



Looking back: Finite-Dimensional Vector Spaces Slide 180

The Theorem of Bolzano-Weierstraß
We recall two basic facts from the theory of sequences of real numbers:

(i) Every bounded and monotonic sequence of real numbers converges.
(ii) Every sequence of real numbers has a monotonic subsequence.

Together, these yield the following fundamental result:
1.8.4. Theorem of Bolzano-Weierstraß. Every bounded sequence of real
numbers has a convergent subsequence.

1.8.5. Remark. The Theorem of Bolzano-Weierstraß easily implies that
every Cauchy sequence of real numbers converges, because every Cauchy
sequence that has a convergent subsequence must itself converge. Since
Cauchy sequences are always bounded, every Cauchy sequence in R
converges.
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The Theorem of Bolzano-Weierstraß
The basic ingredient in proving that the real numbers (with the usual
modulus norm) are complete is the fact that a bounded, monotonic
sequence converges. The monotonicity is a specific property of the real
numbers, so the proof does not carry over to general vector spaces.
However, we can generalize the Theorem of Bolzano-Weierstraß to Rn.
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The Theorem of Bolzano-Weierstraß in Rn

1.8.6. Theorem of Bolzano–Weierstraß in Rn. Let (x (m))m∈N be a
sequence of vectors in Rn, i.e., x (m) = (x

(m)
1 , ... , x

(m)
n ). Suppose that there

exists a constant C > 0 such that |x (m)
k | < C for all m ∈ N and each

k = 1, ... , n. Then there exists a subsequence (x (mj ))j∈N that converges to
a vector y ∈ Rn.

Proof.
Consider the real coordinate sequence (x

(m)
1 )m∈N. By assumption, this

sequence is bounded, so by the Theorem of Bolzano-Weierstraß 1.8.4 there
exists a convergent subsequence (x

(mj1
)

1 ) with some limit, say y1 ∈ R.

The second coordinate sequence (x
(m)
2 ) is also bounded and has a

convergent subsequence, but this subsequence does not need to have the
same indices as that for (x (m)

1 ).
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The Theorem of Bolzano-Weierstraß in Rn

Proof (continued).
We therefore employ a trick: The subsequence (x

(mj1
)

2 ) that uses the
indices from our above subsequence for the first coordinate is of course
also bounded and hence has a sub-subsequence (x

(mj2
)

2 ) that converges, say
to y2 ∈ R. Taking the corresponding sub-subsequence for the first
coordinate, (x (mj2

)

1 ) still converges to y1.
Similarly, a sub-sub-subsequence of the third coordinate will converge to
some y3 ∈ R while the corresponding sub-sub-subsequences of the first two
coordinates will still converge to y1 and y2, respectively. Repeating the
procedure n times, the n-fold subsequence (x

(mjn )
k ) converges to some

yk ∈ R, k = 1, ... , n. Hence, the subsequence (x (mjn )) converges to some
y ∈ Rn.



Looking back: Finite-Dimensional Vector Spaces Slide 184

A Basic Norm inequality
All our further results are based on the following basic estimate:
1.8.7. Lemma. Let (V , ∥ · ∥) be a finite- or infinite-dimensional normed
vector space and {v1, ... , vn} an independent set in V . Then there exists a
C > 0 such that for any λ1, ... ,λn ∈ F

∥λ1v1 + · · ·+ λnvn∥ ≥ C
(
|λ1|+ · · ·+ |λn|

)
. (1.8.3)

Proof.
Let s := |λ1|+ · · ·+ |λn|. If s = 0, then all λk = 0 and the inequality
(1.8.3) holds trivially for any C , so we can assume s > 0. Dividing by s,
(1.8.3) becomes

∥µ1v1 + · · ·+ µnvn∥ ≥ C ,
n∑

k=1

|µk | = 1, (1.8.4)

with µk = λk/s.
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A Basic Norm inequality
Proof (continued).
Hence, we need to show

∃
C>0

∀
µ1,...,µn∈F

|µ1|+···+|µn|=1

∥µ1v1 + · · ·+ µnvn∥ ≥ C .

Suppose that this is false, i.e.,

∀
C>0

∃
µ1,...,µn∈F

|µ1|+···+|µn|=1

∥µ1v1 + · · ·+ µnvn∥ < C .

In particular, choosing C = 1/m, m = 1, 2, 3, ..., we can find a sequence of
vectors

u(m) := µ
(m)
1 v1 + · · ·+ µ

(m)
n vn

such that ∥u(m)∥ → 0 as m → ∞ and |µ(m)
1 |+ · · ·+ |µ(m)

n | = 1 for all m.
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A Basic Norm inequality
Proof (continued).
Hence, for each k = 1, ... , n, |µ(m)

k | ≤ 1 and so each coefficient sequence
(µ

(m)
k ) is bounded. Write

µ(m) := (µ
(m)
1 , ... ,µ

(m)
n )

By the Theorem of Bolzano Weierstraß in Rn, there exists a subequence of
vectors (µ(mj ))j∈N that converges to some α = (α1, ... ,αn) ∈ Rn. This
corresponds to a subsequence u(mj ) of u(m) such that

u(mj ) j→∞−−−→ α1v1 + · · ·+ αnvn =: u with |α1|+ · · ·+ |αn| = 1.

Since the vectors v1, ... , vn are independent and not all αk vanish, it
follows that u ̸= 0.
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A Basic Norm inequality
Proof (continued).
It is easy to see that u(mj ) → u as j → ∞ implies

∥u(mj )∥ j→∞−−−→ ∥u∥ ̸= 0.

But by our construction, ∥u(m)∥ → 0 as m → ∞, so the subsequence
(∥u(mj )∥) must also converge to zero. This gives a contradiction.
We can now proceed to prove Theorem 1.8.3.
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Equivalence of Norms
Proof of Theorem 1.8.3.
Let V be a finite-dimensional vector space, ∥ · ∥ be any norm on V and
{v1, ... , vn} a basis of V . Let v ∈ V have the representation
v = λ1v1 + · · ·+ λnvn with λ1, ... ,λn ∈ F. By the triangle inequality,

∥v∥ = ∥λ1v1 + · · ·+ λnvn∥ ≤
n∑

i=1

|λi |∥vi∥ ≤ C
n∑

i=1

|λi |

where C := max
1≤i≤n

∥vi∥ depends only on the basis and not on v . We hence
see that for any norm there are constants C1,C2 > 0 such that

C1

n∑
i=1

|λi | ≤ ∥v∥ ≤ C2

n∑
i=1

|λi |, (1.8.5)

where the first inequality is just (1.8.3). Given two norms ∥ · ∥1 and ∥ · ∥2,
it follows from their respective inequalities (1.8.5) that (1.8.1) holds.
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Completeness of Finite-Dimensional Spaces
Another consequence of Lemma 1.8.7 is the following result:
1.8.8. Theorem. Any finite-dimensional normed vector space is complete.

Proof.
Let (V , ∥ · ∥) be a finite-dimensional normed vector space, dimV = n. Let
(v (m)) be a Cauchy sequence in V and {b1, ... , bn} a basis of V . Then we
can write

v (m) =
n∑

k=1

λ
(m)
k bk

and with the estimate (1.8.3) it is easy to see that for each k the
coordinate sequence (λ

(m)
k ) is also Cauchy. Since the real and complex

numbers are complete, these sequences converge, say λ(m)
k → λk as

n → ∞.
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Closedness of Finite-Dimensional Subspaces
Proof (continued).
Set

v :=
n∑

k=1

λkbk .

Then it is easy to see that ∥v (m) − v∥ → 0 as n → ∞, so the Cauchy
sequence (v (m)) converges.

1.8.9. Corollary. Any finite-dimensional subspace of a normed vector space
is closed.

Proof.
Suppose (V , ∥ · ∥) is a normed vector space and U a finite-dimensional
subspace. Suppose that (un) is a sequence in U that converges to some
v ∈ V . Then (un) is a Cauchy sequence in V (and in U). Since U is
finite-dimensional, by Theorem 1.8.8 U is complete, so v ∈ U. But this
shows that U is closed in V .
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Looking Back
We have seen that the choice of norm is arbitrary in finite-dimensional
spaces and that there are no open or dense finite-dimensional subspaces.
All such spaces are automatically complete, so the terms Hilbert space and
Banach space are not used in linear algebra, as there is no need to
distinguish complete spaces.
Moreover, the situation of the Weierstraß Approximation theorem in which
the infinite-dimensional space of continuous functions on an interval is the
closure of the (infinite-dimensional) subspace of polynomials can not occur
in linear algebra. The theory of infinite-dimensional spaces has turned out
to be much more complex than just the addition of “infinite bases” and
offers many more possibilities useful in applications.
In the following part we will study linear maps on infinite-dimensional
spaces. There, too, the theory turns out to be much richer than that of
linear maps between finite-dimensional spaces.
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First Midterm Exam
The preceding material completes the first third of the course material. It
encompasses everything that will be the subject of the First Midterm Exam.
The exam date will be announced on Canvas.
No calculators or other aids will be permitted during the exam.
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Part II

Linear Maps
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Linear Functionals and Operators

Matrix Elements and Hilbert-Schmidt Operators

Inverse and Adjoint of Bounded Linear Operators

The Spectrum

Compact Operators

Spectral Theorem for Compact Operators
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Linear Operators
In this part of the course, we will study linear maps between vector spaces.
We first fix some definitions:
2.1.1. Definition. Let U,V be vector spaces over F. Then a map

L : U → V

satisfying

L(αu + βu′) = αLu + βLu′ for all u, u′ ∈ U, α,β ∈ F

is called a linear operator , linear map or linear transformation from U
to V .

(i) If U = V we say that L is a linear operator on V .
(ii) If V = F, L is called a linear functional.
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Linear Operators
The range and kernel of L are defined by

ran L := {x ∈ V : x = Lu for some u ∈ U},
ker L := {u ∈ U : Lu = 0},

respectively. (The kernel is also sometimes called the null space of L.) If
U ⊂ W is a subspace of W , then we say that U =: dom L is the domain
of L.
2.1.2. Examples.

(i) Let U = Rn. Then L(x1, ... , xn) := x1 is a linear functional on Rn.
(ii) Any m × n matrix is a linear map from Rn to Rm. For example,(

1 2 3
0 1 1

)
:

x1
x2
x3

→
(
x1 + 2x2 + 3x3

x2 + x3

)
is a linear operator R3 → R2.
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Linear Operators
(iii) Let U = P([0, 1]) ⊂ C ([0, 1]) be the space of polynomial functions

defined on the interval [0, 1] and

L =
d

dx
: P([0, 1]) → P([0, 1]).

Then L is linear and we have
dom L = ran L = P([0, 1]),

ker L =
{
p ∈ P([0, 1]) : ∃

c∈R
∀

x∈[0,1]
p(x) = c

}
.

(iv) Let U = C ([0, 1]) be the space of continuous functions defined on the
interval [0, 1] and

L =

∫ x

0
: C ([0, 1]) → C ([0, 1]), f 7→

∫ x

0
f (y) dy .

Then L is linear and
dom L = C ([0, 1]), ran L = C 1([0, 1]), ker L = {0}.
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Linear Operators
(v) Let X be a normed vector space. Then the functional

L : X → R, Lu = ∥u∥

is not linear (since L(−u) = Lu ̸= −Lu).
(vi) Let H be an inner product space and v ∈H be a fixed vector. Then

the map

L : H→ F, Lu = ⟨v , u⟩ (2.1.1)

is a linear functional on H.
(vii) Let H be a complex inner product space and v ∈H be a fixed

vector. Then the functional

L : H→ C, Lu = ⟨u, v⟩

is not linear (since L(αu) = αLu ̸= αLu).
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Left- and Right-Shift Operators
2.1.3. Example. We can define the following linear maps on U = ℓ2, the
space of square-summable complex sequences:

▶ The left-shift operator L : ℓ2 → ℓ2,

L(a0, a1, a2, ...) := (a1, a2, ...),

with

ran L = ℓ2, ker L = {(an) ∈ ℓ2 : an = 0 for n > 0}.

▶ The right-shift operator R : ℓ2 → ℓ2,

R(a0, a1, a2, ...) := (0, a0, a1, a2, ...).

with

ranR = {(an) ∈ ℓ2 : a0 = 0}, ker L = {0}.
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Bounded Linear Operators
2.1.4. Definition. Let X ,Y be normed vector spaces, Ω ⊂ X and
L : Ω → Y a linear operator. Then L is said to be bounded if there exists
a constant C > 0 such that

∥Lx∥Y ≤ C · ∥x∥X for all x ∈ Ω.

The smallest such constant is given by

∥L∥ := sup
x∈X
x ̸=0

∥Lx∥Y
∥x∥X

(2.1.2)

and called the operator norm (or induced norm) of L.
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Bounded Linear Operators
2.1.5. Examples.

(i) The linear functional L : Rn → R, L(x1, ... , xn) := x1 satisfies

|Lx | = |x1| ≤ ∥x∥2

and hence is bounded with ∥L∥ ≤ 1. Let x0 = (1, 0, ... , 0). Then

∥L∥ = sup
x∈Rn

x ̸=0

|Lx |
∥x∥

≥ |Lx0|
∥x0∥2

= 1,

so we see that ∥L∥ = 1.
(ii) The linear functional (2.1.1) is bounded and has norm

∥L∥ = ∥v∥

where ∥v∥2 = ⟨v , v⟩.
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Bounded Linear Operators
(iii) The integral operator in (C ([0, 1]), ∥ · ∥∞)

L =

∫ x

0
: C ([0, 1]) → C ([0, 1]), f 7→

∫ x

0
f (y) dy .

is bounded, since

∥Lf ∥∞ = sup
x∈[0,1]

∣∣∣∫ x

0
f (y) dy

∣∣∣ ≤= sup
x∈[0,1]

∫ x

0
|f (y)| dy

=

∫ 1

0
|f (y)| dy ≤ 1 · sup

x∈[0,1]
|f (x)| = ∥f ∥∞.

Hence, ∥L∥ ≤ 1. To prove that ∥L∥ = 1, take the function
m0(x) = 1. Then

∥L∥ = sup
f ∈C([0,1])

f ̸=0

∥Lf ∥∞
∥f ∥∞

≥ ∥Lm0∥∞
∥m0∥∞

= 1.
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Bounded Linear Operators
(iv) The operator

L =
d

dx
: P([0, 1]) → P([0, 1]).

is not bounded with respect to the ∥ · ∥∞ norm: let mn(x) = xn.
Then

∥mn∥∞ = 1 but ∥Lmn∥∞ = n,

so it is impossible to find a constant C such that ∥Lp∥∞ ≤ C∥p∥∞
for all p ∈ P([0, 1]).

(v) Both the left-shift and the right-shift operator introduced in Example
2.1.3 are bounded and have operator norm

∥L∥ = ∥R∥ = 1. (2.1.3)
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Continuous Linear Operators
The boundedness of linear operators is closely related to their continuity.
We first give the formal definition of the latter:
2.1.6. Definition. Let X ,Y be Banach spaces, U ⊂ X a subspace and
L : U → Y a linear operator. We say that L is continuous at u ∈ U if

∀
ε>0

∃
δ>0

∀
v∈U

∥u − v∥X < δ ⇒ ∥Lu − Lv∥Y < ε.

We say that L is continuous if L is continuous at every u ∈ U.

2.1.7. Theorem. A linear operator L : U → Y is continuous at u ∈ U if
and only if for any sequence (un) in U,

un → u ⇒ Lun → Lu.

The proof of the theorem is completely analogous to the proof of the
corresponding theorem for real functions and will be omitted.
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Bounded Linear Operators
The continuity of linear operators is a crucial property for many
calculations; this will become evident in the next section.
It turns out that continuity is precisely equivalent to boundedness:
2.1.8. Theorem. Let X ,Y be Banach spaces, U ⊂ X a subspace and
L : U → Y a linear operator. Then the following statements are equivalent:

(i) L is bounded.
(ii) L is continuous.
(iii) L is continuous at 0.

This is the main reason for our interest in bounded linear operators.
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Boundedness and Continuity
Proof.

▶ (i) ⇒ (ii) Assume that L : U → Y is linear and bounded. Then we
need to show that L is continuous. Let (un) be a sequence in U
converging to u ∈ U, i.e., ∥un − u∥X → 0. Then

∥Lun − Lu∥Y = ∥L(un − u)∥Y ≤ ∥L∥ · ∥un − u∥X︸ ︷︷ ︸
→0

→ 0.

Thus un → u implies Lun → Lu, so L is continuous.
▶ (ii) ⇒ (iii) Trivial.
▶ (iii) ⇒ (i) If L is continuous at 0 we know that for every ε > 0 there

exists a δ > 0 such that

∥u∥X < δ ⇒ ∥Lu∥Y < ε. (2.1.4)

Suppose that L is also not bounded.
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Boundedness and Continuity
Proof (continued).
Then for every c > 0 there exists a u ∈ U such that

∥Lu∥Y > c · ∥u∥X . (2.1.5)

Now fix ε > 0 and choose δ > 0 so that (2.1.4) holds. Next, set c = 4ε/δ
and choose a u such that (2.1.5) holds. Set ũ := u · δ/(2∥u∥X ). Then

∥ũ∥X =

∥∥∥∥ u

∥u∥X
· δ
2

∥∥∥∥
X

=
δ

2

∥u∥X
∥u∥X

= δ/2 < δ

and

∥Lũ∥Y =

∥∥∥∥ 1

∥u∥X
· δ
2
· Lu

∥∥∥∥
Y

=
δ

2

1

∥u∥X
∥Lu∥Y >

δ

2

1

∥u∥X
4ε

δ
∥u∥X > 2ε.

