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a b s t r a c t

Quantum detector tomography (QDT) is a fundamental technique for calibrating quantum devices and
performing quantum engineering tasks. In this paper, we utilize regularization to improve the QDT
accuracy whenever the probe states are informationally complete or informationally incomplete. In
the informationally complete scenario, without regularization, we optimize the resource (probe state)
distribution by converting it to a semidefinite programming problem. Then in both the informationally
complete and informationally incomplete scenarios, we discuss different regularization forms and
prove the mean squared error scales as O(1/N) or tends to a constant with N state copies under the
static assumption. We also characterize the ideal best regularization for the identifiable parameters,
accounting for both the informationally complete and informationally incomplete scenarios. Numerical
examples demonstrate the effectiveness of different regularization forms and a quantum optical
experiment test shows that a suitable regularization form can reach a reduced mean squared error.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, significant progress has been achieved in
variety of fields of quantum science and technology, including
uantum computation (DiVincenzo, 1995), quantum communi-
ation (Nielsen & Chuang, 2010) and quantum sensing (Degen,
einhard, & Cappellaro, 2017). In these applications, it is often
ecessary to develop efficient estimation methods to acquire
nformation about quantum systems and quantum system iden-
ification has attracted wide attention (Burgarth & Yuasa, 2012;
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Guţǎ & Yamamoto, 2016; Nurdin & Guţǎ, 2022). In quantum
estimation and quantum system identification, a common and
essential step is to perform measurement on the quantum system
of interest. Quantum detector tomography (QDT), as the standard
technique to characterize an unknown measurement process, is
fundamental for device benchmarking and subsequent tasks such
as quantum state tomography (QST) (Hou et al., 2016; Mu, Qi,
Petersen, & Shi, 2020; Qi et al., 2013), quantum Hamiltonian
identification (Sone & Cappellaro, 2017a, 2017b; Wang et al.,
2018, 2020; Zhang & Sarovar, 2014, 2015), quantum process to-
mography (Fiurášek & Hradil, 2001; Wang et al., 2019; Xiao, Xue,
Dong, & Zhang, 2021) and quantum control (Dong & Petersen,
2022).

When the operators describing a detector are diagonal in
the Fock state basis, they are called phase-insensitive (otherwise
phase-sensitive) detectors and can be straightforwardly identified
using function fitting (Renema et al., 2012) or convex optimiza-
tion (Feito et al., 2009; Lundeen et al., 2009; Natarajan et al.,
2013). For phase-sensitive detectors, generally they cannot be si-
multaneously diagonalized and their reconstruction is thus more
complicated. Existing methods include Maximum Likelihood Es-
timation (D’Ariano, Maccone, & Presti, 2004; Fiurášek, 2001),
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inear regression (Grandi, Zavatta, Bellini, & Paris, 2017), convex-
uadratic optimization (Zhang, Coldenstrodt-Ronge, et al., 2012)
nd Zhang, Datta, et al. (2012), and analytical two-stage solu-
ion (Wang et al., 2021). Specially, binary detectors can always
e simultaneously diagonalized and thus their estimation has an
nalytical scheme based on Frobenius-norm projection (Wang,
ong, & Yonezawa, 2019).
For d-dimensional QDT, we prepare M different types of quan-

um states and the total number of copies of these states N is
called resource number. Many identification algorithms assume
the experimental resource is diverse enough in QDT, i.e., any
detector can be uniquely determined by the measurement out-
come statistics. This scenario is called informationally complete
(I.C.) (Busch, 1991; Prugovečki, 1977) and the opposite scenario is
called information incomplete (I.I.). In practice, the I.C. condition
may not be satisfied for QDT, which results in an I.I. scenario
(e.g. when M < d2 for a d-dimensional detector). In the I.I.
scenario and in certain I.C. scenarios where the probe states
lie close to the I.I. set although they are still in I.C. set, the
QDT problem is ill-conditioned. To solve this problem, convex
optimization methods with regularization were proposed in Feito
et al. (2009) and Lundeen et al. (2009) for phase-insensitive de-
tectors and in Zhang, Coldenstrodt-Ronge, et al. (2012) and Zhang,
Datta, et al. (2012) for phase-sensitive detectors. In experiments,
a regularized least-square method was used in Brida, Ciavarella,
Degiovanni, Genovese, Lolli, et al. (2012), Brida, Ciavarella, De-
giovanni, Genovese, Migdall, et al. (2012) for phase-insensitive
detectors. However, there is still a lack of closed form solu-
tions for QDT with regularization in these existing methods. To
solve this problem, we develop QDT with regularization inspired
by classical transfer function identification. In the previous lit-
erature, a kernel-based regularization was proposed in Chen,
Ohlsson, and Ljung (2012), Mazzoleni, Chiuso, Scandella, For-
mentin, and Previdi (2022), Pillonetto, Chiuso, and De Nicolao
(2011), Pillonetto and De Nicolao (2010) and Pillonetto, Din-
uzzo, Chen, Nicolao, and Ljung (2014), which can cope with
bias–variance trade-off. For kernel-based regularization, an im-
portant problem is how to design a suitable kernel matrix. Chen
(2018) and Chen et al. (2012) proposed different kernels and
Chen and Andersen (2021), Chen and Ljung (2013), Mu, Chen,
and Ljung (2018) and Mu, Chen, and Ljung (2021) discussed
how to tune hyper-parameters in the kernel matrix and the
asymptotic properties of these parameters. Further work about
kernel-based regularization was studied in Chen, Andersen, Ljung,
Chiuso, and Pillonetto (2014), Mu and Chen (2018), Pillonetto,
Chen, Chiuso, De Nicolao, and Ljung (2022) and Pillonetto, Chen,
Chiuso, Nicolao, and Ljung (2016).

In this paper, we develop regularization methods in QDT
which are applicable to both phase-insensitive and phase-
sensitive detectors. We give a closed form solution, applicable to
both the cases of I.C. and I.I. We then discuss different regular-
ization forms and explain the advantages of using regularization
in QDT. We consider no regularization as a special case. In the
I.C. scenario, a common step (see e.g. Wang et al., 2019; Wang
et al., 2021) is to uniformly distribute the resource for each
quantum state as N/M , which is often not the optimal distri-
bution. Without regularization, we discuss how to optimize the
resource distribution for different types of probe states based on
minimizing the mean squared error (MSE) of QDT. We convert
this optimization problem into a semidefinite programming (SDP)
problem, which can be solved efficiently. In comparison, if the
resource distribution is given, the probe state design problem
was discussed in Xiao, Wang, Dong, and Zhang (2022). In both
the I.C. and I.I. scenarios, we also prove that under the static
assumption (specific definitions in Section 4.1), the MSE scales

as O(1/N) or tends to a constant, and we characterize when

2

the MSE can reach the optimal scaling O(1/N). We propose an
exact characterization of the best regularization for identifiable
parameters to achieve the minimum MSE, allowing the probe
states to be I.C. or I.I. In the I.C. scenario, we obtain the same
best regularization form as proposed in Chen et al. (2012). We
also prove the best regularization can reach the optimal scaling
O(1/N) even in the I.I. scenario. Numerical examples demonstrate
that the optimization of resource distribution and regularization
can reduce the MSE. Then we give the reason why adaptive
rank-1 regularization motivated from the best regularization fails
to show an O(1/N) scaling in QDT, and we find an indication
that full-rank regularization might be better. Finally, we apply
our algorithm to quantum optical experiments using two-mode
coherent states for binary detectors. The experimental results
show that the adaptive regularization has a lower MSE compared
with the Tikhonov regularization method in Wang et al. (2021).
The main contributions of this paper are summarized as follows.