But this contradicts (2.1.4).
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The Space of Bounded Linear Operators
2.1.9. Definition and Theorem. Let X ,Y be vector spaces and Ω ⊂ X a
linear subspace. Then the set of all bounded linear operators,

L(Ω,Y ) := {L : Ω → Y : L is linear and bounded},

is a vector space with pointwise addition and scalar multiplication.
If X ,Y are Banach spaces, then (L(Ω,Y ), ∥ · ∥) is also a Banach space
with the operator norm (2.1.2).
We omit the proof of the above statements; it is easy to show that
L(Ω,Y ) is a vector space and that the operator norm defines a norm; the
proof of completeness of the space is more complicated.
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Extension of Bounded Linear Operators
As we have seen in the previous examples, sometimes linear operators can
only immediately be defined on a subspace of a vector space that we are
interested in. For example, the differentiation operator

L =
d

dx
: P([0, 1]) → P([0, 1]).

can not be defined on the entire space of continuous functions C ([0, 1]).
The question we pose now is:

Can we define an operator L on all of C ([0, 1]) that coincides
with L on P([0, 1])?

The operator L is called an extension of L to C ([0, 1]). More generally, we
want to extend an operator L from its domain U to the closure U of the
domain. If the domain is dense, that is the whole space.
Such an extension will exist (even uniquely!) if L is continuous.
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Extension of Bounded Linear Operators
2.1.10. B.L.T. Theorem. Let X ,Y be Banach spaces and U a subspace of
X . Denote by U the closure of U. Let L : U → Y be a bounded linear
operator. Then there exists a unique extension L of L to a continuous
linear map

L : U → Y .

Before we prove the B.L.T. Theorem, we note that for unbounded
operators this is not possible. In fact, we even have the following theorem:
2.1.11. Theorem. Let X ,Y be Banach spaces and U a subspace of X . Let
L : U → Y be an unbounded operator. Then there does not exist an
extension of L to the entire space U.
Hence, unbounded operators can never be defined on an entire Banach
space! In particular, the differentiation operator L can not be extended to
C ([0, 1]).
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The B.L.T. Theorem
Proof of the B.L.T. Theorem.
The proof proceeds in various steps:

1. We first show that there exists an extension L of L to U. Let x ∈ U.
Then there exists a sequence (xn), xn ∈ U, such that xn → x . Since
(xn) converges, it is Cauchy. This means that

∀
ε>0

∃
N∈N

∀
n,m>N

∥xn − xm∥X < ε.

Since ∥Lxn − Lxm∥Y < ∥L∥ · ∥xn − xm∥X this implies

∀
ε>0

∃
N∈N

∀
n,m>N

∥Lxn − Lxm∥Y < ∥L∥ · ∥xn − xm∥X < ε,

so the sequence (Lxn) is Cauchy in Y . Since Y is complete, the
sequence (Lxn) converges to some y ∈ Y .
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The B.L.T. Theorem
Proof of the B.L.T. Theorem (continued).

We hence define

Lx := lim
n→∞

Lxn for x ∈ U.

We need to check that L is well-defined. This means that if there are
two sequences (xn) and (x ′n) that both converge to x , then we require
that

Lx = lim
n→∞

Lxn = lim
n→∞

Lx ′n.

We construct a sequence (x1, x
′
1, x2, x

′
2, ...). This sequence will

converge to x , so it is Cauchy and hence (Lx1, Lx
′
1, Lx2, Lx

′
2, ...) is

Cauchy. Since Y is complete, (Lx1, Lx ′1, Lx2, Lx ′2, ...) converges. But
then any subsequence also converges to the same limit. Hence

lim
n→∞

Lxn = lim
n→∞

Lx ′n.
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The B.L.T. Theorem
Proof of the B.L.T. Theorem (continued).

2. We next show that L is bounded:

∥Lx∥Y = ∥ lim
n→∞

Lxn∥Y = lim
n→∞

∥Lxn∥Y

≤ lim
n→∞

∥L∥ · ∥xn∥X = ∥L∥ · ∥ lim
n→∞

xn∥X

= ∥L∥ · ∥x∥X

where we have used the continuity of ∥ · ∥Y and ∥ · ∥X . In particular,
we see that ∥L∥ = ∥L∥.

3. We now check that L is linear: let x , y ∈ U with (xn) → x , (yn) → y .
Then

L(x + y) =
(
lim
n→∞

L(xn + yn)
)
= lim

n→∞
Lxn + lim

n→∞
Lyn = Lx + Ly .

The homogeneity is shown similarly.
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The B.L.T. Theorem
Proof of the B.L.T. Theorem (continued).

4. Finally we check that L is a unique continuous extension of L. Let L′

be some other continuous extension of L. Let x ∈ U and (xn) → x
with xn ∈ U. Then

L
′
x = L

′(
lim
n→∞

xn
)
= lim

n→∞
L
′
xn = lim

n→∞
Lxn = Lx .
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The Lebesgue Integral
2.1.12. Example. By construction (see Definition 1.6.4) the space of
square integrable functions L2([a, b]) is the completion of the space of
continuous functions C ([a, b]) with respect to the norm

∥u∥2 :=
(∫ b

a
|u(x)|2 dx

)1/2
.

Here, the (Riemann-)integral is of course defined for all continuous
functions and

T : u 7→
∫ b

a
u(x) dx

is a bounded linear map on C ([a, b]) with respect to ∥ · ∥2 (prove this!).
The B.L.T. theorem now states that T can be extended to a bounded
linear map T on L2([a, b]). This map is just the Lebesgue integral alluded
to in Remark 1.6.5 ii).
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Linear Functionals and Operators
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Riesz Representation Theorem
One of the most remarkable results about linear functionals on Hilbert
spaces is that they are essentially scalar products. More precisely, any
bounded linear functional can be written as a scalar product with a fixed
vector:
2.2.1. Riesz Representation Theorem. Let H be a (possibly
infinite-dimensional) Hilbert space and L : H→ F a bounded linear
functional. Then there exists a unique element v ∈H such that

Lu = ⟨v , u⟩ for all u ∈H. (2.2.1)

Furthermore, the operator norm of L is equal to the norm of v ,

∥L∥ = ∥v∥H.
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Riesz Representation Theorem
Proof.
Let L be a given linear functional. If ker L =H, then Lu = 0 for all u ∈H
and we can take v = 0. Suppose that ker L ⫋H. Then by Theorem 1.5.5
there exists some v0 ∈ (ker L)⊥ different from zero. After multiplying with
a suitable constant, we can ensure that ∥v0∥ = 1 and that Lv0 ∈ R. Then
for any u ∈H,

(Lu)v0 − (Lv0)u ∈ ker L,

so v0 ⊥ (Lu)v0 − (Lv0)u. Hence,

L(u) ⟨v0, v0⟩︸ ︷︷ ︸
=1

−(Lv0)⟨v0, u⟩ = 0.

Since Lv0 ∈ R,

Lu = ⟨(Lv0)v0, u⟩ for any u ∈H,

so we simply take v := (Lv0)v0.
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Riesz Representation Theorem
Proof (continued).
We have established the existence of the representation (2.2.1); it remains
to show the uniqueness. Suppose that there are two vectors v ,w ∈H
such that

Lu = ⟨v , u⟩ = ⟨w , u⟩ for any u ∈H.

Then we have

⟨v − w , u⟩ = 0 for any u ∈H.

Taking u = v −w , we see that ⟨v −w , v −w⟩ = ∥v −w∥2 = 0, so v = w .
The proof that ∥L∥ = ∥v∥H is left to the reader.
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Characterization of Functionals
A linear functional L : Rn → R is completely determined by its action on
basis vectors: Let B = (b1, ... , bn) be a basis of Rn and x ∈ Rn given by

x =
n∑

i=1

λibi

for some λ1, ... ,λn ∈ R. Then

Lx = L
( n∑
i=1

λibi

)
=

n∑
i=1

λiLbi .

Hence, if we know the values of Lb1, ... , Lbn the value of Lx can be
immediately calculated. Of course, here any finite-dimensional Hilbert
space can be substituted for Rn and this remains true.
Given a basis B = (b1, ... , bn) in a finite-dimensional space H, any n
numbers v1, ... , vn uniquely determine a linear functional L through

Lbi := vi , i = 1, ... , n.
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Characterization of Functionals
In the infinite-dimensional case the situation is more complicated: suppose
x ∈H and (bn)n∈N is a basis of H, so x =

∑∞
i=1 λibi . Then the equality

Lx = L
( ∞∑
i=1

λibi

)
= L

(
lim
n→∞

n∑
i=1

λibi

)
= lim

n→∞
L
( n∑
i=1

λibi

)
= lim

n→∞

n∑
i=1

λiLbi =
∞∑
i=1

λiLbi

requires the continuity (boundedness) of L. Hence, only bounded linear
maps are defined by their action on basis elements.
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Dual Basis
We know that if (en)n∈N is an orthonormal basis in an infinite-dimensional
Hilbert space H, every x ∈H has a representation

x =
∞∑
n=0

⟨en, x⟩en.

If an oblique (non-orthonormal) basis B = (bn)n∈N is given in H, we seek
to find an analogous formula for the coefficients λn in

x =
∞∑
n=0

λnbn.

For any n ∈ N define the linear functional Ln : H→ F by

Lnx := λn for any x ∈H, where x =
∞∑
n=0

λnbn.
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Dual Basis
It is clear that Ln is properly defined for all x ∈H and that Ln is linear. In
particular,

Lnbm = δnm =

{
1 n = m,

0 n ̸= m.

By the Riesz representation theorem, we can find a unique vector b∗n ∈H
such that

Lnx = ⟨b∗n, x⟩.

We hence obtain a system of vectors B∗ := (b∗n)n∈N which we call the
dual basis to B. Of course, the dual basis can be defined in the same way
in the finite-dimensional case.
2.2.2. Remark. If B is an orthonormal basis, B∗ = B.
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Dual Basis
Using the dual basis, we then see that any vector x ∈H can be written as

x =
∞∑
n=0

⟨b∗n, x⟩bn.

2.2.3. Example. Let H = R2, b1 =
(1
1

)
, b2 =

(1
2

)
, and B = (b1, b2). Then

the dual basis is given by

b∗1 =

(
2

−1

)
, b∗2 =

(
−1

1

)
.

Furthermore, if x =
(x1
x2

)
, then

x = ⟨b∗1, x⟩b1 + ⟨b∗2, x⟩b2 = (2x1 − x2)

(
1

1

)
+ (x2 − x1)

(
1

2

)
.
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Matrix Elements
We can generalize the preceding discussion of functionals to operators. Let
H is finite-dimensional and L : H→H a linear operator. Then L is
determined completely by its action on a basis B = (b1, ... , bn) as follows:
Suppose that u ∈H is given by u =

∑n
i=1 λibi , λ1, ... ,λn ∈ F. Then

Lu =
n∑

i=1

λiLbi

so knowing Lbi , i = 1, ... , n, allows us to obtain Lu immediately. Since B
is a basis, we can write

Lbj =
n∑

i=1

⟨b∗i , Lbj⟩bi

where (b∗1, ... , b
∗
n) is the dual basis to B.
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Matrix Elements and Matrices
The n2 numbers

aij := ⟨b∗i , Lbj⟩ ∈ F i , j = 1, ... , n,

determine L completely. These aij ∈ F are called the matrix elements of
L with respect to the basis B. We will usually write the aij in the form of
an array, as a11 ... a1n

... . . . ...
an1 ... ann

 = (aij)i ,j=1,...,n (2.2.2)

The array (2.2.2) is said to be the matrix representation of L with
respect to the basis B, or the simply the matrix of L (with respect to
B).
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Matrix Elements
We can proceed similarly for bounded operators on infinite-dimensional
Hilbert spaces H. For simplicity, assume that B = (en)n∈N is an
orthonormal basis in H. Let L be a bounded linear operator on H and
u =

∑∞
i=0 λnen. Then, using the continuity of L,

Lu =
∞∑
i=0

λnLen. (2.2.3)

The vectors Len can be expressed in terms of the basis B,

Len =
∞∑

m=0

amnem =
∞∑

m=0

⟨em, Len⟩em.

and as before we call
amn := ⟨em, Len⟩, m, n ∈ N,

the matrix elements of L. Note that the boundedness (continuity) of L is
crucial for (2.2.3) to hold and the matrix elements to exist!
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Matrix Elements
2.2.4. Example. The space ℓ2 introduced in Example 2.1.3 has a natural
scalar product given by

⟨a, b⟩ =
∞∑
n=0

anbn

for sequences a, b ∈ l2. An orthonormal basis is given by the set
B = (en)n∈N, where every en is a sequence given by

en = (δnm)m∈N = (0, ... 0, 1
↑
nth

entry

, 0, ...), i = 1, ... , n,

The left-shift operator L acts on a sequence b = (bn)n∈N by
Lb = (bn+1)n∈N. Hence, the matrix elements of L are

aij = ⟨ei , Lej⟩ = ⟨ei , ej+1⟩ = δi ,j+1.
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Matrix Elements and Matrices
Conversely, any array (matrix) of n2 numbers together with a basis B
defines a linear map L : Rn → Rn. Unless stated otherwise, if we are simply
given a matrix in Rn we will assume that B is the standard basis
(e1, ... , en).
Matrices representing linear maps are studied extensively in linear algebra.
We will assume familiarity with basic matrix operations (multiplication,
inversion, transposition etc.) and instead investigate another question:
In what sense does an “infinite matrix” define a linear map?
More precisely, let us replace Rn with ℓ2 (so an “infinite vector” is just a
sequence of numbers and we have an analogous scalar product) and take
the orthonormal basis of vectors

ej := (0, ... , 0, 1
↑
j

, 0, ...) ∈ ℓ2.
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Hilbert-Schmidt Operators
If we are now given a set of numbers aij , i , j ∈ N, does

Lej :=
∞∑
i=0

aijei

define a bounded linear map L : ℓ2 → ℓ2? If x ∈ ℓ2, this would mean that

Lx =
(∑

a1jxj ,
∑

a2jxj ,
∑

a3jxj , ...
)

(2.2.4)

We will see that a sufficient condition for L to be bounded is that
∞∑

i ,j=0

|aij |2 <∞. (2.2.5)

Operators L : ℓ2 → ℓ2 defined by (2.2.4) satisfying (2.2.5) are called
Hilbert-Schmidt operators on ℓ2.
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Adjoint of Bounded Operators
In this section we define two important operators: the adjoint and the
inverse.
2.3.1. Definition and Theorem. Let H be a Hilbert space and L : H→H

a bounded linear operator. Then the (Hilbert space) adjoint of L, denoted
by L∗, is a map

L∗ : H→H

uniquely defined through the relation

⟨x , Ly⟩ = ⟨L∗x , y⟩ for all x , y ∈H. (2.3.1)

Furthermore, L∗ is bounded with

∥L∥ = ∥L∗∥. (2.3.2)
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Adjoint of Bounded Operators
Proof.
We need to show that for any bounded operator L the adjoint L∗ exists, is
unique and has the same operator norm as L.
We may regard ⟨x , L( · )⟩ as a linear functional on H. By the Riesz
representation theorem, for any x ∈H we can find a zx ∈H such that

⟨x , Ly⟩ = ⟨zx , y⟩ for all y ∈H.

The element zx naturally depends on x , and the dependence is linear: for
all x1, x2, x ∈H and λ ∈ F,

⟨zx1+x2 , y⟩ = ⟨x1 + x2, Ly⟩ = ⟨x1, Ly⟩+ ⟨x2, Ly⟩ = ⟨zx1 , y⟩+ ⟨zx2 , y⟩
= ⟨zx1 + zx2 , y⟩,

⟨zλx , y⟩ = ⟨λx , Ly⟩ = λ⟨x , Ly⟩ = λ⟨zx , y⟩, = ⟨λzx , y⟩.
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Adjoint of Bounded Operators
Proof (continued).
We hence define

L∗x := zx ,

giving a well-defined linear map L∗ on H. (For every x ∈H, L∗x exists
and is unique.) This shows the existence of the adjoint L∗.
The uniqueness is easy to prove: suppose some other operator A on H
satisfies ⟨x , Ly⟩ = ⟨Ax , y⟩ for all x , y ∈H. Then

⟨(A− L∗)x , y⟩ = 0 for all x , y ∈H.

This implies (A− L∗)x = 0 for all x ∈H and hence A = L∗.
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Adjoint of Bounded Operators
Proof (continued).
The Cauchy-Schwarz inequality yields

∥L∗x∥2 = ⟨L∗x , L∗x⟩ = ⟨x , LL∗x⟩ ≤ ∥x∥ · ∥LL∗x∥ ≤ ∥x∥∥L∥ · ∥L∗x∥

so we find
∥L∗x∥ ≤ ∥L∥∥x∥.

Hence L∗ is bounded and ∥L∗∥ ≤ ∥L∥. We note that

⟨Ly , x⟩ = ⟨x , Ly⟩ = ⟨L∗x , y⟩ = ⟨y , L∗x⟩. (2.3.3)

Then, again applying the Cauchy-Schwarz inequality,

∥Lx∥2 = ⟨Lx , Lx⟩ = ⟨x , L∗Lx⟩ ≤ ∥x∥ · ∥L∗Lx∥ ≤ ∥x∥∥L∗∥ · ∥Lx∥

so ∥Lx∥ ≤ ∥L∗∥∥x∥ and ∥L∥ ≤ ∥L∗∥. Hence ∥L∗∥ = ∥L∥.
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Properties of the Adjoint
2.3.2. Remarks.

(i) From (2.3.3) it follows that (L∗)∗ = L, i.e., the adjoint of the adjoint
is again L, because

⟨x , (L∗)∗y⟩ = ⟨L∗x , y⟩ = ⟨x , Ly⟩

for all x , y ∈H.
(ii) (2.3.3) also implies that the matrix elements a∗ij of L∗ are given by

a∗ij = ⟨ei , L∗ej⟩ = ⟨Lei , ej⟩ = ⟨ej , Lei ⟩ = aji ,

where aij are the matrix elements of L.
(iii) The definition of the adjoint of an unbounded operator is more

complicated, since the original operator is not defined on the whole
space (see Theorem 2.1.11) and one needs to ensure that (2.3.1)
holds on suitable domains. We will not go into details here.
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Self-Adjoint Operators
2.3.3. Definition. A bounded linear operator L : H→H such that L = L∗

is called self-adjoint.

2.3.4. Example. Let L and R denote the left- and right-shift operators of
Example 2.1.3. Then

⟨a, Lb⟩ =
∞∑
n=0

an(Lb)n =
∞∑
n=0

anbn+1

=
∞∑

m=1

am−1bm =
∞∑

m=0

(Ra)mbm

= ⟨Ra, b⟩

so L∗ = R. It follows from Remark 2.3.2 (i) that R∗ = L∗∗ = L.
Furthermore, (RL)∗ = L∗R∗ = RL, so RL is self-adjoint. Of course, LR = 1
is also self-adjoint.
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Unbounded Operators
The definition of the adjoint of an unbounded operator is more
complicated, since the original operator is not defined on the whole space
(see Theorem 2.1.11) and one needs to ensure that (2.3.1) holds on
suitable domains. In other words,

dom L ̸= dom L∗ for general unbounded operators.

We will not go into the details of the construction of the adjoint of an
unbounded operator. However, we note that if

⟨u, Lv⟩ = ⟨Lu, v⟩ for all u, v ∈ dom L

then an unbounded operator L is said to be symmetric (but not
self-adjoint). Of course, a bounded, self-adjoint operator will also be
symmetric.
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Range-Kernel Decomposition
2.3.5. Lemma. Let L be a bounded linear operator defined in a Hilbert
space H. Then

(ran L)⊥ = ker L∗.

Proof.
Let x ∈ (ran L)⊥. Then for all y ∈H,

0 = ⟨x , Ly⟩ = ⟨L∗x , y⟩.

Since this holds for all y ∈H, let y = L∗x . Then ∥L∗x∥2 = 0, so L∗x = 0
and so x ∈ ker L∗. This shows (ran L)⊥ ⊂ ker L∗. The proof that
ker L∗ ⊂ (ran L)⊥ is similar.

We can therefore write H = ran L⊕ ker L∗. This is known as the
range-kernel decomposition of H.
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Inversion of Linear Operators
The central problem of (linear) operator theory is the finding of solutions of

Lu = v , (2.3.4)

where L : U → V is a linear map between vector spaces U and V , v ∈ V is
given and u ∈ U is sought.

▶ If U = Rn, V = Rm and L is a matrix, (2.3.4) describes a system of m
algebraic equations in n unknowns.

▶ If L is a (partial or ordinary) differential operator between spaces of
functions U and V , (2.3.4) is a (partial or ordinary) differential
equation.

▶ If L is an integral operator between spaces of functions U and V ,
(2.3.4) is an integral equation.

There are two main concerns in the analysis of (2.3.4):
(i) What is the range of L?
(ii) Is L bijective onto its range?
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The Inverse of a Linear Operator
Throughout this section, we assume that X is a Banach space, U ⊂ X a
subspace and that

L : U → U ′ ⊂ X

is a linear operator on X with domain dom L = U and range ran L = U ′.
2.3.6. Definition. An operator L−1 : U ′ → U satisfying

L−1(Lu) = u

for all u ∈ U is said to be an inverse of L.
Note that the inverse of L, if it exists, is unique. The following result,
known from linear algebra, is proved in exactly the same way for general
linear operators:
2.3.7. Lemma. The inverse of L exists if and only if ker L = {0}.
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The Inverse of a Linear Operator
Two peculiarities for operators in infinite-dimensional spaces that should be
noted:

▶ If L is bounded, then L−1 may be bounded or unbounded.
▶ if L is invertible with inverse L, it may happen that L−1 is not

invertible at all.

2.3.8. Example. Consider the operator

L : ℓ2 → ℓ2, (an) 7→
(

1

n + 1
an

)
.

Then L is bounded with ∥L∥ = 1 but

L−1 : ran L → ℓ2, (an) 7→
(
(n + 1)an

)
.

is unbounded, since ∥Len∥ = n + 1 while ∥en∥ = 1 for any basis sequence
en.
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The Inverse of a Linear Operator
2.3.9. Example. Let L and R be the left- and right-shift operators of
Example 2.1.3. Then

R−1Ru = LRu = u for all u ∈ ℓ2

but, in general,
RLu ̸= u.

In other words, R−1 = L, but L−1 doesn’t exist.
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Existence of a Bounded Inverse
2.3.10. Definition. We say that L is bounded away from zero if there
exists a c > 0 such that

∥Lu∥ ≥ c∥u∥ for all u ∈ U. (2.3.5)

2.3.11. Theorem. The operator L has a bounded inverse if and only if L is
bounded away from zero.

Proof.
If L is bounded away from zero, have ∥Lu∥ > 0 for all u ̸= 0, so
ker L = {0} and L is invertible. If Lu = v we have u = L−1v and hence
∥Lu∥ ≥ c∥u∥ implies

∥L−1v∥ ≤ 1

c
∥v∥, (2.3.6)

so L−1 is bounded. A similar argument shows that if L−1 exists and is
bounded, satisfying (2.3.6), then (2.3.5) holds.
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The Range of an Operator
By definition, (2.3.4) has at least one solution u if and only if v ∈ ran L.
Therefore, it is important to characterize the range. However, in many
applications it is easier to determine the closure ran L instead of the actual
range. Either ran L = X , or ran L ⊊ X . In the latter case, there exist
elements in the orthogonal complement ran L⊥ (which are then also
orthogonal to ran L).
Since often both ran L and X are infinite-dimensional, we may be
interested in the dimension of the orthogonal complement of the range, the
codimension of ran L, which we denote by

codim ran L := dim(ran L)⊥
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The State of an Operator
We are now able to give a basic classification of linear operator L:

I L has a bounded inverse.
II L has an inverse, but L−1 is unbounded.

III L has no inverse.
In addition, we differentiate between two cases for the closure of the range:

1 ran L = X

2 ran L ̸= X

We will also sometimes add the subscript c to the arabic numeral to
indicate that the range of L is closed and the subscript n to indicate the
range is not closed.
2.3.12. Remark. Operators in the state (I,1c) are often called regular
operators.
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The State of an Operator
2.3.13. Examples.

(i) The left-shift operator L introduced in Example 2.1.3 has a non-trivial
kernel and hence is not invertible. Its range is all of ℓ2, so L is of type
(III,1c).

(ii) The right-shift operator R has trivial kernel, so R−1 exists. The
inverse is just the left-shift, so R−1 = L is bounded. Furthermore, the
range of R is closed (why?) and a strict subset of ℓ2, so R is of type
(I,2c).

(iii) The operator L of Example 2.3.8 has an unbounded inverse and its
range is given by

ran L =
{
(xn) ∈ ℓ2 :

∞∑
n=0

(n + 1)2|xn|2 <∞
}

Since the basis sequences en are all in ran L, it follows that
ran L = ℓ2, so L is of type (II,1n).
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The State of an Operator
(iv) Consider an n × n matrix A as a map from Rn to itself (or

alternatively on any finite-dimensional Hilbert space). Then
▶ detA ̸= 0 and A is invertible. In that case, the inverse exists and is

bounded automatically. Moreover, ranA = R
n so A is of type (I,1c).

▶ If detA = 0, then A is not invertible and its range is a strict subspace
of Rn. Hence, A is of type (III,2c).

In finite-dimensional vector spaces only these two types of operators
occur.
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The Resolvent of a Bounded Operator
Throughout this section, we assume T to be a bounded operator on a
separable Hilbert space H with domain domT =H.
Let I : H→H denote the unit operator. Then for any λ ∈ C, we define

Tλ := T − λI .

The domain of Tλ is of course H, but the range will in general depend on
λ. We remark that the adjoint

T ∗
λ := T ∗ − λI .

is also defined on H. The inverse

Rλ(T ) := T−1
λ = (T − λI )−1

is called the resolvent of T .
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The Resolvent Set and the Spectrum
2.4.1. Definition. The resolvent set ϱ(T ) of T is defined as the set of all
complex numbers λ for which Tλ has a bounded inverse and ranTλ =H,
i.e.,

ϱ(T ) :=
{
λ ∈ C : T − λI is in state (I,1c)

}
.

The spectrum σ(T ) of T is defined as the complement of the resolvent
set, i.e.,

σ(T ) := C \ ϱ(T ).

We will not prove the following result:
2.4.2. Proposition. The resolvent set is an open subset of C and hence the
spectrum is closed.
There are several competing approaches to characterizing the spectrum.
All of these have advantages and disadvantages; our approach is not the
most common, but is very well suited for the present discussion. Its
disadvantage lies in not separating the spectrum into disjoint parts.
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Division of the Spectrum
2.4.3. Definition. Let λ ∈ σ(T ).

(i) Suppose that T − λI is in state III (Rλ(T ) does not exist). Then we
say that λ belongs to the point spectrum. By Lemma 2.3.7,

Tu = λu

has a non-trivial solution, i.e., λ is an eigenvalue of T .
(ii) Suppose that T − λI is in state II (Rλ(T ) exists but is unbounded).

Then we say that λ belongs to the continuous spectrum.
(iii) Suppose that T − λI is in state 2 (ran(T − λI ) ̸=H). Then we say

that λ belongs to the compression spectrum. The range has been
compressed and we define the deficiency of λ as

def λ := codim ranT − λI .

The union of the point spectrum and the continuous spectrum is called the
approximate point spectrum.
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Division of the Spectrum

The Venn diagram shows the dif-
ferent possible states of an oper-
ator. When applied to T − λI ,
the left circle refers to the approxi-
mate point spectrum, the right cir-
cle refers to the compression spec-
trum and the region outside the
circles represents the resolvent set.

We will often denote the point, continuous and compression spectra of T
by

σpoint(T ), σcontinuous(T ) and σcompression(T ),

respectively.
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Point and Compression Spectrum
2.4.4. Lemma. A number λ ∈ C is in the compression spectrum of T if
and only if λ is in the point spectrum of T ∗.

Proof.
The proof is based on Lemma 2.3.5:

λ ∈ σcompression(T ) ⇔ ran(T − λI ) ⫋H
⇔ ∃

u ̸=0
u ∈ (ran(T − λI ))⊥

⇔ ∃
u ̸=0

u ∈ ker(T − λI )∗

⇔ ∃
u ̸=0

T ∗u = λu

⇔ λ ∈ σpoint(T
∗)
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Spectrum of the Left- and Right- Shift Operators
2.4.5. Example. Consider the left- and right-shift operators on ℓ2
introduced in Example 2.1.3. Since L∗ = R and R∗ = L, it is convenient to
discuss both at the same time.
Consider first a complex number λ with |λ| > 1 and the right-shift
operator R. Then, for a ∈ ℓ2,

∥Ra− λa∥ ≥
∣∣∥λa∥ − ∥Ra∥

∣∣ = (|λ| − 1)∥a∥,

and R − λI is bounded away from zero. By Theorem 2.3.11, R − λI then
has a bounded inverse and hence is of type I.
A similar argument for the left-shift operator L shows that L− λI is in
state I if |λ| > 1.
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The Resolvent Set
We now show that in fact R − λI and L− λI are in state (I , 1c) if |λ| > 1.
We will show that the range of R − λI is ℓ2. Let (an) ∈ ℓ2 and consider a
sequence (bn) such that (an) = (R − λI )(bn), i.e,

(a0, a1, a2, ...) = (R − λI )(b0, b1, b2, ...)

= (−λb0, b0 − λb1, b1 − λb2, ...)

Hence a pre-image for (an) is found recursively from

b0 = −a0
λ
, b1 =

b0 − a1
λ

, b2 =
b1 − a2
λ

, ... .

An explicit formula is

bn = − 1

λ

n∑
k=0

ak
λn−k

.
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The Resolvent Set
We still need to show that (bn) ∈ ℓ2. For this, note that

(bn) = − 1

λ
(an) ∗

(
1

λn

)
where ∗ denotes the convolution of sequences. Then by Young’s
convolution inequality,

∥(bn)∥2 ≤
1

λ
∥(an)∥2 ·

∥∥∥∥( 1

λn

)∥∥∥∥
1

.

Since the ℓ1-norm of (1/λn) is just a geometric series and |λ| > 1, we have

∥(bn)∥2 ≤
∥(an)∥2
|λ| − 1

so that (bn) ∈ ℓ2. Hence, a pre-image exists for any a ∈ ℓ2 and
ran(R − λI ) = ℓ2.
A similar discussion shows that ran(L− λI ) = ℓ2. It follows that both
R − λI and L− λI are in state (I , 1c).
We see that

σ(L) ⊂ {λ ∈ C : |λ| ≤ 1}, σ(R) ⊂ {λ ∈ C : |λ| ≤ 1}
and now discuss the point spectrum.
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The Point Spectrum
The eigenvalue equation for the left-shift operator is

L(a0, a1, a2, ...) = (a1, a2, ...) = λ(a0, a1, a2, ...).

We obtain a1 = λa0, a2 = λa1 = λ2a0 etc., so λ is an eigenvalue with
eigenvector eλ if

eλ = (1,λ,λ2,λ3, ...).

Now eλ ∈ ℓ2 if and only if
∞∑
n=0

|λn|2 <∞ which is the case if and only if

|λ| < 1. We see that the point spectrum of L is given by

σpoint(L) = {λ ∈ C : |λ| < 1}.
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The Point and the Compression Spectrum
The eigenvalue equation for the right-shift operator is

R(a0, a1, a2, ...) = (0, a0, a1, a2, ...) = λ(a0, a1, a2, ...).

Suppose λ = 0. Then all ak = 0, so there is no eigenvector. If λ ̸= 0, we
obtain λa0 = 0, so a0 = 0, λa1 = a0 = 0 etc. Hence the right-shift
operator does not have any eigenvalues and the point spectrum of R is
given by

σpoint(R) = ∅.

It follows from Lemma 2.4.4 that

σcompression(L) = ∅.

and
σcompression(R) = {λ ∈ C : |λ| < 1}.
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The Continuous Spectrum
Since the spectrum is closed, the circle |λ| = 1 must be in the spectrum.
Since it can not lie in the compression or point spectra, it must lie in the
continuous spectrum. It follows that

σcontinuous(L) = {λ ∈ C : |λ| = 1}.

The continuous spectrum of R must also contain all λ with |λ| = 1.
However, it might also overlap with the (non-empty) compression spectrum
of R. Now, for |λ| < 1 we have

∥Ra− λa∥ ≥
∣∣∥Ra∥ − ∥λa∥

∣∣ = (1− |λ|)∥a∥,

so R − λI is bounded way from zero and hence has a bounded inverse. It
follows that λ can not be part of the approximate point spectrum if
|λ| < 1. We deduce

σcontinuous(R) = {λ ∈ C : |λ| = 1}.



The Spectrum Slide 261

Approximate Point Spectrum
2.4.6. Lemma. A number λ ∈ C is in the approximate point spectrum of
T if and only if there exists a sequence (un) in domT such that ∥un∥ = 1
and (T − λI )un → 0.

Proof.
(⇐) Suppose that there exists a sequence (un) such that ∥un∥ = 1 and

(T − λI )un → 0. Then Tλ can not be bounded away from zero and
by Theorem 2.3.11 can not have a bounded inverse. Hence (T − λI )
is in state II or III and λ belongs to the approximate point spectrum.
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Approximate Point Spectrum
Proof (continued).
(⇒) Suppose that λ ∈ σpoint(T ). Then (T − λI )u = 0 for some u ∈H,

i.e., there exists an eigenvector u to λ. It is sufficient to take the
constant sequence given by un = u/∥u∥.
Suppose that λ ∈ σcontinuous(T ). Then Rλ(T ) exists but is
unbounded. By Theorem 2.3.11, (T − λI ) is not bounded away from
zero, so for any c ∈ R there exists some vc ∈H such that∥∥∥∥(T − λI )

(
vc
∥vc∥

)∥∥∥∥ < c.

It follows that the sequence of elements un := v1/n/∥v1/n∥ satisfies
the requirements.
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Spectrum of Self-Adjoint Operators
2.4.7. Theorem. Let T be a bounded, self-adjoint operator. Then
σ(T ) ⊂ R and

σcompression(T ) = σpoint(T ). (2.4.1)

Proof.
We will prove that all parts of the spectrum are real by considering the
point, continuous and compression spectrum separately.
First note that if T is self-adjoint, then

⟨u,Tu⟩ = ⟨Tu, u⟩ = ⟨u,Tu⟩
so ⟨u,Tu⟩ is real. Now suppose that λ ∈ C is in the point spectrum. Then
Tu = λu for some u ̸= 0, so

λ∥u∥2 = λ⟨u, u⟩ = ⟨u,Tu⟩ ∈ R
Since ∥u∥2 is real, λ ∈ R and σpoint(T ) ⊂ R.
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Spectrum of Self-Adjoint Operators
Proof (continued).
Now let λ = ξ + iη, ξ, η ∈ R, lie in the continuous spectrum. Suppose that
η ̸= 0. Then

∥(T − λI )u∥2 = ∥Tu − ξu∥2 + η2∥u∥2 ≥ η2∥u∥2,

so Tλ is bounded away from zero and hence has a bounded inverse. But
then λ can not lie in the continuous spectrum, so we conclude η = 0 and
σcontinuous(T ) ⊂ R.
If λ is in the compression spectrum, then by Lemma 2.4.4 λ lies in the
point spectrum of T ∗ = T . But this implies that λ ∈ R and hence λ ∈ R.
The entire spectrum is therefore real.
Equation (2.4.1) then follows from Lemma 2.4.4.
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Eigenpairs and a Bound on the Spectrum
We are interested in finding bounds for the spectrum σ(T ) ⊂ C of a
bounded operator T . Suppose that for some λ ∈ C and some u ∈H we
have

Tu = λu.

We then say that (u,λ) is an eigenpair . Taking the norm of the above
expression and also the inner product with u,

|λ| = ∥Tu∥
∥u∥

, λ =
⟨u,Tu⟩
∥u∥2

. (2.4.2)

If (u,λ) is an eigenpair, by (2.4.2),

∥T∥ = sup
v∈H
v ̸=0

∥Tv∥
∥v∥

≥ ∥Tu∥
∥u∥

= |λ|,

so the norm of T is a bound for all eigenvalues. This can be generalized to
the complete spectrum.
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A Bound on the Spectrum
2.4.8. Proposition. Let T be a bounded linear operator on H. If
λ ∈ σ(T ), then |λ| ≤ ∥T∥.