(i) A closed form of regularized QDT solution is established
with different regularization forms in the I.C. and I.I. sce-
narios. The motivations and advantages to apply regular-
ization in QDT are discussed.

(ii) Without regularization, we optimize the resource (probe
state) distribution by converting it to a semidefinite pro-
gramming (SDP) problem in the I.C. scenario.

(iii) Under the static assumption, we prove that the MSE scales
as O(1/N) or tends to a constant and we characterize when
the MSE can reach the optimal scaling O(1/N). In addi-
tion, an exact characterization of the best regularization
for identifiable parameters to achieve the minimum MSE
is given in the I.C. and I.I. scenarios.

(iv) Simulation results are provided to verify the effective-
ness of resource distribution optimization and regularized
QDT. Quantum optics experimental results are presented
to demonstrate the necessity of choosing a proper regular-
ization form to further reduce the QDT error.

This paper is organized as follows. In Section 2, we introduce
the background knowledge and weighted least squares for QDT.
In Section 3, we discuss different regularization forms for QDT.
In Section 4, we characterize the scaling of MSE under static
assumptions and the best regularization for identifiable param-
eters. In Section 5, we give numerical examples and in Section 6,
we present experimental results. Conclusions are presented in
Section 7.

Notation: For a matrix A, A ≥ 0 means A is positive semidef-
inite. The conjugation and transpose (T ) of A is A†. The trace
of A is Tr(A). The rank of A is Rank(A). The identity matrix is I .
The real and complex domains are R and C, respectively. The
tensor product is ⊗. The set of all d-dimensional complex/real
vectors is Cd/Rd. Row and column vectors also denoted as ⟨ψ |

and |ψ⟩, respectively. The Frobenius norm for a matrix and 2-
norm for a vector are ∥ · ∥. The Kronecker delta function is δ.
=

√
−1. The diagonal matrix X formed from vector b is denoted

as X = diag(b). For any Xd×d ≥ 0 with spectral decomposition
X = UPU†, define

√
X or X

1
2 as U diag

(√
P11,

√
P22, . . . ,

√
Pdd
)
U†.

The Pauli matrices are σx, σy, σz .

2. Preliminaries and identification algorithm

Here we present the background knowledge and briefly in-
troduce the QDT identification algorithm in Wang et al. (2021).
Based on this QDT identification algorithm, we introduce weighted
least squares (WLS) in QDT and explain its advantages.
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.1. Quantum state and measurement

For a d-dimensional quantum system, its state can be de-
scribed by a d × d Hermitian matrix ρ, which satisfies ρ ≥ 0
and Tr(ρ) = 1. When ρ = |ψ⟩⟨ψ | for some |ψ⟩ ∈ Cd, we call

a pure state. Otherwise, ρ is called a mixed state, and can be
epresented using pure states {|ψi⟩} as ρ =

∑
i ci|ψi⟩⟨ψi| where

i ∈ R and
∑

i ci = 1 with ci ≥ 0.
A set of operators {Pi}ni=1 named Positive-operator-valued mea-

ure (POVM) characterizes a corresponding detector as a mea-
urement device. Each POVM element Pi is Hermitian and positive
emidefinite, and together they satisfy the completeness con-
traint

∑n
i=1 Pi = I . When the measurements corresponding to

Pi} are performed on ρ, the probability of obtaining the ith result
s given by the Born’s rule

i = Tr (Piρ) . (1)

rom the completeness constraint, we have
∑

i pi = 1.

.2. Problem formulation of QDT

Suppose the true values of the POVM elements are {Pi}ni=1.
e design M different types of quantum states ρj (called probe

tates) and record the measurement results p̂ij as the estimate of
ij = Tr

(
Piρj

)
. Each probe state has resource number Nj (i.e., Nj

opies) and the total resource number is N =
∑M

j=1 Nj. Given
xperimental data

{
p̂ij
}
, the problem of QDT (Wang et al., 2021)

an be formulated as

min
P̂i
}n
i=1

n∑
i=1

M∑
j=1

[
p̂ij − Tr

(
P̂iρj

)]2
(2)

such that P̂i = P̂i
†
, P̂i ≥ 0 for 1 ≤ i ≤ n and

∑n
i=1 P̂i = I .

Let {Ωi}
d2
i=1 be a complete basis set of orthonormal operators

with dimension d, Tr
(
Ω

†
i Ωj

)
= δij,Ωi = Ω

†
i and Tr (Ωi) = 0

except Ω1 = I/
√
d. Then we can parameterize the detector and

probe states as Pi =
∑d2

a=1 λ
a
iΩa, ρj =

∑d2
b=1 φ

b
j Ωb. Using Born’s

rule, we can obtain the least squares (LS) equation

p̂ij = φT
j λi + eij, (3)

where φj and λi are the parameterization vectors of ρj and Pi,
respectively. Suppose the outcome for Pi of ρj appears nij times,
and then p̂ij = nij/Nj. The estimation error is denoted as eij =

p̂ij − pij. According to the central limit theorem, eij converges in
distribution to a normal distribution with mean zero and variance(
pij − p2ij

)
/Nj.

To propose least squares (LS) and weighted least squares
(WLS) solutions in QDT, in the following we write down and
solve the linear equation for each POVM element individually.
This can be achieved by rearranging the data after implementing
all the measurements. Collect the parameterization of the probe
states as X = (φ1, φ2, . . . , φM)

T . For the ith POVM element Pi, let
ŷi ≜

(
p̂i1, p̂i2, . . . , p̂iM

)T
, y0 ≜ ((1, . . . , 1)1×M)

T
=
∑

i ŷi, dd2×1 ≜

(
√
d, 0, . . . , 0)T , ei ≜ (ei1, . . . , eiM)T . Define ȳi ≜ ŷi −

1
ny0 and

i ≜ λi −
1
nd. Then we have

ī = Xθi + ei. (4)

Now the QDT problem can be transformed into the following
form:

Problem 1. For 1 ≤ i ≤ n, given experimental data ȳi, solve
inP̂i

∥ȳi − Xθi∥2 with P̂i ≥ 0, where λi = θi +
1
nd is the

parameterization of P̂ .
i
3

2.3. Weighted least squares in QDT

To solve Problem 1, the standard LS solution is

θ̂i,LS =
(
XTX

)−1
XT ȳi, (5)

and then the estimator for each detector is λ̂i,LS = θ̂i,LS +
1
nd,

which is equivalent to equation (9) in Wang et al. (2021).
Although all the estimation errors eij have zero mean, they

have different variances, which is called heteroscedasticity in
statistics. The constrained least squares as equation (6) in Wang
et al. (2021) and standard LS (5) do not consider heteroscedastic-
ity. However, WLS consider the heteroscedasticity property and
has optimal MSE. We thus consider WLS estimate

θ̂i,WLS =
(
XTWiX

)−1
XTWiȳi, (6)

where Wi = diag
([

N1
pi1−p2i1

, . . . ,
NM

piM−p2iM

])
is the weighting ma-

trix. We assume that pij is not equal to 0 or 1, which is reasonable
because pij ∈ [0, 1] and generally the probability for pij = 0 or 1
is 0 in theory. The following are the two main advantages of using
WLS:

• We can normalize the estimation errors to normal Gaus-
sian errors and solve the heteroscedasticity problem. With
increasing measurements, each eij will converge asymptot-
ically to a Gaussian random variable with mean zero and
variance σij =

(
pij − p2ij

)
/Nj. Thus, we have E

(
eieiT

)
= Wi

−1.
Define Qi ≜

√
Wi

−1
/σ for certain σ > 0. Then we multiply

by Q−1
i in (4) as

Q−1
i ȳi = Q−1

i Xθi + Q−1
i ei. (7)

Let E(·) denote the expectation with respect to all possible
measurement results. The new errors have an independent
identical normal distribution (i.i.d.) with

E
(
Qi

−1eieiTQi
−1)

= σ 2I. (8)

Thus, all the variances of the estimation errors are normal-
ized to σ 2.

• For any unbiased linear estimator θ̂i for θi, we have (Mu
et al., 2020)

MSEM
(
θ̂i,WLS

)
= E

[(
θ̂i,WLS − θi

)(
θ̂i,WLS − θi

)T]
=
(
XTWiX

)−1
⩽ MSEM

(
θ̂i

)
,

(9)

where MSEM (·) is the MSE matrix. The MSE of all the POVM
elements is

E

(
n∑

i=1

P̂i − Pi
2) =

n∑
i=1

E
(θ̂i − θi

2)

=

n∑
i=1

Tr
(
MSEM

(
θ̂i

))
.

(10)

Hence, the WLS solution to Problem 1 has the minimum
MSE.

In practice, the weighting matrix Wi is unknown and a feasible
solution is to use the asymptotic estimate

Ŵi = diag
([

N1

p̂i1 − p̂2i1
, . . . ,

NM

p̂iM − p̂2iM

])
. (11)

Denote Q̂−1
i ≜

√
Ŵi

−1

/σ , ỹi ≜ Q̂−1
i ȳi, X̃i ≜ Q̂−1

i X , ẽi ≜ Q̂−1
i ei and

the model equivalent to (4) is

ỹ = X̃ θ + ẽ , (12)
i i i i
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w
here the variance of ẽi is σ 2I and the practical asymptotic WLS
(AWLS) estimate is

θ̂i,AWLS =

(
XT ŴiX

)−1
XT Ŵiȳi =

(
X̃T
i X̃i

)−1
X̃T
i ỹi. (13)

The difference between θ̂i,AWLS and θ̂i,WLS is asymptotically small
in comparison with θ̂i,WLS (Mu et al., 2020). Thus, the estimate
(13) is accurate enough and asymptotically coincides with (6).
Using the LS estimate (5) or WLS estimate (13), we can obtain a
POVM estimate Êi =

∑d2
a=1

(
θ̂i,LS/WLS +

1
nd
)
a
Ωa and E∥Êi−Pi∥2

=

Tr
(
MSEM

(
θ̂i

))
. We call the error E∥Êi − Pi∥2 the LS MSE for the

ith POVM element. Note that {Êi}ni=1 may have negative eigenval-
ues due to the noise or error in the measurement results. Thus, we
need further correction to obtain a positive semidefinite estimate
{P̂i}ni=1 and in this paper, we utilize the algorithm in Wang et al.
(2021) to achieve this. We refer to the error E∥P̂i − Pi∥2 as the
final MSE for the ith POVM element.

Remark 1. One may notice that (4) has the same linear re-
gression form y = Xθ + e as transfer function identification
in system identification (Chen et al., 2012). However, there are
some differences between QDT and transfer function identifi-
cation for classical (non-quantum) systems. First, in QDT, more
measurement data will only enhance the data accuracy in y and
the dimension of y is fixed with given probe states. In transfer
function identification, the dimension of y increases for more
data. Second, the parameterization matrix X is determined by
the given probe states and XTX can be singular (e.g., M < d2)
in QDT. In transfer function identification, X depends on the
input data and measurement data. In practice, XTX is therefore
always invertible but the condition number may be large. Thus,
the standard LS cannot give an accurate estimate. Finally, the
variance of the noise e is often assumed to be a constant in
transfer function identification. However, in QDT, the variances
of noise are usually different and decrease as O(1/N) where N is
the resource number.

3. Regularization in QDT

In QDT, when the different types of probe states are similar
or I.I., leading to an ill-conditioned problem, convex optimization
methods with regularization were proposed in Feito et al. (2009)
and Lundeen et al. (2009) for phase-insensitive detectors and
in Zhang, Coldenstrodt-Ronge, et al. (2012) and Zhang, Datta,
et al. (2012) for phase-sensitive ones. The motivation of intro-
ducing regularization is to mitigate the ill-conditioned property.
For phase-insensitive detectors, the regularization form is chosen
such that the diagonal elements of the reconstructed detector
have smooth variations (Zhang, Datta, et al., 2012). However, for
phase-sensitive detectors, a suitable regularization form is not
easy to find. In addition, convex optimization methods cannot
give a closed form solution. Therefore, in this section, we use
regularization in the WLS of QDT which can give a closed form
solution.

3.1. Regularized weighted least squares

In the ill-conditioned scenario, the condition number of X̃T
i X̃i

can be large or even infinite. To solve this problem, we add
regularization in the weighted model (12) asỹ − X̃ θ

2 + θ TD θ , (14)
i i i i i i

4

where Di is positive semi-definite and called a regularization ma-
trix. Denote Ri ≜ X̃T

i X̃i. After we add regularization, the estimate
is changed to be

θ̂i,RWLS = (Ri + Di)
−1 X̃T

i ỹi. (15)

The expectation of θ̂i,RWLS is

E
(
θ̂i,RWLS

)
= (Ri + Di)

−1 Riθi. (16)

The bias is

θbiasi,RWLS ≜ E
(
θ̂i,RWLS

)
− θi = − (Ri + Di)

−1 Diθi. (17)

Define

θ̃i ≜θ̂i,RWLS − E
(
θ̂i,RWLS

)
= (Ri + Di)

−1 X̃T
i

(
ỹi − X̃iθi

)
= (Ri + Di)

−1 X̃T
i ẽi,

(18)

and then the MSE matrix of θ̂i,RWLS is

MSEM
(
θ̂i,RWLS

)
= E

[(
θ̂i,RWLS − θi

)(
θ̂i,RWLS − θi

)T]
= E

(
θ̃iθ̃

T
i

)
+ θbiasi,RWLS

(
θbiasi,RWLS

)T
= (Ri + Di)

−1 (σ 2Ri + Diθiθ
T
i D

T
i

)
(Ri + Di)

−1 .

(19)

An MSE matrix similar to (19) can be found in Chen et al. (2012)
for transfer function identification with standard LS estimation.
The LS MSE of QDT is Tr(MSEM) and depends on the true param-
eter θi. When the probe states are I.C., we can obtain an estimate
without regularization (i.e., Di = 0) and the MSE matrix becomes

MSEM
(
θ̂i,RWLS

)
= σ 2R−1

i , (20)

which is independent of the true parameter θi.
Based on the development in classical system identification,

several motivations of applying regularization in QDT are as fol-
lows:

(i) Regularization is a typical solution to ill-conditioned prob-
lems. In the field of classical transfer function identification
(see e.g., Chen & Ljung, 2013), the input signal is band-
limited, and then the matrix Ri may become ill-conditioned
as the amount of data increases. Similarly in QDT, the
input probe states can be ‘‘band-limited’’, in the sense that
the types of the probe states are not rich enough (espe-
cially when coherent states are employed) which leads to
the conversion from I.C. to I.I. This current incapability of
realizing perfect number states endows Ri with a large
condition number, which can be reduced by regularization
while still maintaining a closed form solution.