Proof.
We have already proved the theorem if λ is in the point spectrum (i.e., an
eigenvalue). If λ is in the compression spectrum, then λ is an eigenvalue of
T ∗ and

|λ| = |λ| ≤ ∥T ∗∥ = ∥T∥.

by Lemma 2.4.4 and (2.3.2). If λ is in the continuous spectrum, by Lemma
2.4.6 there exists a sequence (un), ∥un∥ = 1, such that (T − λI )un → 0. In
other words, wn := Tun − λun → 0. Then

|λ| = ∥Tun − wn∥ ≤ ∥Tun∥+ ∥wn∥ ≤ ∥T∥+ ∥wn∥.

Since wn → 0, we obtain |λ| ≤ ∥T∥.
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A Bound on the Spectrum
2.4.9. Example. For the left- and right-shift operators in ℓ2 we have seen in
Example 2.4.5 that |λ| ≤ 1 for all λ in their spectra.
Together with the fact they are bounded with unit operator norm (see
(2.1.3)), Proposition 2.4.8 is confirmed.

In practice, finding the norm of an operator can be quite difficult and it is
useful to consider a substitute, the so-called Rayleigh quotient. The
Rayleigh quotient also has the advantage of giving lower or upper bounds
for eigenvalues if the operators are semi-bounded (see next section).
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Eigenpair and Rayleigh Quotient
For any arbitrary non-zero vector v ∈H we define the Rayleigh quotient

R(v) :=
⟨v ,Tv⟩
∥v∥2

(2.4.3)

If v = u is an eigenvector with eigenvalue λ, then (2.4.2) gives R(u) = λ.
Furthermore, we define

MT := sup
v∈H
v ̸=0

|R(v)| = sup
v∈H
v ̸=0

|⟨v ,Tv⟩|
∥v∥2

= sup
v∈H
∥v∥=1

|⟨v ,Tv⟩|

(why is MT finite?). Then, again by applying (2.4.2), we have

MT ≥ |λ|.

Hence, MT also gives a bound for the eigenvalues.
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Bounded Operators
2.4.10. Remark. We note that by the Cauchy-Schwarz inequality,

MT = sup
v∈H
v ̸=0

|⟨v ,Tv⟩|
∥v∥2

≤ sup
v∈H
v ̸=0

∥Tv∥
∥v∥

= ∥T∥.

2.4.11. Theorem. If T is bounded and self-adjoint, then

∥T∥ = sup
v∈H
v ̸=0

|⟨v ,Tv⟩|
∥v∥2

= MT

Before we prove Theorem 2.4.11, we recall the parallelogram law for a
norm induced by an inner product:

∥v + w∥2 + ∥v − w∥2 ≤ 2(∥v∥2 + ∥w∥2), v ,w ∈H.
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Bounded Operators
Proof of Theorem 2.4.11.
Since MT ≤ ∥T∥, we just need to verify MT ≥ ∥T∥. Since T is
self-adjoint, R(v) is real for any v ∈H and hence

−MT ≤ R(v) ≤ MT for any v ∈H.

Take any v ,w ∈H. Then

⟨v + w ,T (v + w)⟩ ≤ MT · ∥v + w∥2,
⟨v − w ,T (v − w)⟩ ≥ −MT · ∥v − w∥2.

From these equations it follows that

2(⟨v ,Tw⟩+ ⟨w ,Tv⟩) = ⟨v + w ,T (v + w)⟩ − ⟨v − w ,T (v − w)⟩
≤ MT

(
∥v + w∥2 + ∥v − w∥2

)
≤ 2MT

(
∥v∥2 + ∥w∥2

)
. (2.4.4)
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Bounded Operators
Proof of Theorem 2.4.11 (continued).
Suppose that v ̸= 0 and set

w =
∥v∥
∥Tv∥

Tv .

Then (2.4.4) becomes

∥v∥
∥Tv∥

(
⟨v ,TTv⟩+ ⟨Tv ,Tv⟩

)
≤ 2MT∥v∥2

or, using the self-adjointness of T ,

∥Tv∥ ≤ MT∥v∥.

Hence ∥T∥ ≤ MT and the proof is complete.
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Bounds on the Rayleigh Quotient
2.4.12. Definition. Let T be a symmetric linear operator on a Hilbert space
H. Then we define the upper and lower Rayleigh bounds

LT := inf
v∈domT

v ̸=0

R(v) = inf
v∈H

⟨v ,Tv⟩
∥v∥2

,

UT := sup
v∈domT

v ̸=0

R(v) = sup
v∈H

⟨v ,Tv⟩
∥v∥2

,

(2.4.5)

if they exist.

2.4.13. Remark. If T is bounded, both LT and RT exist and

MT = ∥T∥ = max{|LT |, |UT |} = max{−LT ,UT}.
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Positive Operators
2.4.14. Definition. A (bounded or unbounded) operator T on a Hilbert
space H is said to be positive if

⟨x ,Tx⟩ ≥ 0 for all x ∈ domT .

2.4.15. Remark. In a complex Hilbert space, a bounded positive operator
must be self-adjoint, for ⟨x ,Tx⟩ ≥ 0 implies ⟨x ,Tx⟩ ∈ R and hence

⟨Tx , x⟩ = ⟨x ,Tx⟩ = ⟨x ,Tx⟩ for all x ∈H.

Then the polarisation identity implies ⟨Tx , y⟩ = ⟨x ,Ty⟩ for all x , y ∈H.
In a real Hilbert space this is not true, since knowing ⟨x ,Tx⟩ for all x ∈H
does not yield ⟨x ,Ty⟩ for all x , y ∈H.
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Bounds on the Rayleigh Quotient
2.4.16. Theorem. Let T be a self-adjoint, bounded operator. Then LT and
UT are in the approximate point spectrum.

Proof.
We show that UT belongs to the approximate point spectrum. By Lemma
2.4.6, we need to give a sequence (un) of unit elements so that
Tun − UTun → 0. From the definition of UT there exists a sequence (un)
of unit elements such that ⟨un,Tun⟩ → UT .
Suppose that T is positive. Then UT = ∥T∥ and

∥Tun − UTun∥2 = ∥Tun∥2 − 2UT ⟨un,Tun⟩+ U2
T

≤ ∥T∥2 − 2UT ⟨un,Tun⟩+ U2
T

= 2U2
T − 2UT ⟨un,Tun⟩

n→∞−−−→ 0.
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Bounds on the Rayleigh Quotient
Proof (continued).
If T is not positive, we can find some λ ∈ R such that S = T + λI is
positive. Then US = UT + λ and the sequence (un) such that
⟨un,Tun⟩ → UT also satisfies ⟨un, Sun⟩ → US . By our previous calculation,
we see that

Sun − (UT + λ)un → 0,

i.e., Tun − UTun → 0, completing the proof. The argument for LT is
analogous.
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Compact Operators
In the previous section, we have seen that even self-adjoint, bounded
operators T are not sufficiently “nice” to ensure, for example, that the
bounds on the Rayleigh quotient are eigenvalues. It turns out that
properties of this quality are present in an important sub-class of the
bounded operators, the compact operators. (These are often denoted with
the letter “K”, from the german kompakt.)
2.5.1. Definition. Let H be a Hilbert space and K a linear operator on H.
Then K is said to be a compact operator if for every bounded sequence
(un) the sequence (Kun) has a convergent subsequence.

2.5.2. Remark. A compact operator is bounded: if K is an unbounded
operator, the exists a sequence (un) of unit elements such that
∥Kun∥ → ∞. We can choose the sequence so that ∥Kun+1∥ > ∥Kun∥ and
then it is impossible for the sequence to have a convergent subsequence.
Hence, unbounded operators can not be compact.
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Compact Operators
2.5.3. Examples.

(i) In Rn, any bounded sequence has a convergent subsequence (this is
the Theorem of Bolzano-Weierstrass 1.8.6). Since any bounded
operator will transform a bounded a sequence into a bounded
sequence, the latter of which then also has a convergent subsequence,
it follows that every bounded operator on Rn is compact. Since every
linear operator on finite-dimensional spaces is bounded, it actually
follows that every linear operator on Rn is compact.

(ii) The above can be extended to operators whose range is
finite-dimensional (these are called finite-rank operators). Every
finite-rank operator is compact.

(iii) Hilbert-Schmidt operators are compact, as we shall see.
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Limits of Compact Operators
2.5.4. Theorem. Let (Kn) be a sequence of compact operators on H that
converges to an operator T in norm, i.e.,

lim
n→∞

∥Kn − T∥ = 0.

Then T is compact.

Proof.
Let (un) be a bounded sequence. We will show that there is a subsequence
(vn) of (un) such that (Tvn) converges. Since K1 is compact, there exists a
subsequence (u

(1)
n ) such that (K1u

(1)
n ) converges. Since K2 is compact,

there exists a subsequence (u
(2)
n ) of (u(1)n ) such that (K2u

(2)
n ) converges.

(Of course, (K1u
(2)
n ) still converges as well.) Proceeding iteratively, we can

find a subsequence (u
(m)
n ) of (u(m−1)

n ) such that (Kmu
(m)
n ) converges. We

now define the sequence (vn) by vn := u
(n)
n , i.e., we take the nth term of

the nth iterative subsequence of (un) constructed above.
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Limits of Compact Operators
Proof (continued).
Then for any m ∈ N, (Kmvn) converges. Furthermore, for any m, n, k ∈ N,

∥Tvn − Tvm∥ ≤ ∥Tvn − Kkvn∥+ ∥Kkvn − Kkvm∥+ ∥Kkvm − Tvm∥
≤ ∥T − Kk∥

(
∥vm∥+ ∥vn∥

)
+ ∥Kkvn − Kkvm∥.

Since (vn) is a subsequence of (un), it is also bounded and we can find a
c > 0 such that ∥vm∥+ ∥vn∥ < c . By choosing k sufficiently large, we
ensure that ∥T − Kk∥ < ε/(2c). We then choose m, n large enough so
that ∥Kkvn − Kkvm∥ < ε/2. Then

∥Tvn − Tvm∥ ≤ ε

2
+
ε

2
< ε

for m, n sufficiently large. Hence (Tvn) is a Cauchy sequence and
converges, because H is complete.
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Hilbert-Schmidt Operators
2.5.5. Example. A Hilbert-Schmidt operator on L2([a, b]) has the form

(Ku)(x) :=

∫ b

a
k(x , y)u(y) dy ,

where the kernel k satisfies
∫ b
a

∫ b
a |k(x , y)|

2 dx dy =: M2 <∞. We will
show that such an operator is always compact.
For simplicity, we consider [a, b] = [0, 1]. Then∫ 1

0

∫ 1

0
|k(x , y)|2 dx dy <∞

means that k ∈ L2([0, 1]× [0, 1]), a generalization of the L2 space (1.6.3)
to functions of two variables.
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Hilbert-Schmidt Operators
It can be shown that the functions{

e2πi(mx+ny)
}
m,n∈Z

are an orthonormal basis of this space with respect to the scalar product

⟨u, v⟩ :=
∫ 1

0

∫ 1

0
u(x , y)v(x , y) dx dy .

We can hence expand k(x , y) into a “two-dimensional” Fourier series,
writing

k(x , y) =
∑

m,n∈Z
cmne

2πi(mx+ny)

where cmn = ⟨e2πi(mx+ny), k⟩.
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Hilbert-Schmidt Operators
Define

(KNu)(x) :=

∫ b

a
kN(x , y)u(y) dy ,

where

kN(x , y) =
N∑

m,n=−N

cmne
2πi(mx+ny)

is the Fourier approximation to k(x , y). Then KN is a finite-rank operator
and therefore compact. Furthermore,

|Ku(x)− KNu(x)|2 =
∣∣∣∣∫ 1

0

(
k(x , y)− kN(x , y)

)
u(y) dy

∣∣∣∣2
≤
∫ 1

0

∣∣k(x , y)− kN(x , y)
∣∣2 dy ·

∫ 1

0
|u(y)|2 dy
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Hilbert-Schmidt Operators
so that

∥(K − KN)u∥2L2 =
∫ 1

0
|Ku(x)− KNu(x)|2 dx

≤
∫ 1

0

∫ 1

0

∣∣k(x , y)− kN(x , y)
∣∣2 dy dx · ∥u∥2L2

and hence

∥K − KN∥ ≤
(∫ 1

0

∫ 1

0

∣∣k(x , y)− kN(x , y)
∣∣2 dy dx)1/2

.

Since kN is just the partial sum of the series expansion of k,

∥K − KN∥
N→∞−−−−→ 0.

Hence, K is the limit of finite-rank operators and therefore compact.
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Inverse of Compact Operators
Compact operators are “convergence-inducing” in that they transform a
sequence that is merely bounded into a sequence with a convergent
subsequence. Of course, the inverse of a compact operator then has the
opposite effect and is thus not a very well-behaved object.
2.5.6. Theorem. If K is a compact operator on H and (en) an infinite
orthonormal sequence in H, then lim

n→∞
Ken = 0.

In particular, if K is invertible, then K−1 is unbounded.

Proof.
Let (en) be an orthonormal sequence and suppose that (Ken) does not
converge to zero. Then there exists a subsequence (fn) of (en) and some
ε > 0 such that ∥Kfn∥ > ε for all n. Since an orthonormal sequence is
bounded and K is compact, we can find a subsequence of (gn) of (fn) such
that (Kgn) converges to some u ∈H. Since ∥Kgn∥ > ε for all n, it follows
that ∥u∥ ≥ ε.
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Inverse of Compact Operators
Proof (continued).
By the continuity of the inner product,

⟨Kgn, u⟩ → ⟨u, u⟩ = ∥u∥2 ≥ ε2.

However, by the Riemann-Lebesgue Lemma 1.3.23,

⟨Kgn, u⟩ = ⟨gn,K ∗u⟩ n→∞−−−→ 0

since (gn) is a subsequence of an orthonormal system. This gives a
contradiction and establishes the first part of the theorem.
Furthermore, since Ken → 0 for an orthonormal system, we see that K is
not bounded away from zero, so if K is invertible, the inverse can not be
bounded.
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Inverse of Compact Operators
A typical example is the following:
2.5.7. Example. Let K be the operator on L2([0, 1]) defined by

(Ku)(x) :=

∫ x

0
u(y) dy .

This is a Hilbert-Schmidt operator with kernel k(x , y) = H(x − y), where
H is the Heaviside function

H(x) =

{
1 x ≥ 0,

0 x < 0.

Hence, K is compact. The inverse of K is given by

K−1 =
d

dx
,

which is an unbounded operator.



Spectral Theorem for Compact Operators Slide 288

Linear Functionals and Operators

Matrix Elements and Hilbert-Schmidt Operators

Inverse and Adjoint of Bounded Linear Operators

The Spectrum

Compact Operators

Spectral Theorem for Compact Operators



Spectral Theorem for Compact Operators Slide 289

PDEs and Separation of Variables
We now introduce an important application of our study of general linear
operators. The classical heat equation in n dimensions is

ϱ(x)c(x)
∂u(x , t)

∂t
= div(k(x) grad u(x , t)) + q(x , t), (2.6.1)

where
▶ u is the temperature at position x ∈ Ω ⊂ Rn and time t ∈ R,
▶ ϱ is the density of the material,
▶ c is the specific heat capacity,
▶ k is the heat conduction coefficient and
▶ q represents the heat source density.

(If k is a constant function of x , the term div(k grad u) reduces to k∆u.)
One usually specifies boundary conditions for u on ∂Ω and an initial
condition

u(x , 0) = f (x). (2.6.2)



Spectral Theorem for Compact Operators Slide 290

PDEs and Separation of Variables
Let us simplify the notation and consider an equation of the form

∂u

∂t
+ Lu = q(x , t),

where L is a linear differential operator with respect to the x coordinates.
Furthermore, we consider the case where q vanishes identically, so the
equation is homogeneous,

∂u

∂t
+ Lu = 0. (2.6.3)

We make “separation of variables” ansatz by setting

u(x , t) = X (x)T (t)

for unknown functions X , T . Inserting into (2.6.3) yields

−T ′

T
=

LX

X
.
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PDEs and Separation of Variables
Since the left-hand side is independent of t and the right-hand side is
independent of x , both sides must be constant, say equal to λ ∈ C. Hence
we need to solve the equations

T ′ = −λT , LX = λX . (2.6.4)

In addition, there are boundary conditions for X on Ω.
Essentially, we need to solve the eigenvalue problem for the linear
differential operator L. The separation of variables approach will yield a
solution only if

▶ L has an eigenvalue.
It turns out that in many cases

▶ L has a countably infinite number of eigenvalues λn, n ∈ N, and
eigenfunctions Xn.
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PDEs and Separation of Variables
The general solution of (2.6.3) is then

u(x , t) =
∞∑
n=0

une
−λntXn(x), un ∈ C,

providing that the series converges; this relies on the fact that
▶ λn → +∞ as n → ∞.

In order to satisfy the initial condition (2.6.2), we require

u(x , 0) =
∞∑
n=0

unXn(x) = f (x)

for suitable functions f . This is possible for any f ∈ L2 if
▶ The set of eigenfunctions {Xn} is a basis of a suitable L2 space.
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Differential and Compact Operators
Our goal in this section is to lay the groundwork for analyzing differential
operators such as the L of (2.6.3). In particular, we would like to prove the
various properties of the eigenvalues and -functions of L that have been
mentioned on the preceding slides. The main result that makes this
possible will be the discovery that

▶ The resolvent of a differential operator such as L is in many cases a
compact operator and

▶ The eigenvalues and -functions of the resolvent are closely related to
the eigenvalues and -functions of L.