(ii) From an alternative point of view, regularization leverages
the bias–variance trade-off. The regularization estimation
is biased as (17), which can lead to an MSE smaller than
that of the standard LS estimation both in the I.C. and I.I.
scenarios.

There are also differences of applying regularization between QDT
and classical system identification. All physical POVM elements
must be positive semidefinite and sum to identify, which may af-
fect or even guide the design of the specific regularization form in
QDT. For example, Wang et al. (2021) noted that POVM elements
satisfying these physical constraints always have eigenvalues in
[0, 1]. Direct LS estimation for ill-conditioned QDT usually gives a
large ∥θ̂i∥, which may have eigenvalues outside [0, 1] and become
nonphysical. Therefore, the regularization θ TD θ is added to the
i i i
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ost function in Wang et al. (2021) as a penalty term, promoting
he satisfaction of the physical constraints. Apart from this, other
ifferences will be detailed in Section 3.2.3.
Regularized weighted regression is also applied in quantum

tate tomography. For example, in Mu et al. (2020), their moti-
ation is that the quantum state ρ is usually of low rank (Cai,
im, Wang, Yuan, & Zhou, 2016) and thus it is reasonable to
dd a Tikhonov regularization as Section 3.2.2. However, in QDT,
he POVM elements are not always of low rank. For example,
n the continuous-variable optical experiment in the paper and
n Feito et al. (2009), Lundeen et al. (2009) and Zhang, Datta, et al.
2012), the POVM elements are all full-rank. Thus we introduce
nd discuss more regularization forms in Section 3.2.

.2. Different regularization forms in QDT

Here we discuss different regularization forms in QDT. Firstly,
e consider no regularization (i.e., Di = 0) as a special regular-

zation form in the I.C. scenario. Since the MSE in (20) does not
epend on true parameter θi, we propose resource distribution
ptimization of Nj to minimize the LS MSE with given probe
tates. Then we present some common regularization forms. With
egularization, the LS MSE in (19) depends on true parameter
i. Thus we cannot optimize resource distribution as without
egularization and we use a uniformly distributed Nj = N/M .

3.2.1. Without regularization
Without regularization, Wang et al. (2019) and Wang et al.

(2021) choose Nj = N/M for given probe states, which is often
not the optimal distribution. Similar input design problems in
classical systems and control have been widely studied and there
are many existing results, e.g., D,A,E-optimal input design (Boyd &
Vandenberghe, 2004). Here, we formulate and solve the problem
within the framework of A-optimal design problem, where the
trace of the covariance matrix (i.e., MSE) is minimized.

Let ηj =
Nj
N , and the optimization of resource distribution

roblem can be formulated as

min
ηj}

M
j=1

n∑
i=1

Tr

⎛⎝ M∑
j=1

(
ηjwijφjφ

T
j

)⎞⎠−1

s.t. ηj ≥ 0,
M∑
j=1

ηj = 1,

(21)

where φj is the given parameterization vectors of ρj and wij
is the weighted constant which we may obtain from a prior
information. If we do not have a prior information, we can set
wij = 1. This optimization problem is convex and it can be
converted to a semidefinite programming (SDP) problem

min
{ηj}

M
j=1,{uk}

d2
k=1

d2∑
k=1

uk

s.t.
[ ∑M

j=1 ηjwijφjφ
T
j vk

vTk uk

]
≥ 0,

1 ≤ k ≤ d2, 1 ≤ i ≤ n,

ηj ≥ 0,
M∑
j=1

ηj = 1,

(22)

where vk is the kth unit vector. Using CVX (Grant & Boyd, 2008,
2014), we can solve (22) efficiently. Note that Nj = ηjN may not
be an integer, and we need to round it up or down. In compar-
ison, if the resource distribution is given, the probe state design
problem was discussed in Xiao et al. (2022) based on minimizing
an upper bound on the MSE and the condition number.
5

3.2.2. Tikhonov regularization
A most common regularization form is in a Tikhonov sense

(Boyd & Vandenberghe, 2004). In QDT, a natural method is to
choose regularization matrix as

DTikhonov
i = cI, (23)

where c is a positive constant. Wang et al. (2021) did not use WLS
and chose Di =

c
N I which is Tikhonov regularization, because

θ̂i,RWLS =

(
XTX +

c
N
I
)−1

XT ȳi

=
(
XTNIX + cI

)−1
XTNIȳi,

(24)

where the weighted matrix is NI instead of (11).

3.2.3. Kernel-based regularization
In transfer function identification, Chen et al. (2012), Pil-

lonetto et al. (2011), Pillonetto and De Nicolao (2010) and Pil-
lonetto et al. (2014) proposed kernel-based regularization and
explained regularization in a Bayesian perspective. We assume
the true parameter θi is a random variable and has a Gaussian
distribution with zero mean and covariance matrix Si:

θi ∼ N (0, Si) . (25)

Therefore, the posterior estimate is

θ̂
post
i =

(
SiRi + σ 2I

)−1
SiFi =

(
Ri + σ 2S−1

i

)−1
Fi, (26)

where Fi ≜ X̃T
i ỹi. If Si is singular, we can use the first equality of

(26) to obtain the estimate. This posterior estimate is the same as
the regularized estimate if the regularization matrix Di is chosen
as (Chen et al., 2012)

Di = σ 2S−1
i . (27)

This gives an insight into how to choose the regularization ma-
trix Di or kernel matrix Si: Let it reflect the correlations of the
parameters (Chen et al., 2012).

To use the kernel-based regularization in QDT, we need to
solve two problems

(i) In the Bayesian perspective for kernel-based regularization,
the mean of the unknown parameters is zero. But in QDT,
the mean of the unknown parameters λi is usually not zero.

(ii) Heteroscedasticity: In transfer function identification, it
is usually assumed that the noises have the same vari-
ances. But the estimation errors eij usually have different
variances in QDT.

The first problem is solved by modeling in (4) where the un-
known parameter θi becomes zero-mean. For the second problem,
WLS (12) solves the heteroscedasticity problem.

There are two advantages of using kernel-based regulariza-
tion in QDT compared with using kernel-based regularization in
transfer function identification:

(i) In transfer function identification, we need to identify the
variance of the noise firstly, while we already know the
approximate variance of the estimation error in QDT from
measurement data.

(ii) In transfer function identification, the problem dimension
increases as more data are generated, resulting in increased
difficulty. While in QDT, more data will only enhance the
data accuracy and the dimension is fixed with given probe
states.

One limit using kernel-based regularization in QDT is that
without prior knowledge the parameter θi does not have the
property of impulse responses of transfer functions which usually
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ecay exponentially (Chen et al., 2012). In this paper, we mainly
hoose DI kernel which only represents the auto-correlation for
ach coefficient of QDT as

DI
i (k, j) =

{
cµk, if k = j,
0, otherwise, (28)

here c ≥ 0, 0 ≤ µ ≤ 1. If we have more prior knowledge
uch as the correlation between different coefficients, we can
esign more suitable kernels as in transfer function identification.
or example, when the detector is close to a phase-insensitive
etector, i.e., the POVM elements are close to diagonal matrices
n the Fock state basis, the true value θi is close to sparse, which
s similar to the decay behavior of impulse responses for stable
ransfer functions in system identification. Therefore, we can
pply TC and DC kernels (Chen & Ljung, 2013; Chen et al., 2012)
n transfer function identification
TC
i (k, j) = c min

(
µj, µk) , (29)

here c ≥ 0, 0 ≤ µ ≤ 1 and
DC
i (k, j) = cµ|k−j|

1 µ
(k+j)/2
2 , (30)

here c ≥ 0, −1 ≤ µ1 ≤ 1 and 0 ≤ µ2 ≤ 1.

.2.4. Best regularization (in the I. C. scenario)
For true parameter θi, two natural questions are whether there

xists an optimal regularization matrix and if there exists an opti-
al regularization matrix, does it depend on θi? Chen et al. (2012)
as discussed these problems in transfer function identification
nd the result also holds for QDT. The MSE matrix in (19) can be
ewritten using Si as

SEM
(
θ̂i,RWLS

)
=
(
SiRi + σ 2I

)−1
(σ 2SiRiSi

+ σ 4θiθ
T
i )
(
RiSi + σ 2I

)−1
.

(31)

hen Ri is invertible, the following matrix inequality (Chen et al.,
012; Eldar, 2006)

MSEM
(
θ̂i,RWLS

)⏐⏐⏐
Si=K

≥ MSEM
(
θ̂i,RWLS

)
|Si=θiθTi

(32)

olds for any K ≥ 0. Later, in Theorem 2, we will extend this
nequality to the case where Ri is singular. Thus, ideally the best
hoice of regularization always includes
best
i = θiθ

T
i , (33)

hich yields the corresponding optimal regularized estimate

ˆbest
i =

(
θiθ

T
i Ri + σ 2I

)−1
θiθ

T
i Fi, (34)

ith Ri = X̃T
i X̃i and Fi = X̃T

i ỹi. The theoretically best regulariza-
tion depends on the unknown parameter and cannot be used in
practice.

A natural question is that, is θiθ Ti the only choice for Si to
result in the best regularization? Eldar (2006) has given a positive
answer for the I.C. scenario. For the I.I. scenario we will give a
negative answer in Section 4.2.

3.2.5. Adaptive regularization
As motivated by the best regularization, we can propose adap-

tive regularization with rank-1 kernel matrix which is similar
to the rank-1 kernel matrix for transfer function identification
in Chen et al. (2014). Firstly, we consider a two-step adaptive
regularization. In the first step, we use Tikhonov or kernel-based
regularization and we can obtain a rough estimate θ̂0i with certain

(1)
kernel matrix Si . Then in the second step, we repeat using the

6

measurement data in the first step, but now the regularization
matrix is adaptively chosen as

Srank-1i = θ̂0i

(
θ̂0i

)T
. (35)

The following analysis and Theorem 1 in the next section indicate
that full-rank kernel matrix may be better than rank-1 kernel ma-
trix, because a full-rank Si does not induce a dimension reduction
from R(B) to R(SiB). Therefore, we also consider to use full-rank
kernel matrix as

Sfull-ranki = Srank-1i + SDI/TC/DCi , (36)

in Section 5.
It is an important problem to determine the kernel matrix

and some different kernels are proposed in transfer function
identification. For a structure-given kernel matrix, optimization
of the hyper-parameters (such as c , µ in (28)) in the kernel matrix
has been discussed in Chen (2018), Chen et al. (2014) and Chen
and Ljung (2013). However, the question of how to choose the
optimal adaptive kernel matrix is still an open problem.

4. Characterizing the MSE of QDT with regularization

4.1. On the MSE scaling

To analyze the performance of different regularization meth-
ods, we characterize the asymptotic behavior of the estimation
error, e.g., MSE. Without loss of generality, we can always nor-
malize the variances of the estimation errors to 1, i.e., σ 2

= 1 in
(8). We give the following assumptions.

Assumption 1. The probe state parameterization matrix X is
given. The kernel matrix Si is given. For each 1 ≤ j ≤ n,
limN→∞

Nj
N = h(j) where h(j) is a constant in [0, 1] depending

n j.

We refer to Assumption 1 as the static assumption. With As-
umption 1, the probe state parameterization matrix and ker-
el matrix are given as constant matrices which do not change
n our analysis and the resource distribution for each probe
tate can change as N increases. But the limit of the ratio is
constant and can be 0 or 1. We say that the random se-

uence {ξN} converges almost surely to a random variable ξ if
(limN→∞ ∥ξN − ξ∥2 = 0) = 1, which can be written as ξN

a.s.
→ ξ

s N → ∞. For the weighted matrix Ŵi, its deviation from the
rue value Wi has been derived in Mu et al. (2020) as

ˆ i = diag
([

N1

p̂i1 − p̂2i1
, . . . ,

NM

p̂iM − p̂2iM

])
=

(
1 + O

(
1

√
N

))
Wi.

(37)

e define

≜ lim
N→∞

XTWiX
N

, B̂N ≜
XT ŴiX

N
, (38)

here the normalized weighted parameterization matrix B̂N =

1 + O
(
1/

√
N
))

B for constant matrix B because limN→∞

Nj
N =

onstant. Therefore, B̂N
a.s.
→ B as N → ∞.

We denote R(X) as the range space of X and N(X) as the
ull space of X . Then we propose the following theorem to
haracterize the MSE.

heorem 1. In the regularization-based QDT, if the ith POVM

lement satisfies the static assumption, then its LS MSE E
Ê − P

2
i i
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nd final MSE E
P̂i − Pi

2 both scale as O (1/N) if and only if
he true values of the unknown parameters satisfy θi ∈ R(SiB).

Otherwise, the LS MSE E
Êi − Pi

2 converges to a positive value.

Proof. For the ith POVM element, according to (31) and σ 2
= 1,

the MSE is
Tr
[
MSEM |Si

]
= Tr

[
(SiRi + I)−1 (SiRiSi + θiθ

T
i ) (RiSi + I)−1]

Tr
{
[(SiRi + I) (RiSi + I)]−1 (SiRiSi + θiθ

T
i

)}
,

(39)

where Ri = XT ŴiX . We define

A1 ≜ (SiRi + I) (RiSi + I)

=

(
NSiB̂N + I

)(
NB̂NSi + I

)
,

(40)

nd

2 ≜ SiRiSi = NSiB̂NSi. (41)

ow the MSE becomes Tr
(
A−1
1 (A2 + θiθ

T
i )
)
.

We then introduce the following lemma

Lemma 1 (Cui, Li, & Sze, 2017; Wu, 1988). For an n × n complex
matrix T , the following statements are equivalent:

(1) T = AB, where A, B ⩾ 0;
(2) T = AB, where A > 0 and B ⩾ 0;
(3) T is similar to a nonnegative diagonal matrix.