For this reason, we will first study the spectral theory of compact operators
in more detail.
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Existence of Eigenvalues
An important question for linear operators is the existence of eigenvalues;
in finite-dimensional, complex Hilbert spaces (essentially, in Cn), the
existence of eigenvalues is guaranteed by the existence of (complex) zeroes
of the characteristic polynomial.
In the infinite-dimensional case, the situation is more complicated: a
bounded linear operator (such as the right-shift operator on ℓ2 in Example
2.4.5) does not need to have any eigenvalues at all. However, self-adjoint,
compact operators always have eigenvalues, as we now show.
2.6.1. Theorem. Let K be a self-adjoint, compact operator on a Hilbert
space H. Suppose λ ̸= 0 is in the approximate point spectrum of K . Then
λ is an eigenvalue of K .
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Existence of Eigenvalues
Proof.
Let λ ∈ σpoint(L)∪ σcontinuous(L). Then there exists a sequence (un) of unit
elements such that Kun − λun → 0. Since K is compact, a subsequence
(vn) of (un) will have the property that Kvn converges. Then (λvn)
converges since

λvn = Kvn − λvn︸ ︷︷ ︸
→0

+ Kvn︸︷︷︸
converges

.

Since λ ̸= 0, this implies that (vn) converges to some unit element v .
Since K is continuous, v satisfies

Kv = K
(
lim
n→∞

vn
)
= lim

n→∞
Kvn = lim

n→∞
λvn = λv ,

so λ is an eigenvalue with eigenvector v .
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Existence of Eigenvalues
Hence, any compact, self-adjoint operator on a Hilbert space has
eigenvalues:
2.6.2. Corollary. Let K be a compact, self-adjoint operator on a Hilbert
space H.

(i) The Rayleigh bounds UK and LK are in the approximate point
spectrum by Theorem 2.4.16. If either is non-zero, it is an eigenvalue.

(ii) If K is not the zero operator, then ∥K∥ or −∥K∥ is an eigenvalue. If
Ku = 0 for all u ∈H, then λ = 0 is an eigenvalue.
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The Spectrum of Compact Operators
We now know a certain amount about the spectrum of self-adjoint,
compact operators:

(i) The point spectrum is non-empty (there exists an eigenvalue).
(ii) The compression spectrum coincides with the point spectrum (by

self-adjointness; cf. Theorem 2.4.7).
(iii) λ = 0 is in the spectrum (because Kλ = K − 0 · I = K can not have a

bounded inverse).
Moreover, Theorem 2.6.1 immediately implies the followinG::
2.6.3. Fredholm Alternative. Let K be a compact, self-adjoint operator on
a Hilbert space H. Let λ ∈ C, λ ̸= 0. Then

▶ either λ ∈ ϱ(K )

▶ or λ ∈ σpoint(K ).
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The Fredholm Alternative
2.6.4. Remark. The Fredholm alternative is also true for non-self-adjoint
compact operators, but the proof is more complicated. For our purposes,
this simplified version is sufficient.

2.6.5. Remark. The Fredholm alternative can be rephrased as follows:
▶ Either the equation (K − λ)u = v has a unique solution u for any

given v

▶ or the equation (K − λ)u = 0 has a non-trivial solution u ̸= 0.
This is similar to the situation for matrices, where

▶ either the equation Ax = y has a unique solution for any given y ∈ Rn

(if detA ̸= 0).
▶ or the equation Ax = 0 has a non-trivial solution (if detA = 0).
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The Spectral Theorem for Compact Operators
2.6.6. Spectral Theorem. Let K be a compact, self-adjoint operator on a
(separable) Hilbert space H. Then there exists an orthonormal basis (en)
of H and numbers λn ∈ R such that Ken = λnen.
If H is infinite-dimensional, then the eigenvalues λn can be arranged in a
monotonically decreasing sequence with |λn| ↘ 0.

Proof.
In the trivial case K = 0, we have the eigenvalue λ = 0 only and we can
take any orthonormal basis of H.
If K ̸= 0, we have an eigenvalue λ(1) = ±∥K∥. Let M1 be the space
spanned by the eigenvectors for this λ(1) (called the eigenspace for λ(1)).
The eigenspace M1 must be finite-dimensional (why?). We choose an
orthonormal basis of M1. If M1 = M1 =H, we are finished.
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The Spectral Theorem for Compact Operators
Proof (continued).
If M1 ̸=H, the orthogonal complement M⊥

1 contains a non-zero element.
Furthermore, since Ku ∈ M1 for all u ∈ M1, we also have Kv ∈ M⊥

1 for all
v ∈ M⊥

1 (why?). It follows that

K1 := K |M⊥
1
: M⊥

1 → M⊥
1

is a well-defined operator that remains self-adjoint and compact with
∥K1∥ ≤ ∥K∥. If ∥K1∥ = 0, we take an arbitrary orthonormal basis in M⊥

1

for the eigenvalue λ = 0 and we are finished.
If K1 ̸= 0, there exists an eigenvalue λ(2) = ±∥K1∥ and we can repeat the
above argument, finding a space M2 spanned by the eigenvectors of K to
the eigenvalue λ(2). We then consider the orthogonal complement of M2

within M⊥
1 etc., etc.
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The Spectral Theorem for Compact Operators
Proof (continued).
We hence obtain a sequence of distinct eigenvalues with
|λ(1)| > |λ(2)| > ... . If H is finite-dimensional, the iterative procedure
terminates when M⊥

n = {0} for some n ∈ N. The union of the orthonormal
bases in M1, ... ,Mn then gives an orthonormal basis for H with the
required properties.
If H is infinite-dimensional, we obtain an infinite sequence of
finite-dimensional eigenspaces Mn and a decreasing sequence of eigenvalues
|λ(1)| > |λ(2)| > ... and orthonormal eigenvectors. Let us denote the
sequence of eigenvectors by (ek) and the corresponding eigenvalues by λk ,
where we adjust the previous notation to allow λk = λj for j ̸= k if a given
eigenvalue has more than one independent eigenvector.
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The Spectral Theorem for Compact Operators
Proof (continued).
We claim that the sequence (λk) converges to zero, which we show as
follows: It is sufficient to establish that |λn| → 0 as n → ∞. The sequence
(|λn|) is decreasing and bounded below, so it converges. Suppose that
lim|λn| = Λ. Then K applied to the sequence of (orthonormal)
eigenvectors gives

∥Ken − Kem∥2 = ∥λnen − λmem∥2 = |λn|2 + |λm|2 > 2Λ.

If Λ > 0, then it is impossible for the sequence (Ken) to contain a
subsequence that is Cauchy (i.e., converges). But this contradicts the
compactness of K . Hence, Λ = 0.
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The Spectral Theorem for Compact Operators
Proof (continued).
Finally, we show that the sequence of eigenvectors (en) is indeed a basis of
H. Let M = span{en} be the span of all eigenvectors of K . Then Ku ∈ M
if u ∈ M and Kv ∈ M⊥ if v ∈ M⊥. Now for every n ∈ N, we have
Mn ⊂ M, so M⊥ ⊂ M⊥

n (why?). It follows that

∥K |M⊥∥ ≤ ∥K |M⊥
n
∥ = ∥Kn∥ = |λ(n+1)| n→∞−−−→ 0.

This implies that K |M⊥ = 0, i.e., M⊥ = kerK . If M⊥ = {0}, we are
finished. If the kernel of K is non-trivial, λ = 0 is an eigenvalue and an
orthonormal basis of M⊥ consists of eigenvectors to this eigenvalue.
This completes the proof of the theorem.
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Principal Axis Transformation for Symmetric Matrices
As an example, consider a square n × n matrix A with real coefficients.
Then A : Rn → Rn is a compact operator and A is self-adjoint if A = AT .
The spectral theorem then states that there exist n orthonormal
eigenvectors v1, ... , vn with corresponding eigenvalues λ1, ... ,λn.
These eigenvectors are an orthonormal basis of Rn. If U = (v1, ... , vn) is
the n × n matrix whose columns are these eigenvectors, then

UAU−1 = diag(λ1, ... ,λn)

is “the matrix representation of A in the basis of eigenvectors”. (Here the
right-hand side denotes a matrix which is zero everywhere except on the
diagonal, where it has the entries λ1, ... ,λn.) This is just the principal axis
transformation familiar from linear algebra.
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Spectral Decomposition of Compact Operators
2.6.7. Corollary. Let K be a compact, self-adjoint operator on H and (en)
an orthonormal basis of eigenvectors of K . Then

Ku =
∑
n

λn⟨en, u⟩en for all u ∈H. (2.6.5)

This follows simply from u =
∑

n⟨en, u⟩en and the continuity of K .
2.6.8. Example. If A ∈ Mat(n × n;C) is self-adjoint with eigenvalues
λ1, ... ,λn ∈ R and orthonormal eigenvectors e1, ... , en, then

Ax = UT diag(λ1, ... ,λn)Ux .

where diag(λ1, ... ,λn) is the n × n matrix with the eigenvalues on the
diagonal and all other entries vanishing.
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Second Midterm Exam
The preceding material completes the second third of the course material.
It encompasses everything that will be the subject of the Second Midterm
Exam.
The exact exam date will be announced on SAKAI.
No calculators or other aids will be permitted during the exam.
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Part III

Applications of Operator Theory
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Sturm-Liouville Boundary Value Problems

The Rayleigh-Ritz Method

Positive Operators and the Polar Decomposition

The Singular Value Decomposition for Compact Operators and Matrices
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Sturm-Liouville Eigenvalue Problems
Let us now return to the previous discussion of the heat equation (2.6.3).
In order to solve

∂u

∂t
+ Lu = 0

an ansatz of the form u(x , t) = X (x)T (t) yields an eigenvalue problem
(2.6.4) for X .
In the case of a single space dimension, L is an ordinary differential
operator and the boundary conditions are imposed on an interval I ⊂ R.
Such problems are called Sturm-Liouville problems.
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Sturm-Liouville Eigenvalue Problems
We will consider the operator

L := − 1

r(x)

(
d

dx

(
p(x)

d

dx

)
+ q(x)

)
(3.1.1)

which encompasses the operator

Lu = − 1

ϱ(x)c(x)
(div(k(x) grad u(x , t)) + q(x))

of (2.6.1) in one space dimension.
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Generality of the Sturm-Liouville Operator
3.1.1. Remark. Formally, any second-order operator can be written in the
form (3.1.1): let

L = a2(x)
d2

dx2
+ a1(x)

d

dx
+ a0(x)

is given. Set

p(x) = e
∫ a1

a2 , r(x) = − p(x)

a2(x)
, q(x) = −a0(x)r(x). (3.1.2)

Then L is given by (3.1.1) with p, q, r as in (3.1.2).

3.1.2. Example. Let L = x2 d2

dx2
+ d

dx + x3. With

p(x) = e
∫ a1

a2 = e−
1
x , r(x) = − 1

x2
e−

1
x , q(x) = xe−

1
x ,

we can write
L = x2e

1
x

(
d

dx

(
e−

1
x
d

dx

)
+ xe−

1
x

)
.
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Regular Sturm-Liouville Problems (ODE Point of View)
We suppose that I = (a, b) is a bounded interval, p, p′, q, r ∈ C ([a, b]) and
p(x), r(x) > 0 for all x ∈ [a, b]. Then the equation

d

dx

(
p(x)

du

dx

)
+ (q(x) + λr(x)) u = 0, x ∈ (a, b), (3.1.3a)

is said to be a regular Sturm-Liouville equation. We impose boundary
conditions

Bau := α1u(a) + β1u
′(a) = 0,

Bbu := α2u(b) + β2u
′(b) = 0,

(3.1.3b)

where α1,α2,β1,β2 ∈ R and |α1|+ |β1| ̸= 0, |α2|+ |β2| ̸= 0. We
sometimes refer to Ba and Bb as boundary operators.
The problem (3.1.3) is said to be a regular Sturm-Liouville problem.
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Sturm-Liouville Problems (Operator Point of View)
A regular Sturm-Liouville BVP may be regarded as an eigenvalue problem
for the Sturm-Liouville operator L on L2([a, b]; r(x) dx) with domain

U :=
{
u ∈ C 2([a, b]) : Bau = Bbu = 0

}
, (3.1.4)

where

L2([a, b]; r(x) dx) =

{
u : [a, b] → R :

∫ b

a
|u(x)|2 r(x) dx <∞

}
is the space of weighted square-integrable functions. Eigenvalues λ and
eigenfunctions uλ ∈ U will constitute solutions of the Sturm-Liouville
problem.
We will combine the differential equations with the operator point of view
to analyze the Sturm-Liouville problem.
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The Wronskian
For u, v ∈ C 2(a, b) ∩ C ([a, b]) we define the Wronskian

W (u(x), v(x)) := det

(
u(x) v(x)

p(x)u′(x) p(x)v ′(x)

)
= p(x)

(
u(x)v ′(x)− v(x)u′(x)

)
.

3.1.3. Lemma. Let λ ∈ C and u, v ∈ C 2(a, b) ∩ C ([a, b]) be any two
solutions of the Sturm-Liouville equation (3.1.3a).

(i) The Wronskian W (u(x), v(x)) vanishes if and only if u and v are
dependent.

(ii) The Wronskian W (u(x), v(x)) is constant.
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The Wronskian
Proof.

(i) Since p(x) > 0 for all x ∈ [a, b], the Wronskian vanishes if and only if
u(x) = αv(x) and u′(x) = αv ′(x) for some α ∈ R. Hence u and v
are multiples of each other and therefore linearly dependent.

(ii) For u, v ∈ C 2(a, b) ∩ C ([a, b]) we have

r(uLv − vLu) = −u(pv ′)′ − uqv + v(pu′)′ + vqu

=
(
p(vu′ − uv ′)

)′
⇒ uLv − vLu =

(
p(vu′ − uv ′)

)′
r

=
1

r
W (u, v)′ (3.1.5)

The equation (3.1.5) is called the Lagrange identity for L. If u, v
satisfy Lu = λu and Lv = λv , the left-hand side vanishes and the
Wronskian is constant.
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Symmetry
3.1.4. Lemma. The regular Sturm-Liouville operator L is symmetric, i.e.,

⟨u, Lv⟩L2([a,b];r(x) dx) = ⟨Lu, v⟩L2([a,b];r(x) dx).

for all u, v ∈ U.

Proof.
Integrating (3.1.5) over (a, b) we obtain Green’s formula for L,∫ b

a

(
u(x)Lv(x)− v(x)Lu(x)

)
r(x) dx = [p(vu′ − uv ′)]ba . (3.1.6)

Then

⟨u, Lv⟩ − ⟨Lu, v⟩ =
∫ b

a

(
u(x)Lv(x)r(x)− v(x)Lu(x)r(x)

)
dx

= [p(vu′ − uv ′)]ba . (3.1.7)
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Symmetry
Proof (continued).
For u, v ∈ U we know that the boundary conditions (3.1.3b) hold. Thus,
assuming that β1,β2 ̸= 0 we have

u′(a) = −α1

β1
u(a), u′(b) = −α2

β2
u(b),

v ′(a) = −α1

β1
v(a), v ′(b) = −α2

β2
v(b).

Hence

v ′(a)u(a)− u′(a)v(a) = −α1

β1
(v(a)u(a)− u(a)v(a)) = 0,

v ′(b)u(b)− u′(b)v(b) = −α2

β2
(v(b)u(b)− u(b)v(b)) = 0.

(3.1.8)

The same result is true if β1 = 0 or β2 = 0. It follows that the right-hand
side of (3.1.7) vanishes.
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Simple Eigenvalues
3.1.5. Lemma. Let λ ∈ R be an eigenvalue of L. Then λ is simple, i.e.,
there can not exist two independent eigenfunctions u, v ∈ U with Lu = λu
and Lv = λv .

Proof.
Suppose that u, v ∈ U satisfy Lu = λu, Lv = λv . By Lemma 3.1.3 it is
sufficient to check that the Wronskian vanishes at a single point. Since
Bau = 0 and Bav = 0, we have

W (u(a), v(a)) = p(a)
(
u(a)v ′(a)− v(a)u′(a)

)
= 0

by (3.1.8).
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The Resolvent of the Sturm-Liouville Operator
The inhomogeneous Sturm-Liouville equation has the form

Lu − λu = v (3.1.9)

for some v ∈ L2([a, b]; r(x) dx). If λ is not an eigenvalue (so L− λI is
invertible), (3.1.9) can be “resolved” by setting

u = (L− λI )−1v

where (L− λI )−1 = Rλ(L) is the resolvent of L.
(In fact, this exact problem was one of the main motivations for the
development Hilbert space theory in the early 20th century.)
The resolvent Rλ(L) can be constructed explicitly using methods from the
theory of differential equations. We now summarise the construction.
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Construction of the Resolvent
Suppose that u1 and u2 satisfy the equations

(L− λI )u1 = 0, Bau1 = 0, u1 ̸= 0,

(L− λI )u2 = 0, Bbu2 = 0, u2 ̸= 0.

Then the solution of (L− λI )u = v is given by

u(x) = (L− λI )−1v(x) =

∫ b

a
g(x , y)v(y) r(y) dy , (3.1.10)

where

g(x , y) :=


u1(x)u2(y)
W (u1,u2)

if y ≤ x ,

u1(y)u2(x)
W (u1,u2)

if y > x .
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Construction of the Resolvent
Since g(x , y) is a continuous function, the resolvent (3.1.10) is a
Hilbert-Schmidt operator and therefore compact. Furthermore, since
g(x , y) = g(y , x), the resolvent is self-adjoint.
We can now apply the theory of compact operators to the resolvent. The
following theorem relates the properties of the resolvent to the properties
of L.
3.1.6. Theorem. Let L be a linear operator on a Hilbert space H. Let
µ ∈ R be such that µ is not an eigenvalue of L and let u ∈H. Then

▶ µ+
1

λ
is an eigenvalue of L with eigenfunction u and λ ̸= 0

if and only if
▶ λ is an eigenvalue of (L− µI )−1 with the same eigenfunction u.
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The Sturm-Liouville Eigenvalue Problem
3.1.7. Theorem. Let L be a linear operator on a Hilbert space H. Let
µ ∈ R be such that µ is not an eigenvalue of L and let u ∈H. Then

▶ µ+
1

λ
is an eigenvalue of L with eigenfunction u and λ ̸= 0

if and only if
▶ λ is an eigenvalue of (L− µI )−1 with the same eigenfunction u.