From Lemma 1, SiB is similar to a nonnegative diagonal matrix
nd we assume SiB = Q−1Σ1Q where Σ1 = diag(Σ11,Σ12) and
11 is a k×k positive diagonal matrix, Σ12 is a (d2 −k)× (d2 −k)
ero matrix. Therefore, NSiB+ I can also be diagonalized by Q as

SiB + I = Q−1 diag
([
τ1, . . . , τd2

])
Q

= Q−1 diag
(
NΣ11 + Ik, Id2−k

)
Q ,

(42)

here τ1 ≥ · · · ≥ τd2 > 0, τj = O(N) for 1 ≤ j ≤ k and τj = 1 for
+ 1 ≤ j ≤ d2 and the corresponding eigenvectors are {uj}

d2
j=1. As

→ ∞, we have

lim
N→∞

(NSiB + I)−1

lim
N→∞

Q−1 diag
(
NΣ11 + Ik, Id2−k

)−1 Q

Q−1 diag
(
0, Id2−k

)
Q ,

(43)

nd thus (NSiB + I)−1 tends to a constant matrix. Since

− (NSiB + I)−1
= (NSiB + I)−1 NSiB,

t is also a bounded matrix and tends to a constant matrix as
→ ∞. Let the spectral decomposition of B be

= VΣ2V T
= V diag (Σ21, 0) V T . (44)

hus, the Moore–Penrose inverse of B is
˜ = V diag

(
Σ−1

21 , 0
)
V T , (45)

hich is a constant matrix and BB̃B = B.
Therefore, the first term of MSE is

Tr
(
A−1
1 A2

)
a.s.
→ Tr

(
(NBSi + I)−1 (NSiB + I)−1 NSiBSi

)
=

1
N
Tr
(
(NSiB + I)−1 NSiB·B̃·NBSi (NBSi + I)−1

)
= O

(
1
)
,

(46)
N
7

because the term Tr(·) is bounded and tends to a constant. There-
fore, the first term of MSE always scales as O( 1

N ). Then we discuss
the scaling of the second part of MSE

Tr
(
A−1
1 θiθ

T
i

) a.s.
→ θ Ti (NBSi + I)−1 (NSiB + I)−1 θi. (47)

If θi is a linear combination of uj for 1 ≤ j ≤ k, we have

Tr
(
A−1
1 θiθ

T
i

)
= O

(
1
N2

)
. (48)

Otherwise, if θi is not a linear combination of uj, 1 ≤ j ≤ k,
Tr
(
A−1
1 θiθ

T
i

)
tends to a positive number independent of N .

Therefore, for the LS MSE E∥Êi − Pi∥2, it scales as O(1/N) if
and only if the true parameter θi is a linear combination of uj

for 1 ≤ j ≤ k, i.e., θi ∈ R(SiB). Since {Êi}ni=1 may have negative
eigenvalues, we use the algorithm in Wang et al. (2021) to further
obtain a positive semidefinite estimate {P̂i}ni=1. The error analysis
in Wang et al. (2021) has shown that
n∑

i=1

P̂i − Pi
2 = (dn + 2

√
dn + 1)O

(
n∑

i=1

Êi − Pi
2) . (49)

herefore, if E
∑n

i=1

Êi − Pi
2 = O(1/N), we have∑n

i=1

P̂i − Pi
2 = O(1/N) and thus the final MSE E

P̂i − Pi
2

also scales as O(1/N). Using (42) and (47), if the true parameter
θi is not the linear combination of uj for 1 ≤ j ≤ k, i.e., θi /∈ R(SiB),

the LS MSE E
Êi − Pi

2 tends to a positive value. □

Remark 2. In Theorem 1, when θi /∈ R(SiB), the behavior of

the final MSE E
P̂i − Pi

2 is still difficult to characterize. This
problem does not exist for a full-rank detector when the resource
number N is large enough, because the LS or WLS estimate
already satisfies the positive semidefine constraint and we do not
need to correct Êi.

Note that when SiB is full-rank, i.e., Si and B are both positive
definite, the condition θi ∈ R(SiB) is always satisfied. Therefore,
the MSE always scales as O (1/N). Thus, when the types of dif-
ferent probe states are I.C., for any positive definite kernel matrix
Si, the MSE always scales as O (1/N). However, when the probe
states are I.I., the condition θi ∈ R(SiB) is difficult to be satisfied
in practice. Thus, without special prior knowledge, for almost all
regularization forms, the LS MSE will tend to a constant when
N tends to infinity. In addition, as M decreases, for given Si,
this condition may become more difficult to be satisfied because
R (SiB) may become smaller. Thus, rank-1 adaptive regularization
as in (35) is not a good choice and full-rank kernel matrix as in
(36) may be better. The above analysis can help understand the
boundary of the ability of employing regularization in QDT.

Remark 3. A similar problem was also discussed as Theorem 2.1
in Chen et al. (2014) for transfer function identification in the I.C.
scenario. There a condition to realize unbiased estimation of the
true parameters with regularization was given. Here, by allowing
the probe states to be I.C. or I.I., we give a stronger result about
the scaling of LS MSE as O (1/N) or tends to a constant for QDT.
Our result can also be applied to the case when the variance of
noise scales as O (1/N), which is typical in the scenario where
only statistical noise is considered in quantum measurement.

4.2. On the best regularization allowing I. I.

We now consider the best regularization which has minimum
MSE. It is given by (33) in the I.C. scenario. Here we aim to
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haracterize the I.I. case. From (42) we know NSiB + I is always
invertible. Define Li ≜ − (NSiB + I)−1 and thus

I + Li = (NSiB + I)−1 NSiB = −NLiSiB. (50)

Therefore, we have

(I + Li) B̃ = −NLiSiBB̃. (51)

Then we propose the following theorem to characterize the best
kernel matrix, allowing B to be singular.

Theorem 2. For the ith POVM element with true parameter θi
and normalized weighted parameterization matrix B as (44), define
Γ ≜

{
M | M = θiθ

T
i + V diag (0, Z3) V T , Z3 ≥ 0, dim(Z3) =

d2 − rank(B)
}
. If θi ∈ R(B), then Si achieves the minimum of the

LS MSE E
Êi − Pi

2 (i.e., Si is the best regularization) if and only if
Si ∈ Γ .

Proof. For the LS MSE
Êi − Pi

2 with kernel matrix Si, using (40)
and (41), it can be rewritten as

Tr
[
MSEM |Si

]
= Tr

[
(NSiB + I)−1 (NSiBSi + θiθ

T
i

)
(NBSi + I)−1]

= Tr

[
(I + Li) B̃ (I + Li)T

N
+ Liθiθ Ti L

T
i

]
.

(52)

here B̃ is defined in (45). Define g(Li) to be the last line of (52).
Since g(Li) is convex in Li, we can find the minimum value by
setting the derivative to be zero as

dg
dLi

=
2B̃ + 2LiB̃

N
+ 2Liθiθ Ti = 0. (53)

If there exists Si ≥ 0 so that (53) holds for the corresponding
Li|Si , then such an Si is the optimal solution to minimize the MSE
(52). We tentatively plug Si in (53), which (using (51)) becomes
2Li
(
−SiBB̃ + θiθ

T
i

)
= 0, equivalent to

B̃BSi = θiθ
T
i . (54)

Since θi ∈ R(B), we let θi = Bb and then (54) becomes

V
[

I21 0
0 0

]
V T Si = V

[
Σ21 0
0 0

]
V TbbTV

[
Σ21 0
0 0

]
V T .

(55)

Denote V Tb =

[
p
q

]
, V T SiV =

[
Z1 Z2
ZT
2 Z3

]
. Then (55) can be

simplified as[
I21 0
0 0

][
Z1 Z2
ZT
2 Z3

]
=

[
Z1 Z2
0 0

]
=

[
Σ21 0
0 0

][
p
q

] [
pT qT

] [ Σ21 0
0 0

]
=

[
Σ21ppTΣ21 0

0 0

]
,

(56)

and thus

Z1 = Σ21ppTΣ21, Z2 = 0. (57)

Since

θiθ
T
i = V

[
Σ21ppTΣ21 0

0 0

]
V T , (58)

all solutions to (54) can be expressed as

Si =V
[
Σ21ppTΣ21 0

]
V T

= θiθ
T
i +V

[
0 0

]
V T , (59)
0 Z3 0 Z3

8

where Z3 is positive semidefinite. Therefore, the solution set of
(54) is exactly characterized by Γ where

Γ ≜
{
M | M = θiθ

T
i + V diag (0, Z3) V T , Z3 ≥ 0,

dim(Z3) = d2 − rank(B)
}
.

□ (60)

For all the best regularizations Si in Γ , we have SiB = θiθ
T
i B.

This gives the minimum value of the MSE, which can be calcu-
lated as

Tr
(
MSEM |Si∈Γ

)
= Tr

(
MSEM |θiθ

T
i

)
= Tr

[ (
Nθiθ Ti B + I

)−1
(Nθiθ Ti Bθiθ

T
i

+ θiθ
T
i )
(
NBθiθ Ti + I

)−1
]

= Tr
[
θiθ

T
i

(
NBθiθ Ti + I

)−1
]
.

(61)

Remark 4. Note that the best regularization can minimize

E
Êi − Pi

2 instead of E
P̂i − Pi

2. The question to choose the

best regularization to minimize the final MSE E
P̂i − Pi

2 where

P̂i ≥ 0 is still an open problem. Moreover, in practice, we do not
know the true values of B and θi. One possible solution is to use
a rough estimate θ̂i and B̂N to replace θi and B in Γ . In this case,
there may exist an optimal choice of Z3 to achieve the minimum
MSE and we leave it as an open problem.

Here, we compare Theorems 1 and 2. If θi ∈ R(B), then for any
full-rank kernel matrix Si, θi ∈ R(SiB) and thus the MSE scales as
O (1/N). For any Si ∈ Γ , we can obtain the minimum MSE. In
addition, θi ∈ R

(
θiθ

T
i B
)

= R(SiB), and thus the MSE also scales as
O (1/N). If θi ∈ N(B), all the ideal measurement data pij are zero,
i.e., we cannot obtain any information from the measurement
data. Therefore, θi is not identifiable. If θi = θi,1 + θi,2 where
θi,1 ̸= 0, θi,1 ∈ R(B) and θi,2 ̸= 0, θi,2 ∈ N(B), then θi,1 is
identifiable and θi,2 is not identifiable. Therefore, we only aim to
identify θi,1 and the discussion is the same as θi ∈ R(B).

We then consider two special cases. The first one is that B is
full-rank. Therefore, θi ∈ R(B) is always satisfied and the unique
est kernel matrix is Si = θiθ

T
i which is the same as Chen et al.

2012). The second one is Si = γ θiθ
T
i where γ is a positive

onstant. Even if θi /∈ R(B), we still have θi ∈ R(SiB) (θi /∈ N(B),
therwise R(SiB) = 0), thus the MSE also scales as O (1/N).
ote that all the above discussion is based on the assumption
hat N tends to infinity. When N is small, the performance of
he regularization forms will be shown through simulation in
ection 5.

. Numerical simulation

In this section, the evaluation index is the sum of final MSEs∑n
i=1

P̂i − Pi
2 and we discuss two commonly used classes

f probe states for QDT. The first one involves d dimensional
pure states ρ = |ψ⟩⟨ψ | where |ψ⟩ is the superposition of d
dimensional Fock states as

|ψ⟩ =

d∑
i=1

ci|i⟩. (62)

In Xiao et al. (2022), an analysis indicates that pure states may
perform better than mixed states for QDT to minimize MSE.

Another class of commonly used probe states for QDT is the

coherent states, because they are more straightforward to be
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repared. A coherent state is denoted as |α⟩ where α ∈ C and
t can be expanded using Fock states as

α⟩ = e−
|α|

2
2

∞∑
i=0

αi

√
i!
|i⟩. (63)

oherent states are in essence infinite dimensional. Denote the
orresponding d-dimensional truncation as

|αd⟩ ≜ e−
|α|

2
2

d−1∑
i=0

αi

√
i!
|i⟩.

To estimate a d dimensional detector, in the simulation we as-
sume that the outcomes generated by the residual signal
Tr [(|α⟩ − |αd⟩) (⟨α| − ⟨αd|)] are all included in the outcomes of
he last POVM element. Since we truncate the coherent state
n d-dimension, Tr (|αd⟩⟨αd|) < 1 but for pure states in (62)
r (ρ) = 1. Here we discuss resource distribution optimization
ithout regularization and different regularization forms under
he uniformly distributed resources.

When applying kernel-based regularization, an important prob-
em is to determine the hyper-parameters (such as c , µ in (28),
29) and (30)) in the kernel matrix Si. In this paper, we ap-
ply the same kernel matrix for all the POVM elements and
use cross-validation in Chen et al. (2012) to determine these
hyper-parameters:

(i) Split the probe states randomly into two parts: an estima-
tion data part with probe state parameterization matrix X1
and a validation data part with probe state parameteriza-
tion matrix X2.

(ii) Collect all the hyper-parameters in a vector ω. Then esti-
mate the detector as θ̄i using the measurement data from
X1 for different candidate values of hyper-parameters ω ∈

Ω̄ where Ω̄ is a finite set in our paper.
(iii) Using the validation data from X2, we find

ω0 = argmin
ω∈Ω̄

n∑
i=1

∥ŷi − X2θ̄i(ω)∥2. (64)

The model can then be re-estimated for this ω0 using all
the probe states. Other methods to determine the hyper-
parameters can also be found in Chen and Ljung (2013) and
Chen et al. (2012).

5.1. Superposed Fock states

We consider a 4 dimensional three-valued phase-sensitive
detector, which is close to phase-insensitive detector as

P (4)
1 =

⎡⎢⎣ 0.1 0 0.002 − 0.005i 0.003 + 0.007i
0 0.2 0 0

0.002 + 0.005i 0 0.3 0
0.003 − 0.007i 0 0 0.4

⎤⎥⎦ ,

P (4)
2 =

⎡⎢⎣ 0.2 0.001 + 0.002i 0 0
0.001 − 0.002i 0.2 0 0

0 0 0.3 0
0 0 0 0.4

⎤⎥⎦ ,
P (4)
3 = I − P (4)

1 − P (4)
2 .

(65)

Using the algorithm in Johnston (2016) and Miszczak (2012),
we generate 20 different types of 4 dimensional pure states. To
determine the hyper-parameters in the DI kernel, we use 16 pure
states as estimation data and 4 pure states as validation data.
We use different regularization forms including no regularization
((23) with c = 0), Tikhonov regularization ((23) with c = 10),
9

Fig. 1. The error scalings of different regularization forms with WLS using 20
types of 4 dimensional pure states. When the resource number N > 106 , all the
MSEs scale as O(1/N) satisfying Theorem 1.

Fig. 2. The MSE comparison between average and optimized resource
distribution using 20 types of 4 dimensional pure states.

kernel-based regularization ((28) with c = 0.1, µ = 0.9), rank-
1 adaptive regularization, full-rank adaptive regularization (see
Section 4) and the best regularization (33). The best regularization
is the lower bound of MSE and depends on true value of θ .
Therefore, it cannot be used in practice and we aim to achieve
regularization closest to the best regularization. For rank-1 adap-
tive regularization, we use kernel-based regularization ((28) with
c = 0.1, µ = 0.9) in step 1 and (35) in step 2. For full-rank
adaptive regularization, we use kernel-based regularization ((28)
with c = 0.1, µ = 0.9) in step 1 and (36) in step 2. For each
resource number, we run the algorithm 100 times and obtain the
average MSE and standard deviation.