Proof.
(⇒) Suppose that λ ̸= 0 and Lu =

(
µ+ 1

λ

)
u. Then

u = λ(L− µI )u

and, applying (L− µI )−1 to both sides,

(L− µI )−1u = λu.
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The Sturm-Liouville Eigenvalue Problem
Proof.
(⇐) Conversely, suppose that

(L− µI )−1u = λu

for u ∈ ran(L− µI ). Then, with u = (L− µI )v ,

v = λ(L− µI )v

and
Lv =

(
µ+

1

λ

)
v .

Applying L− µI to both sides, we note
(L− µI )Lv = L(L− µI )v = Lu and so

Lu =

(
µ+

1

λ

)
u.
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The Sturm-Liouville Operator is Bounded Below
3.1.8. Definition. Let L be a symmetric operator with dense domain on a
Hilbert space H.
We say that L is bounded below if there exists a constant c ∈ R such that

⟨u, Lu⟩ ≥ c∥u∥2 for all u ∈ dom L. (3.1.11)

We say that L is bounded above if −L is bounded below.

3.1.9. Theorem. The Sturm-Liouville operator L with dom L = U is
bounded below.
The proof, which involves some rather fine analysis, is part of this week’s
homework.
It follows that the lower Rayleigh bound (see (2.4.5)) of L is finite and that
there is a lower bound on the eigenvalues of L.
In particular, there exists a number µ which is not an eigenvalue of L.
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Spectral Theorem for the Sturm-Liouville Operator
We obtain the spectral theorem for regular Sturm-Liouville operators:
3.1.10. Spectral Theorem. Let L be a regular Sturm-Liouville operator
(3.1.1) on L2([a, b]; r(x) dx) with domain (3.1.4). Then

σpoint(L) ̸= ∅

The eigenvalues of L are simple and form a countable, increasing sequence
(λn) with lim

n→∞
λn = ∞. The corresponding normed eigenvectors are an

orthonormal basis of L2([a, b]; r(x) dx).

3.1.11. Remark. The spectral theorem ensures the conditions discussed in
Slide 293 for the separation-of-variables method to succeed.
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Spectral Theorem for the Sturm-Liouville Operator
Proof.
Since L is bounded below, we can find µ ∈ R such that µ is not an
eigenvalue of L. The resolvent Rµ(L), given by (3.1.10), is compact and
self-adjoint so that by the Spectral Theorem for compact operators 2.6.6
there exists a sequence of eigenvalues (λn) of Rµ(L) such that λn → 0 as
n → ∞.
By Theorem 3.1.7, (µ+ 1/λn) is then the sequence of eigenvalues for L
(there are no other eigenvalues) with the same eigenfunctions.
Furthermore,

µ+
1

λn

n→∞−−−→ +∞

(Since L is bounded below, the convergence can not be to −∞.) The
eigenfunctions of Rµ(L) are a basis of L2([a, b]; r(x) dx). Since they
coincide with the eigenfunctions of L, this proves the last assertion of the
theorem.
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Spectral Theorem for the Sturm-Liouville Operator

3.1.12. Example. The Sturm-Liouville operator L = − d2

dx2
on L2([0,π]) with

domain
U = {u ∈ C 2([0,π]) : u(0) = u(π) = 0}

has eigenvalues λn = n2, n ∈ N \ {0}, and (normed) eigenfunctions

en(x) =
2√
π
sin(nx), n ∈ N.

By the Spectral Theorem, the sequence (en) of eigenfunctions is an
orthonormal basis of L2([0,π]).
This establishes that the Fourier-sine orthonormal system of functions
(1.7.6) is actually a basis.
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Sturm-Liouville Boundary Value Problems

The Rayleigh-Ritz Method

Positive Operators and the Polar Decomposition

The Singular Value Decomposition for Compact Operators and Matrices
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Estimating Eigenvalues
Throughout this section we denote by K an operator that is compact,
self-adjoint and positive (see Definition 2.4.14) on a separable Hilbert
space H. We have seen that the spectrum of K consists of a sequence of
(possibly repeated) eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λn ≥ · · · ≥ 0

with λn → 0 as n → ∞. The number 0 is either an eigenvalue or in the
continuous spectrum of K . We denote by (en) the orthonormal basis of H
associated to K and write

M0 := {0}, Mn := span{e1, ... , en}, n ≥ 1.

For simplicity, we assume that the sequence of eigenvalues is infinite; if
there are only m non-zero eigenvalues, we set λn = 0 and assume that
en ∈ kerK for n > m.
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An Expression for the Eigenvalues
3.2.1. Theorem. The (n + 1)st eigenvalue satisfies

λn+1 = max
u∈M⊥

n

R(u),

where R(u) is the Rayleigh quotient (2.4.3).

Proof.
By (2.6.5) we have ⟨u,Ku⟩ =

∑∞
k=1 λk |⟨ek , u⟩|2 for u ∈H. If u ∈ M⊥

n ,
⟨ek , u⟩ = 0 for k ≤ n and

⟨u,Ku⟩ =
∞∑

k=n+1

λk |⟨ek , u⟩|2 ≤ λn+1

∞∑
k=n+1

|⟨ek , u⟩|2 = λn+1∥u∥2.

Hence, R(u) ≤ λn+1. Furthermore, R(en+1) = λn+1, so the theorem is
proven.
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The Weyl-Courant Minimax Theorem
Theorem 3.2.1 gives a basic expression for the eigenvalues of K , but it is of
limited usefulness, as it requires knowledge of the eigenfunctions. A more
practical approach is to replace Mn with a subspace En spanned by
“wrong” functions that may not be eigenfunctions. The following theorem
states that λn+1 can be found by minimizing the result over all possible En:
3.2.2. Weyl-Courant Minimax Theorem. Let En be any n-dimensional
subspace of H and set

ν(En) := max
u∈E⊥

n

R(u).

Then
λn+1 = min

En⊂H
dimEn=n

ν(En) = min
En⊂H

dimEn=n

max
u∈E⊥

n

R(u).
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The Weyl-Courant Minimax Theorem
Proof.
From Theorem 3.2.1 we have λn+1 = ν(Mn), so

min
En⊂H

dimEn=n

ν(En) ≤ λn+1.

We now show the reverse inequality as follows: for each choice of En we
find an element w ∈ E⊥

n such that R(w) ≥ λn+1. Then ν(En) ≥ λn+1 for
all En and the theorem is proven.
Let En be given with basis {v1, ... , vn}. Then we can find numbers
c1, ... , cn+1 such that

w = c1e1 + · · ·+ cnen + cn+1en+1

is non-zero and ⟨w , vk⟩ = 0 for all k = 1, ... , n.
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The Weyl-Courant Minimax Theorem
Proof (continued).
(This is possible because the c1, ... , cn+1 are determined by a homogeneous
system of equations with n + 1 unknowns and n equations - there is always
a non-trivial solution.) Then

R(w) =
⟨Kw ,w⟩
∥w∥2

=

∑n+1
k=1 λk |ck |2∑n+1
k=1|ck |2

≥ λn+1.
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The Weyl-Courant Minimax Theorem
The Weyl-Courant Theorem provides a method of estimating the
eigenvalue λn+1 by calculating ν(En) for a special case Vn of En. Then the
eigenvalue λn will not be greater that the approximation:

λn+1 = min
En⊂H

dimEn=n

ν(En) ≤ ν(Vn)

However, if H is infinite-dimensional, then so is V⊥
n and calculating

ν(Vn) = max
u∈V⊥

n

R(u) can be quite difficult.

The Weyl-Courant principle is instead quite useful for proving certain
properties of operators.
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The Rayleigh-Ritz Method
Another approach, based on the original Theorem 3.2.1, is used by the
Rayleigh-Ritz method. Suppose we are interested in the first (highest)
eigenvalue λ1. Then, by Theorem 3.2.1,

λ1 = max
u∈H

R(u).

If we restrict the maximum to only those u from a subspace
Vn = span{v1, ... , vn} we have

λ1 ≥ max
v∈Vk

R(v) = max
c1,...,ck∈F

R(c1v1 + · · ·+ cnvn). (3.2.1)

The elements v1, ... , vn are called trial vectors (or trial functions if H is
a space of functions) and are selected in a “suitable” way. The goal is, of
course, for the maximum in (3.2.1) to be as close to λ1 as possible.
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The Rayleigh-Ritz Method
Suppose trial vectors v1, ... , vn are given. then

R(c1v1 + · · ·+ cnvn) =
⟨c1v1 + · · ·+ cnvn,K (c1v1 + · · ·+ cnvn)⟩

∥c1v1 + · · ·+ cnvn∥2

=

∑n
i ,j=1 cicjkij∑n
i ,j=1 cicjαij

(3.2.2)

where

αij = ⟨vi , vj⟩ = αji and kij = ⟨vi ,Kvj⟩ = k ji

are known and can be calculated in advance. It is obviously a good idea
numerically to choose the trial vectors to be orthonormal (or normalized
and “nearly” orthogonal).
This works well for estimating the first eigenvalue. However, to apply this
method for the second and further eigenvalues requires some more
discussion.
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The Galerkin Equation
We are effectively trying to find approximate eigenvectors for K in the
space Vn = span{v1, ... , vn} and corrsponding approximations to
eigenvalues. In other words, we would like to find approximate solutions to

Ku = λu (3.2.3)

by taking u ∈ Vn. However, u ∈ Vn does not necessarily imply Ku ∈ Vn,
which makes (3.2.3) impossible to solve exactly.
Define the orthogonal projection P : H→ Vn. Then we can instead
consider the eigenvalue problem

PKv = Λv , v ∈ Vn, (3.2.4)

which makes sense. Note that if K is compact, symmetric and positive,
then so is PK (why?). Hence, R(c1v1 + · · ·+ cnvn) is just the Rayleigh
quotient for PK and maximizing it finds the largest eigenvalue Λ1.
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The Galerkin Equation
Given that {v1, ... , vn} is a basis of Vn, we can write out (3.2.4) in
coordinate form by noting that it holds if and only if

⟨PKv − Λv , vj⟩ = 0, j = 1, ... , k.

For v = c1v1 + · · ·+ cnvn this reduces to the equations
n∑

i=1

⟨Kvi , vj⟩ci = Λ
n∑

i=1

⟨vi , vj⟩, j = 1, ... , n. (3.2.5)

this is just the equation found when maximizing (3.2.2).
The equation (3.2.4) as well as its coordinate form (3.2.5) are called the
Galerkin equation.
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The Eigenvalues of the Galerkin Equation
Since PK is a symmetric and positive operator on the finite-dimensional
space Vn, there are exactly n eigenvalues

Λ1 ≥ Λ2 ≥ · · · ≥ Λn ≥ 0.

We note that, since we are in a finite-dimensional space,

Λ1 = max
u∈Vn

R(u) = max
u∈Vn

⟨PKu, u⟩
∥u∥2

, (3.2.6)

Λn = min
u∈Vn

R(u) = min
u∈Vn

⟨PKu, u⟩
∥u∥2

. (3.2.7)

We would like to establish a relationship between these eigenvalues and the
first k eigenvalues of K .
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Poincaré’s Theorem
3.2.3. Poincaré’s Theorem.

Λ1 ≤ λ1, ... , Λn ≤ λn

The proof is very similar to that of the Weyl-Courant Theorem 3.2.2.
Proof.
We already know that Λ1 ≤ λ1. Now let k = 2, ... , n. Then by Theorem
3.2.1

λk = max
u∈M⊥

k−1

R(u).

We choose a vector w ∈ M⊥
k−1 such that w ̸= 0 and

w = d1w1 + · · ·+ dkwk ,

where w1, ... ,wk are the first k eigenvectors of PK .
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Poincaré’s Theorem
Proof (continued).
Then R(w) ≤ λk and

R(w) =
⟨PKw ,w⟩
∥w∥2

=

∑k
i=1 Λi |di |2∑k
i=1|di |2

≥ Λk .

This shows Λk ≤ λk .
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The Poincaré Maximin Theorem
3.2.4. Poincaré Maximin Theorem. Let En be any n-dimensional subspace
of H and set

µ(En) := min
u∈En

R(u).

Then
λn = max

En⊂H
dimEn=n

µ(En) = max
En⊂H

dimEn=n

min
u∈En

R(u).

Proof.
From (3.2.7) we have µ(En) = Λn and by Poincaré’s Theorem 3.2.3 we
have Λn ≤ λn. Therefore,

max
En⊂H

dimEn=n

µ(En) ≤ λn.

However, µ(Mn) = λn (why?), so max
En⊂H

dimEn=n

µ(En) = λn.
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The Poincaré Maximin Theorem
3.2.5. Remarks.

(i) All of the previous results work for operators that are negative instead
of positive (T is negative if −T is positive) if the words “maximum”
and “minimum” are interchanged and all the inequalities are reversed.
If an operator is neither negative nor positive, then the original results
work for the positive end of the spectrum and the modified results
work for the negative end. Generally speaking, if a symmetric
operator is simply bounded below or bounded above and the
spectrum at the bounded end consists of eigenvalues only, then these
eigenvalues can be estimated by using the above results.

(ii) Usually, the approximation Λ1 to λ1 is better than that of Λ2 to λ2
and so on.

(iii) By increasing k, the approximation improves. In theory, the
eigenvalues Λi will converge to λi as k → ∞, since PK converges to
K in norm as k → ∞.
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Application to Sturm-Liouville Operators
Recall that regular Sturm-Liouville operators are symmetric and bounded
below. Their spectrum consists of an increasing sequence of eigenvalues

−∞ < λ1 ≤ λ2 ≤ ...

so (as per Remark 3.2.5 i)) we can apply the Rayleigh-Ritz procedure. For
example, to find an estimate and lower bound for the first (and lowest)
eigenvalue, we use trial vectors v1, ... , vn spanning a subspace Vn. Then

λ1 ≤ min
v∈Vn

R(v) = min
c1,...,cn∈F

R(c1v1 + · · ·+ cnvn). (3.2.8)

Of course, now we have to ensure that Vn ⊂ dom L. This is not an issue
for compact operators but becomes relevant for the (unbounded)
Sturm-Liouville case.
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A Sturm-Liouville Problem
3.2.6. Example. Let us consider the Sturm-Liouville problem

Lu = −u′′ = λu on (0, 1), u(0) = 0, u(1) = 0. (3.2.9)

Using Mathematica 10.3, we can find an exact solution:

������[{�[�[�]� {�� �}] + λ �[�] ⩵ �� �[�] ⩵ �� �[�] ⩵ �}� �[�]� �]

�[�] →
�[�] ���� λ  �

�
� ∈ �������� �� �

�
� ≥ � �� λ ⩵ �

�
�
� π�

� ����


We hence have normed eigenfunctions

ψ�����[�_� �_] �= �������� � ∈ ��������� ������������[� π �]� 
�

�

���[#]� ⅆ� ��

ψ�����[�� �]

� ���[� π �]
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Polynomial Approximation to the Eigenfunctions
We define the differential operator L, the Rayleigh quotient R and our trial
functions, which will be polynomials of degree n:

� �= -�[#� {�� �}] ��

� �=
∫�
�
# �[#] ⅆ�

∫�
�
#� ⅆ�

��

�[�_� �_] �= �� + 

�=�

�

�� �
�

We now determine a polynomial of order n = 2 that satisfies the boundary
conditions (lies in U = dom L =

{
u ∈ C 2([a, b]) : u(0) = u(1) = 0

}
):

� = ��

����� = �����[{��������[�[�� �]] ⩵ �� �[�� �] ⩵ �}� �����[��� {�� �� �}]]

������������ � ��������� ��� ��� ���� ��������� ��� ��� ������� ����������

{{�� → �� �� → -��}}
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Estimating the Lowest Eigenvalue
This yields a single normalized trial function:

�[�_] �= �[�� �] /� �����[[�]]� �[�]

� �� - �� ��

ψ���[�_] �= �����������������[�[�] /� �� → �]� 
�

�

���[#]� ⅆ� ��

ψ���[�]

�� � - ��

The Rayleigh quotient is

�[ψ���[�]]

��

which is a good approximation to the true value π2 ≈ 9.869604. Since
there is only a single trial function, no maximization needs to take place.
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Estimating the Lowest Eigenfunction
The approximate eigenfunction is fairly close to the true eigenfunction:

����[��������[{ψ���[�]� ψ�����[�� �]}]� {�� �� �}]

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
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Improving the Estimates for the Lowest Eigenvalue
We can take a fourth-order polynomial to obtain an improved estimate:

� = ��

����� = �����[{��������[�[�� �]] ⩵ �� �[�� �] ⩵ �}� �����[��� {�� �� �}]]�

�[�_] �= �[�� �] /� �����[[�]]�

�[�]

������������ � ��������� ��� ��� ���� ��������� ��� ��� ������� ����������

� �� + �� �� + �� (-�� - �� - ��) + �� ��

The Rayleigh quotient now has three parameters:

�[�[�]]

� ��
�

�
+

�� �� ��
��

+
�� ��

�

���
+

� �� ��
�

+
�� �� ��

��
+

� ��
�

��

��
�

�
+

�� �� ��
���

+
� ��

�

���
+

� �� ��
���

+
� �� ��
���

+
��
�

���



The Rayleigh-Ritz Method Slide 350

Improving the Estimates for the Lowest Eigenvalue
We find the minimum of the Rayleigh quotient:

��� = �����������[�[�[�]]� �����[��� {�� �� �}]]

{�������� {�� → ��� �� → �������� �� → ��������� �� → -�������� �� → ��}}

Note that this minimum is a very good approximation to π2 ≈ 9.869604.
The estimated eigenfunction is :

ψ���[�_] �= �����������������[�[�] /� ���[[�]]]� 
�

�

���[#]� ⅆ� ��

ψ���[�]

������� ������� � + �������� �� - ������� �� + ������� ��
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Estimating the Lowest Eigenfunction
There is no immediately visible difference between the approximate and the
true eigenfunction:

����[��������[{ψ���[�]� ψ�����[�� �]}]� {�� �� �}]
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Estimating the Lowest Eigenfunction
Magnification shows the actual difference:

����[��������[{ψ���[�]� ψ�����[�� �]}]� {�� ����� ����}]

0.490 0.495 0.500 0.505 0.510

1.4125

1.4130

1.4135

1.4140
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Finding Estimates for the Next Eigenvalues
In the calculation so far, we have effectively found Λ1, once for a space of
trial functions U ∩P2 (the domain of L intersected with the polynomials of
degree not larger than 2) and once for U ∩P4. To find an estimate for the
second eigenvalue λ2, we need to find Λ2 for some suitable space.
The space U ∩P2 is one-dimensional, so the operator only has the
eigenvalue Λ1 there and we can not use it to find an approximation to λ2.
However, U ∩P4 is three-dimensional and we can find two more
eigenvalues Λ2 and Λ3 with their corresponding eigenfunctions.
We find these eigenvalues and -functions by restricting to the orthogonal
complement of the previously determined eigenfunctions for Λ1 (and Λ2).
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Finding Estimates for the Second Eigenvalue
� = ��

����� = �������������[�[�� �]] ⩵ �� �[�� �] ⩵ �� 
�

�

�[�� �] ψ�����[�� �] ⅆ� ⩵ ��

�����[��� {�� �� �}]

������������ � ��������� ��� ��� ���� ��������� ��� ��� ������� ����������

{{�� → ��� �� → �� - ������� �� - ������� ��� �� → �� + ������� �� + ������� ��}}

ψ�����[�_] �= �[�� �] /� �����

�[ψ�����[�]]


������� ��

� + �������� �� �� + ��������� ��
�

��������� ��
� + ���������� �� �� + ����������� ��

�


��� = �����������[�[ψ�����[�]]� {�� � �� }]

{���� {�� → �������� �� → -�������}}

ψ�����[�_� �] �= ������������ + ������������������� � - ������������������ ��

+ ������������������ �� - �������������������*�-� ��� 
�

�

#� ⅆ� �
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Estimating the Second Eigenfunction
Note that the upper bound of 42 is not very close to the true eigenvalue
4π2 ≈ 39.48. Also, the approximation to the second eigenfunction is not as
good as the approximation of the first eigenfunction:

����[��������[{ψ�����[�� �]� ψ�����[�� �]}]� {�� �� �}]
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Finding Estimates for the Third Eigenvalue
� = ��

����� = �������������[�[�� �]] ⩵ �� �[�� �] ⩵ �� 
�

�

�[�� �] ψ�����[�� �] ⅆ� ⩵ ��


�

�

�[�� �] ψ�����[�� �] ⅆ� ⩵ �� �����[��� {�� �� �}]

������������ � ��������� ��� ��� ���� ��������� ��� ��� ������� ����������

{{�� → ��� �� → �� - ������� ��� �� → �� + ������� ��� �� → �� - ������� ��}}

ψ�����[�_] �= �[�� �] /� �����

�[ψ�����[�]]


�� + �������� ��

�

�� + ���������� ��
�


��� = �����������[�[ψ�����[�]]� {�� � �� }]

{������� {�� → ��� �� → ��}}

�[�_] �= �[�� �] /� ����� /� ���[[�]]

�[�]

�� + �� � - ������� �� + ������� �� - ������� ��

ψ�����[�_� �] �= ������������ + ��� � - ����������������� �� + ����������������� ��

- ����������������� ��� 
�

�

#� ⅆ� �
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Estimating the Third Eigenfunction
The bound of 102.13 on 9π2 ≈ 88.83 is again not very good. The
approximation to the third eigenfunction is qualitatively correct but
quantitatively poor:

����[��������[{ψ�����[�� �]� ψ�����[�� �]}]� {�� �� �}]
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Sturm-Liouville Boundary Value Problems

The Rayleigh-Ritz Method

Positive Operators and the Polar Decomposition

The Singular Value Decomposition for Compact Operators and Matrices
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Polar Representation of Complex Numbers and Operators
The goal of this section is to find a polar representation of bounded
linear operators that is analogous to the polar representation of complex
numbers.
A complex number z ∈ C mar be expressed as z = |z |e i arg(z). Now fix
z ∈ C and consider the linear map

Tz : C→ C, w 7→ zw = e i arg(z)|z |w

Then we can write Tz as a composition of two maps:
▶ multiplication with |z | > 0;
▶ multiplication with e i arg(z).

The first is a positive operator in the sense that

⟨w , |z |w⟩ = |z |ww = |z | · |w |2 > 0 if w ̸= 0.
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Polar Representation of Complex Numbers and Operators
The second is an isometry, meaning that

|e i arg(z)w | = |e i arg(z)| · |w | = |w |,

i.e., the length of w remains unchanged. In this section we will analogously
define and prove the decomposition

A = U|A|

for any bounded linear operator A, where |A| is a positive operator and U
is a (partial) isometry.
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Positive Operators
Recall that a bounded linear operator B on a Hilbert space H is said to be
positive if

⟨x ,Bx⟩ ≥ 0 for all x ∈H

In this case, we write B ≥ 0. We write A ≥ B if A− B ≥ 0.

3.3.1. Remark. If A is a bounded linear operator, then A∗A is self-adjoint
and positive, since

(A∗A)∗ = A∗(A∗)∗ = A∗A

and
⟨x ,A∗Ax⟩ = ⟨Ax ,Ax⟩ = ∥Ax∥2 ≥ 0.
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Commutation of Operators
We will now work to define the modulus of an operator in analogy to the
complex modulus. To do this, we need to define the square root of positive
operators. In preparation, we formalize a preliminary concept that is
essential to the calculus of operators:
3.3.2. Definition. Let A and B be two linear operators on a vector space V .
The commutator of A and B is defined by

[A,B] := AB − BA

with domain dom(AB) ∩ dom(BA). The operators A and B are said to
commute if

AB = BA,

i.e., if A(Bv) = B(Av) for all v ∈ dom(AB) ∩ dom(BA).
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The Binomial Series
In the proof of the Weierstraß Approximation Theorem 1.2.14, we have
already encountered the binomial series (1.2.4),

√
1− z = 1−

∞∑
n=1

1

22n−1

(
2n − 2

n − 1

)
zn

n
. (3.3.1)

We have also proved in (1.2.5) that
∞∑
n=1

1

22n−1n

(
2n − 2

n − 1

)
≤ 1 (3.3.2)

and, in particular, the series (3.3.1) converges absolutely when |z | ≤ 1.
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The Square Root Lemma
3.3.3. Square Root Lemma. Let A be a linear, bounded, self-adjoint and
positive operator on H. Then there exists a unique linear, self-adjoint
operator B such that

B ≥ 0 and B2 = A.

Furthermore, B commutes with any bounded operator which commutes
with A. We write B =:

√
A.
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The Square Root Lemma
Proof.
We may suppose that ∥A∥ ≤ 1 (why is this sufficient?). Then

0 ≤ ⟨v ,Av⟩ ≤ ∥v∥2 for any v ∈H.

This estimate together with

⟨v , (I − A)v⟩ = ∥v∥2 − ⟨v ,Av⟩

implies that
0 ≤ ⟨v , (I − A)v⟩ ≤ ∥v∥2.

Then by Theorem 2.4.11,

0 ≤ ∥I − A∥ = sup
v∈H

|⟨v , (I − A)v⟩|
∥v∥2

≤ 1 (3.3.3)
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The Square Root Lemma
Proof (continued).
Therefore, the series of numbers

1−
∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)
∥I − A∥n

converges. From this we see that the series of operators in L(H,H)

I −
∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)
(I − A)n

converges absolutely and by Lemma 1.5.3 then converges to an operator
B ∈ L(H,H).
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The Square Root Lemma
Proof (continued).
Since (

1−
∞∑
n=1

1

22n−1

(
2n − 2

n − 1

)
(1− z)n

n

)2

= z

for any z ∈ C with |z | ≤ 1 and the series converges absolutely when 1− z
is replaced by the operator I − A and z is replaced by A, this shows that
B2 = A.
Next, B = B∗ since (I − A)∗ = I − A and

B∗ = I −
∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)
[(I − A)n]∗.
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The Square Root Lemma
Proof (continued).
We next prove that B ≥ 0. From (3.3.3),

0 ≤ ⟨v , (I − A)nv⟩ ≤ ∥(I − A)n∥ · ∥v∥2 ≤ ∥I − A∥n · ∥v∥2 ≤ ∥v∥2.

and so, for v ∈H

⟨v ,Bv⟩ = ⟨v , v⟩ −
∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)
⟨v , (I − A)nv⟩

≥ ∥v∥2
[
1−

∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)]
≥ 0

where we have used (3.3.2).
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The Square Root Lemma
Proof (continued).
Since the series for B converges absolutely, we can take any operator C
such that AC = CA and find

CB = C

(
I −

∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)
(I − A)n

)

= C −
∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)
C (I − A)n

= C −
∞∑
n=1

1

n22n−1

(
2n − 2

n − 1

)
(I − A)nC

= BC .

This proves that B commutes with any operator that commutes with A.
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The Square Root Lemma
Proof (continued).
Finally, we prove the uniqueness of B: Suppose there exists some other
self-adjoint operator B ′ such that B ′ ≥ 0 and B ′2 = A. Then

B ′A = B ′3 = AB ′

and so B ′ commutes with B. This implies

(B − B ′)B(B − B ′) + (B − B ′)B ′(B − B ′) = (B2 − B ′2)(B − B ′)

= (A− A)(B − B ′)

= 0.

Since both (B − B ′)B(B − B ′) and (B − B ′)B ′(B − B ′) are positive
(why?) this implies that both operators vanish (why?). Then

(B − B ′)3 = (B − B ′)B(B − B ′)− (B − B ′)B ′(B − B ′) = 0.
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The Square Root Lemma
Proof (continued).
This implies that

∥(B − B ′)4∥ ≤ ∥B − B ′∥ · ∥(B − B ′)3∥ = 0. (3.3.4)

Using Theorem 2.4.11 and noting that B − B ′ is self-adjoint, we see that

∥(B − B ′)2∥ = sup
v∈H

|⟨v , (B − B ′)2v⟩|
∥v∥2

= sup
v∈H

∥(B − B ′)v∥2

∥v∥2

= ∥B − B ′∥2.

The same argument, applied once more, shows that

∥(B − B ′)4∥ = ∥B − B ′∥4.

With (3.3.4) this implies ∥B − B ′∥ = 0 and we conclude B = B ′.
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The Modulus of an Operator
Hence, for any bounded operator A on H the modulus

|A| :=
√
A∗A

is a well-defined, bounded, positive and self-adjoint linear operator on H.
Note that

▶ |λA| = |λ| · |A| for λ ∈ C,
▶ but in general |A| ̸= |A∗|,
▶ in general, |A+ B| ̸≤ |A|+ |B|.

However, if A = A∗, then

|A|2 = A∗A = A2.
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The Modulus of a Compact Operator
If K is a compact operator, the modulus |K | can be calculated using the
spectral representation (2.6.5) for K ∗K . This is based on the fact that if K
is compact, then so is K ∗K , since K ∗ will be a bounded linear operator
and the composition of a bounded with a compact operator is compact.
Since K ∗K is self-adjoint and positive, we can apply the spectral theorem
to obtain:
3.3.4. Lemma. Let K be a compact operator on a Hilbert space H and
denote by λn > 0 the eigenvalues and by vn the eigenvectors of K ∗K .
Then |K | is compact and

|K | =
∑
n∈I

√
λn⟨vn, · ⟩vn. (3.3.5)

3.3.5. Corollary. The representation (3.3.5) implies that the eigenvalues
and -vectors of |K | are given by

√
λn and vn, respectively.
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The Modulus of a Compact Operator
Proof.
We first show (3.3.5). Let

T :=
∑
n∈I

√
λn⟨vn, · ⟩vn.

It is easy to verify that
▶ T 2 = K ∗K ,
▶ T = T ∗,
▶ T ≥ 0,

so T is the unique square root of K ∗K , i.e., T = |K |. Furthermore, |K | is
compact, since it is the norm limit of the finite-rank operators

KN :=
∑
n≤N

√
λn⟨vn, · ⟩vn.

with ∥K − KN∥ ≤
√
λN+1 and

√
λN → 0 as N → ∞.
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Polar Decomposition
In analogy to the polar representation of complex numbers,

z = |z | · e i arg z , (e i arg z)−1 = e i arg z ,

we would like to write

A = U|A| (3.3.6)

for a suitable operator U. However, while

e i arg z · e i arg z = 1,

we may not be able to achieve

U∗U = UU∗ = I

since U or U∗ may have a non-trivial kernel.
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Partial Isometries
3.3.6. Example. Let R : ℓ2 → ℓ2 be the right-shift operator. Then R∗ = L
(the left-shift operator) and R∗R = I , so |R| = I . This means that we
would have to take U = R in (3.3.6). But then

R∗R = I , RR∗ = I − ⟨e1, · ⟩e1

where e1 = (1, 0, 0, ...).

3.3.7. Definition. An operator U on H is said to be an isometry if
∥Ux∥ = ∥x∥ for all x ∈H.
The operator U is said to be a partial isometry if it is an isometry when
restricted to the closed subspace (kerU)⊥.
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The Polar Decomposition
The following theorem then allows us to define the polar decomposition for
bounded linear operators:
3.3.8. Theorem. Let A be a bounded linear operator on a Hilbert space H.
Then there exists a partial isometry U such that

A = U|A| (3.3.7)
The partial isometry is uniquely determined by requiring kerU = kerA.
Moreover, ranU = ranA.

Proof.
In order to achieve (3.3.7), we need to define a partial isometry

U : ran|A| → ranA

which is most obviously done by setting
Uw = U(|A|v) = Av for any w = |A|v ∈ ran|A|. (3.3.8)
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The Polar Decomposition
Proof (continued).
However, it could be that w = |A|v1 = |A|v2 with v1 ̸= v2. Then it is not
clear if U is well-defined, because the action of U might depend on which
v is used. We note that

∥|A|v∥2 = ⟨|A|v , |A|v⟩ = ⟨v , |A|2v⟩ = ⟨v ,A∗Av⟩ = ∥Av∥2 (3.3.9)

and hence

∥|A|v1 − |A|v2∥2 = ∥|A|(v1 − v2)∥2 = ∥A(v1 − v2)∥2 = ∥Av1 − Av2∥2

so Av1 = Av2 if and only if |A|v1 = |A|v2. This shows that U is
well-defined.
From (3.3.9) we also see that ∥Uw∥ = ∥w∥ for all w ∈ ran|A|.
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The Polar Decomposition
Proof (continued).
Our goal is now to extend U (currently defined only on ran|A|) to an
operator on all of H such that

ranU = ranA and ker u = kerA.

First, we use the B.L.T. Theorem 2.1.10, to extend U to a map ran|A| to
ranA. (Explain why then ranU = ranA.).
Then, we simply define Ux = 0 for all x ∈ (ran|A|)⊥. Since

H = ran|A| ⊕ (ran|A|)⊥,

this defines U on H.
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The Polar Decomposition
Proof (continued).
We next prove that kerU = kerA. By our construction, kerU ⊃ (ran|A|)⊥.
But does the kernel contain any other elements?
If w = |A|v ∈ ran|A|, then

Uw = 0 ⇔ U(|A|v) = 0 ⇔ Av = 0 ⇔ |A|v = w = 0

where we have used (3.3.9). Thus, there are no other elements in the
kernel and by Lemma 2.3.5 and (3.3.9),

kerU = (ran|A|)⊥ = ker|A| = kerA.

It follows that U has the desired properties. The proof of uniqueness is left
to the reader.
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Sturm-Liouville Boundary Value Problems

The Rayleigh-Ritz Method

Positive Operators and the Polar Decomposition

The Singular Value Decomposition for Compact Operators and Matrices
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Singular Value Decomposition
For compact, self-adjoint operators K on a Hilbert space H, the Spectral
theorem 2.6.6 allowed us to obtain the representation (2.6.5) in terms of
their real eigenvalues and orthonormal eigenvectors,

Ku =
∑
n

λn⟨en, u⟩en for all u ∈H.

(This representation is equivalent to the diagonalization of square,
self-adjoint matrices.)
In this section, we will obtain a similar representation that

▶ is valid even for compact operators that are not self-adjoint;
▶ has the same form, but the eigenvalues λn are replaced with strictly

positive numbers σn.
This representation will also be useful for obtaining the polar
decomposition of a compact operator.
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Singular Value Decomposition
3.4.1. Theorem. Let K be a compact operator on a Hilbert space H.
Then there exist families of orthonormal vectors {vn}n∈I and {un}n∈I ,
I ⊂ N, and strictly positive real numbers {σn}n∈I , such that

K =
∑
n∈I

σn⟨vn, · ⟩un.

The numbers σn are called the singular values of K , the vectors vn the
right-singular vectors and the vectors un the left-singular vectors.
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Singular Value Decomposition
Proof.
Since K is compact, so is K ∗K (why?). Thus, K ∗K is compact,
self-adjoint and positive by Remark 3.3.1. By the Spectral Theorem for
compact operators, there exists an orthonormal system (not necessarily a
basis) of eigenvectors {vn}n∈I such that

K ∗Kvn = λnvn with λn ̸= 0, n ∈ I ,

and

K ∗Kx = 0 for x ∈ (span{vn})⊥.

Since K ∗K ≥ 0, all λn > 0.
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Singular Value Decomposition
Proof (continued).
Define

σn :=
√
λn

and set
un :=

1

σn
Kvn.

Then

⟨ui , uj⟩ =
1

σiσj
⟨Kvi ,Kvj⟩ =

1

σiσj
⟨vi ,K ∗Kvj⟩ =

σj
σi
⟨vi , vj⟩ = δij

so {un}n∈I is an orthonormal system.
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Singular Value Decomposition
Proof (continued).
We next show that kerK ∗K = kerK . Note that if K ∗Kx = 0, then

∥Kx∥2 = ⟨Kx ,Kx⟩ = ⟨K ∗Kx , x⟩ = 0,

so x ∈ kerK . This gives kerK ∗K ⊂ kerK . Since kerK ⊂ kerK ∗K , the
two kernels are equal.
We may now write

H = span{vn} ⊕ (span{vn})⊥

= span{vn} ⊕ kerK ∗K

= span{vn} ⊕ kerK .

Hence, each x ∈H may be expressed in the form

x =
∑
n∈I

⟨vn, x⟩vn + w , where w ∈ kerK .
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Singular Value Decomposition
Proof (continued).
We then have

Kx =
∑
n∈I

⟨vn, x⟩Kvn + 0 =
∑
n∈I

σn⟨vn, x⟩un,

which is the desired representation.

3.4.2. Remark. The singular values are just the square roots of the
eigenvalues of K ∗K . From Lemma 3.3.4 we know that the singular values
are equal to the eigenvalues of

√
K ∗K = |K |. This gives a connection to

the polar decomposition, as we will see.
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Relationship to the Spectral Representation
While the singular value decomposition is useful as an alternative to the
spectral decomposition for non-selfadjoint, compact operators, it is worth
mentioning the following relationship between the two decompositions.
3.4.3. Lemma. Let K be a self-adjoint, compact operator with spectral
representation

K =
∑
n∈I

λn⟨en, · ⟩en.

Then the corresponding singular value decomposition of K is

K =
∑
n∈I

|λn|⟨en, · ⟩un un =
λn
|λn|

en. (3.4.1)
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Relationship to the Spectral Decomposition
Proof.
We have

K ∗K = K 2 =
∑
n∈I

λ2n⟨en, · ⟩en

This implies that the eigenvectors of K ∗K are just the eigenvectors en of K
and the eigenvalues of K ∗K are given by λ2n. Then σn = |λn| and
un = 1

σn
Ken = λn

|λn|en, yielding the representation (3.4.1).

It is worth noting the following result that we used in the proof:
3.4.4. Remark. Let K be a self-adjoint, compact operator. Then K 2 has
the same eigenvectors as K and the eigenvalues of K 2 are precisely the
squares of the eigenvalues of K .
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Relationship to the Polar Decomposition
Let K be a compact operator. Then from Lemma 3.3.4 we know that

|K | =
∑
n∈I

σn⟨vn, · ⟩vn (3.4.2)

where the vn are the eigenvectors of K ∗K and σn the singular values of K .
Define further un := 1

σn
Kvn and set

U =
∑
n∈I

⟨vn, · ⟩un. (3.4.3)

Then for x ∈ span{vn} we have

∥Ux∥2 =
∑
n∈I

|⟨vn, x⟩|2 = ∥x∥2

and
kerU = span{vn}⊥ = kerK .

Hence, U is a partial isometry with the same kernel as K .
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Relationship to the Polar Decomposition
Therefore, given σn, un, vn for n ∈ I in the Singular Value Decomposition
(Theorem 3.4.1), we can construct the polar decomposition

K = U|K |

by defining U and |K | by (3.4.3) and (3.4.2), respectively.
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Generalizing the Singular Value Decomposition
In principle, the singular value decomposition can be defined for linear
operators

K : H1 →H2,

where H1 and H2 are distinct Hilbert spaces. A suitably-defined adjoint
would then be a map K ∗ : H2 →H1 and we would have

K ∗K : H1 →H1,

allowing us to apply the spectral representation of K ∗K as before.
Instead of developing this general theory (including a suitable
generalization of the adjoint) we will discuss only the case of matrices

A : Fn → Fm, A ∈ Mat(m × n;F).

where F = R or C.
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Singular Value Decomposition for Matrices
For A ∈ Mat(m × n;F) we simply take A∗ = AT . Then

A∗A ∈ Mat(n × n;F) and AA∗ ∈ Mat(m ×m;F)

It is clear that both A∗A and AA∗ are square, self-adjoint and positive and
we can calculate their square roots, giving |A| and |A∗|. (Note that |A|
does not have the same size as A!)
3.4.5. Lemma. Let λ > 0 be an eigenvalue of A∗A with eigenvector
v ∈ Rn. Then λ is also an eigenvalue of AA∗ with eigenvector Av ∈ Rm.

Proof.
Suppose that A∗Av = λv ̸= 0. Then Av ̸= 0 and

(AA∗)Av = A(A∗Av) = Aλv = λ · Av .
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Singular Values and Left- and Right-Singular Vectors
3.4.6. Corollary. If A ∈ Mat(m × n;F), then A∗A and AA∗ have at most
min(m, n) non-zero eigenvalues. These eigenvalues must be strictly
positive.
We can now make essentially the same definitions as before, with a few
additional comments.
We assume that A ∈ Mat(m × n;F) and that λ1, ... ,λr > 0,
r ≤ min(m, n), are the strictly positive eigenvalues of A∗A.

▶ The numbers λ1, ... ,λr are also the non-zero eigenvalues of AA∗. The
singular values of A and A∗ are both given by σi :=

√
λi , i = 1, ... , r .

▶ The orthonormal eigenvectors for the λi are the right-singular vectors
vi ∈ Rn.

▶ The left-singular vectors are ui =
1
σi
Avi , where ui ∈ Rm.

As before, the sets {vi}ri=1 and {ui}ri=1 are orthonormal systems in their
respective spaces.
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Singular Vectors
3.4.7. Remark. It is not difficult to see that σ > 0 is a singular value and
two normalized vectors v ∈ Rn and u ∈ Rm are right- and left-singular
vectors for A ∈ Mat(m × n;F) if and only if

Av = σu, A∗u = σv

This gives a clear sense of the way in which singular values are
generalizations of eigenvalues.
The matrices

Ur := (u1, ... , ur ) ∈ Mat(m × r ;F),

Vr := (v1, ... , vr ) ∈ Mat(n × r ;F),

are in general partial isometries, as can be easily checked. If
r < min(m, n), they will both have a non-trivial kernel.
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Orthogonality of Singular Vectors
Since Avi = σiui and the u1, ... , ur are orthonormal,

U∗
r AVr =

u∗1...
u∗r

A(v1, ... , vr ) =

u∗1...
u∗r

 (Av1, ... ,Avr )

=

⟨u1,Av1⟩ ... ⟨u1,Avr ⟩
... ...

⟨ur ,Av1⟩ ... ⟨ur ,Avr ⟩


= diag(σ1, ... ,σr )

=: Σr .

Using the usual matrix algebra, we can rewrite this in the form

A = UrΣrV
∗
r
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The Compact Singular Value Decomposition
We have hence proved the following result:
3.4.8. Compact Singular Value Decomposition. Let A ∈ Mat(m × n;F) and
let σ1, ... ,σr > 0, r ≤ min(m, n), be the singular values of A. Then there
exist partial isometries Ur ,Vr such that

A = UrΣrV
∗
r

where Σr := diag(σ1, ... ,σr ).

3.4.9. Remark. One usually orders the left- and right-singular vectors in
such a way that the singular values of A are decreasing, i.e.,

Σr = diag(σ1, ... ,σr )

with σ1 ≥ σ2 ≥ · · · ≥ σr . In this way, the matrix Σr is determined uniquely
(but Ur and Vr are of course not unique).
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The Compact Singular Value Decomposition
3.4.10. Example. Consider the matrix

A =

(
1 0 1
0 1 1

)
.

Then

A∗A =

1 0 1
0 1 1
1 1 2

 and AA∗ =

(
2 1
1 2

)
.

The eigenvalues of A∗A are λ1 = 3, λ2 = 1 and λ3 = 0. The eigenvalues
λ1 and λ2 are also the eigenvalues of AA∗. The non-zero singular values of
A are

σ1 =
√
3, σ2 = 1.
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The Compact Singular Value Decomposition
The right-singular vectors of A are the normed eigenvectors of A∗A:

v1 =
1√
6

1
1
2

 , v2 =
1√
2

−1
1
0


The left-singular vectors are

u1 =
1√
3
Av1 =

1√
2

(
1
1

)
, u2 = Av2 =

1√
2

(
−1
1

)
.

Hence,

U2 =
1√
2

(
1 −1
1 1

)
, V2 =

1√
6

1 −
√
3

1
√
3

2 0


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The Compact Singular Value Decomposition
We can verify directly that

UT
2 AV2 =

(√
3 0
0 1

)
= Σ2

and
U2Σ2V

T
2 =

(
1 0 1
0 1 1

)
= A.

Note that the matrices U and V are not uniquely determined, because we
could have changed the sign of the right-singular vectors.
3.4.11. Example. We calculate the singular value decomposition of

A =

 1 0 −1
1 1 0
−1 0 −1


For reference, we note that the eigenvalues of A are −

√
2,
√
2 and 1.
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The Singular Values
We have

A∗A =

3 1 0
1 1 0
0 0 2


The eigenvalues of A∗A are

λ1 = 2 +
√
2, λ2 = 2, λ3 = 2−

√
2

so the singular values of A are

σ1 =

√
2 +

√
2, σ2 =

√
2, σ3 =

√
2−

√
2.

Hence,

Σ3 = diag(σ1,σ2,σ3) =


√
2 +

√
2 0 0

0
√
2 0

0 0
√
2−

√
2


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The Right-Singular Vectors
Orthonormalized eigenvectors for the λi , i.e., the right-singular vectors, are

v1 =
1√

4− 2
√
2

 1

−1 +
√
2

0

 , v2 =

0
0
1

 ,

v3 =
1√

4− 2
√
2

1−
√
2

1
0

 .

Hence, we have

V =



1√
4−2

√
2

0 1−
√
2√

4−2
√
2

√
2−1√

4−2
√
2

0 1√
4−2

√
2

0 1 0


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The Left-Singular Vectors
We can either find the left-singular vectors directly as ui =

1
σi
Avi ,

i = 1, 2, 3, or, since Σ3 is invertible, through Σ3 = U∗AV :

U = AVΣ−1
3 =


1
2 − 1√

2
−1

2

1√
2

0 1√
2

−1
2 − 1√

2
1
2


The orthonormal columns of U are the left-singular eigenvectors u1, u2, u3.
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The Full Singular Value Decomposition
We can extend the compact singular value decomposition so that the
decomposition involves quadratic matrices U and V , which are then full
(not just partial) isometries.
Let v1, ... , vr , r < n, be the orthonormal right-singular vectors for all
non-zero singular values of A. We complement these with arbitrary
orthonormal vectors vr+1, ... , vn such that v1, ... , vn gives an orthonormal
basis of Rn.
We similarly add vectors ur+1, ... , un to the left-singular vectors so that
u1, ... , un is an orthonormal basis. Then

u∗i Avj = ⟨ui ,Avj⟩ = 0 if i > r or j > r .

We see this as follows: if j > r , then A∗Avj = 0. This implies
⟨Avj ,Avj⟩ = ⟨vj ,A∗Avj⟩ = 0 and hence Avj = 0. If i > r and j ≤ r , then
Avj = σjuj and the expression vanishes because ⟨ui , uj⟩ = 0.
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The Full Singular Value Decomposition
3.4.12. (Full) Singular Value Decomposition. For A ∈ Mat(m× n;F) there
exist isometries U ∈ Mat(m ×m;F), V ∈ Mat(n × n;F) such that

A = UΣV ∗,

where Σ ∈ Mat(m × n;F) is a not-necessarily-square matrix whose
diagonal lists the non-zero singular values of A and is zero elsewhere.

3.4.13. Example. Consider again the matrix of Example 3.4.10,

A =

(
1 0 1
0 1 1

)
.

We had found

U2 =
1√
2

(
1 −1
1 1

)
, V2 =

1√
6

1 −
√
3

1
√
3

2 0


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The Full Singular Value Decomposition
The matrix U2 is already unitary, and we add an orthonormal vector to
right-singular vectors to obtain

U =
1√
2

(
1 −1
1 1

)
, V =

1√
6

1 −
√
3

√
2

1
√
3

√
2

2 0 −
√
2


Then

UTAV =

(√
3 0 0
0 1 0

)
.

3.4.14. Example. Consider the matrix

A =

1 0 1 1
0 1 1 0
1 1 2 1


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The Full Singular Value Decomposition
Here

A∗A =


2 1 3 2
1 2 3 1
3 3 6 3
2 1 3 2

 , AA∗ =

3 1 4
1 2 3
4 3 7


and the eigenvalues of A∗A are λ1 = 6 +

√
21, λ2 = 6−

√
21,

λ3 = λ4 = 0. Omitting the (very messy) calculations, the compact singular
value decomposition yields isometric U2,V2 such that

U∗
2AV2 =

(√
6 +

√
21 0

0
√
6−

√
21

)
,

while the full singular value decomposition gives unitary U,V such that

U∗AV =


√
6 +

√
21 0 0 0

0
√
6−

√
21 0 0

0 0 0 0

 .
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The Truncated Singular Value Decomposition
One of the major applications of the singular value decomposition is to
approximate a given matrix A by another matrix Ã obtained by
reconstruction from a reduced number of singular values of A:
3.4.15. Truncated Singular Value Decomposition. For A ∈ Mat(m × n;F)
have non-zero singular values σ1 ≥ σ2 ≥ · · · ≥ σr , r ≤ min(m, n). Let
t ≤ r ,

Σt := diag(σ1, ... ,σt)

and Ut and Vt the corresponding matrices of left- and right-singular
vectors. Then

Ã = UtΣtV
∗
t

is called the truncated singular value decomposition of A.
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The Truncated Singular Value Decomposition
3.4.16. Example. Consider once more the matrix of Example 3.4.11,

A =

 1 0 −1
1 1 0
−1 0 −1


The singular values of A were

σ1 =

√
2 +

√
2, σ2 =

√
2, σ3 =

√
2−

√
2.

We calculate the truncated SVD using only the two largest singular values,
so

Σ2 :=

(√
2 +

√
2 0

0
√
2

)
.
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The Truncated Singular Value Decomposition
The matrices of left- and right-singular vectors are

U2 =


1
2 − 1√

2

1√
2

0

−1
2 − 1√

2

 , V2 =


1√

4−2
√
2

0

√
2−1√

4−2
√
2

0

0 1

 .

Then
UT
2 AV2 = Σ2

and

Ã = U2Σ2V
T
2 =

√
3 + 2

√
2

2

 1/
√
2 1− 1/

√
2 −

√
3− 2

√
2

1
√
2− 1 0

−1/
√
2 1/

√
2− 1 −

√
3− 2

√
2

 .
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Low-Rank Approximation
The truncated SVD can be used to approximate a given matrix through a
lower-rank matrix; in fact, it is the best such approximation with respect to
the so-called trace norm, defined as

∥A∥tr :=
√
trA∗A =

√√√√ m∑
i=1

n∑
j=1

|aij |2.

for A ∈ Mat(m × n;F).
3.4.17. Eckart-Young Theorem. Let A ∈ Mat(m × n;F) have the non-zero
singular values σ1 ≥ σ2 ≥ · · · ≥ σr . Then the matrix M of rank t that
minimizes ∥A−M∥tr is given by the truncated singular value
decomposition using the t largest singular values of A.
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Low-Rank Approximation
We recall that

tr(aij)
n
i ,j=1 =

n∑
i=1

aii .

and that tr(AB) = tr(BA) for any square matrices A and B.
Proof.
Using the full singular value decomposition A = UΣV ∗, we have

∥A−M∥2tr = ∥UΣV ∗ −M∥2tr = tr
(
(UΣV ∗ −M)∗(UΣV ∗ −M)

)
= tr

(
(VΣU∗ −M∗)(UΣV ∗ −M)

)
= tr

(
VV ∗(VΣU∗ −M∗)(UΣV ∗ −M)

)
= tr

(
(ΣU∗ − V ∗M∗)UU∗(UΣ −MV )

)
= tr

(
(Σ − V ∗M∗U)(Σ − U∗MV )

)
= ∥Σ − U∗MV ∥2tr

Since Σ is diagonal, the trace norm is minimized if S := U∗MV is diagonal.
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Low-Rank Approximation
Proof (continued).
Then

∥Σ − S∥2tr =
n∑

i=1

(σi − sii )
2.

Since S is to have rank r , only r diagonal entries of S can be non-zero.
These non-zero entries sii should equal σi to minimize the sum. Then

∥Σ − S∥2tr =
∑
sii=0

σ2i .

This is minimized if the sum is over the n − r smallest singular values, i.e.,
if the diagonal elements of S are the r largest singular values. It follows
that S = Σr and

M = UΣrV
∗.



The Singular Value Decomposition Slide 414

Image Compression
Reference Example 3.4.11 and the following application are taken from S. Beaver,
The Singular Value Decomposition and a Democratic Method of
Orthogonalization, http://www.wou.edu/∼beavers/Talks/TalksPage.html

The singular value decomposition can be used for image compression: A
256 grayscale image of size 320× 200 pixel may be represented as a data
matrix A ∈ Mat(320× 200;R) with entries between 0 and 1 corresponding
to the grayscale. Each entry in the matrix takes up 1 byte (8 bits; a
number between 0 and 255) of storage space, so the total amount of
storage space needed for the image is 320 · 200 = 64000 bytes.
We perform a singular value decomposition on A, obtaining A = UΣV ∗.
Replacing Σ with the truncated SVD Σr , we obtain

Ar = UΣrV
∗

as the best rank-r approximation of A.

http://www.wou.edu/~beavers/Talks/TalksPage.html


The Singular Value Decomposition Slide 415

Image Compression
To store Ar , we need 320 · r bytes to store the r vectors σ1v1, ...σrvr and
200 · r bytes to store the vectors u1, ... , ur . For r = 20 this is
520 · 20 = 10400 bytes, less than 1/6 the original storage space.
We demonstrate the compression using Mathematica. The image below is
a 320× 200, 256 grayscale bitmap image:
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Image Compression
We verify the size of the image, the number of channels (byte/pixel) and
obtain the singular value decomposition; we use lower case letters (u,σ, v)
for (U,Σ ,V ). Here σ ∈ Mat(320× 200;R).
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Image Compression
The original image is regained from the singular value decomposition:
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Image Compression
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Image Compression
On the previous slide, we have first constructed the matrix Σr , r = 20
(here denoted by S) and then displayed the compressed image. The image
quality is of course worse than that of the original, but given a compression
by more than 80% it is quite satisfactory.
The next slide shows the image for r = 60, which corresponds to 31200
bytes (compression by 50%). The image quality is quite good.
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Image Compression
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