The results are shown in Fig. 1. The best regularization scales
as O(1/N) satisfying Theorem 1. When the resource number N <
106, the MSEs of kernel-based regularization and adaptive regu-
larization are a little smaller than Tikhonov regularization and no
regularization. In addition, full-rank adaptive regularization has
a little smaller MSE than rank-1 adaptive regularization. When
the resource number N > 106, all the MSEs scale as O(1/N)
satisfying Theorem 1. Since these 4 dimensional pure states are
I.C., without regularization, we also consider resource distribution
optimization. We compare the MSE of the case with averagely
distributed resources N/M (‘‘Average’’ in Fig. 2) and the MSE of
the case with optimized resource distribution (‘‘Optimized’’ in
Fig. 2) by solving (22). For each resource number N , we run the
algorithm 100 times and obtain the average MSE and standard
deviation. The results are shown in Fig. 2. We can obtain a lower
MSE with resource distribution optimization and both MSEs scale
as O (1/N) when N > 105.
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Fig. 3. The MSE comparison of DI, TC and DC kernels with WLS using 10 types
of 4 dimensional pure states. All the MSEs tend to constants as predicted by
Theorem 1 and Remark 2 because θi ∈ R(SiB) does not hold.

Then we generate only 10 random types of 4 dimensional pure
states. To determine the hyper-parameters in the different ker-
nels, we use 8 pure states as the estimation data and 2 pure states
as the validation data. Here we assume that we have the prior
knowledge that the true detector is close to a phase-insensitive
detector. We choose Pauli basis Ω = {I ⊗ I, I ⊗ σz, σz ⊗ I,
σz ⊗ σz, . . . , σx ⊗ σy

}
/2. Thus, the absolute values of the first

four elements in θi are significantly larger than zero and all the
other values in θi are close to zero, which is similar to the impulse
responses of stable transfer functions in the system identification.
Therefore, we use DI kernel ((28) with c = 0.1, µ = 0.9), TC
kernel ((29) with c = 0.9, µ = 0.8) and DC kernel ((30) with
c = 0.1, µ1 = 0.2, µ2 = 0.9), and compare their performance.
The results are shown in Fig. 3. Compared with DI kernel, the
MSE of DC kernel is improved by 28.3% when N > 106, which
ndicates that DC kernel is suitable to be applied for calibrating
hase-insensitive detectors.
Hence we change DI kernel to DC kernel ((30) with c =

.1, µ1 = 0.2, µ2 = 0.9) in this case and the results are
hown in Fig. 4. In this I.I. scenario, there does not exist a unique
olution for WLS (13) without regularization. Therefore, we use
he Moore–Penrose inverse of X̃T

i X̃i to obtain an estimate instead
of (13), which is called ‘‘no regularization’’ in Fig. 4. The best
regularization also scales as O(1/N) satisfying Theorem 1. Kernel-
based regularization has the minimum MSE compared with other
regularization forms because DC kernel utilizes the prior knowl-
edge on the sparsity of coefficients. In addition, the MSEs of
adaptive regularizations are always a little smaller than Tikhonov
regularization and no regularization when N < 105.

Here we explain the reason why adaptive regularization with
rank-1 kernel matrix fails to exhibit a clear advantage over typical
non-adaptive protocol (as shown in Fig. 4) in the I.I. scenario.
In the first step, for the chosen kernel matrix S(1)i , the condition
θi ∈ R(S(1)i B) is usually not satisfied in the I.I. scenario. Thus, the
estimate θ̂0i is biased and MSE tends to a positive constant c as

lim
N→∞

E
θi − θ̂0i

 = c > 0. (66)

Then in the second step, if we choose regularization as (35),
θi /∈ R(Srank-1i B) because the only one vector in R(Srank-1i B) is θ̂0i
and limN→∞ E

θi − θ̂0i

 = c > 0. Moreover, even if we use
multi-step regularization with rank-1 kernel matrix as above,
the estimation result is still biased and MSE always tends to a
constant, because the number of adaptive steps is always finite.
10
Fig. 4. The error scalings of different regularization forms with WLS using 10
types of 4 dimensional pure states. Except the best regularization, all the MSEs
tend to constants as predicted by Theorem 1 and Remark 2 because θi ∈ R(SiB)
does not hold.

As N increases, except the best regularization, all the MSEs tend
to constants as predicted by Theorem 1 because θi ∈ R(SiB) does
not hold.

5.2. Coherent states

Since coherent states are truncated, we consider a larger di-
mensional three-valued phase-sensitive detector as

P (8)
1 = U1 diag

(
P (4)
1 , P

(4)
1

)
U†
1 ,

P (8)
2 = U2 diag

(
P (4)
2 , P

(4)
2

)
U†
2 ,

P (8)
3 = I − P (8)

1 − P (8)
2 ,

(67)

where d = 8 and U1, U2 are random unitary matrices (Johnston,
2016; Zyczkowski & Kus, 1994). We also ensure P (8)

3 is positive
semidefinite.

Since coherent states are more similar to each other, we gen-
erate 640 random different types of coherent states using the
probe state preparation in Wang et al. (2021) where the real
part and imaginary part of α are randomly generated in the
interval [−1, 1]. We use different regularization forms including
no regularization ((23) with c = 0), Tikhonov regularization ((23)
with c = 10), kernel-based regularization ((28) with c = 0.2, µ =

0.9), rank-1 adaptive regularization, full-rank adaptive regulariza-
tion (see Section 4) and the best regularization (33). For rank-1
adaptive regularization, we use kernel-based regularization ((28)
with c = 0.2, µ = 0.9) in step 1 and (35) in step 2. For full-rank
adaptive regularization, we use kernel-based regularization ((28)
with c = 0.2, µ = 0.9) in step 1 and (36) in step 2. For each
resource number, we run the algorithm 100 times and obtain the
average MSE and standard deviation.

The results are shown in Fig. 5. When N < 108, the MSEs
of kernel-based regularization and adaptive regularization are a
little smaller than Tikhonov regularization and no regularization.
In addition, full-rank adaptive regularization has a little smaller
MSE than rank-1 adaptive regularization. When N > 108, all the
MSEs scale as O(1/N) satisfying Theorem 1. Since these coherent
states are I.C., we also consider resource distribution optimization
without regularization. The simulation results are shown in Fig. 6.
We can also obtain a lower MSE with resource distribution opti-
mization and both MSEs scale as O (1/N) for N > 107. Then using
the same algorithm in Wang et al. (2021), we generate only 48
random types of coherent states where real parts and imaginary
parts of α are randomly generated in the interval [−1, 1]. We use
the same regularization (28) and the results are shown in Fig. 7.
Kernel-based regularization and adaptive regularization always
have smaller MSEs compared with Tikhonov regularization and
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Fig. 5. The error scalings of different regularization forms with WLS using 640
types of coherent states. When N > 108 , all the MSE scales as O(1/N) satisfying
heorem 1.

Fig. 6. The MSE comparison between average and optimized resource
distribution using 640 types of coherent states.

Fig. 7. The error scalings of different regularization forms with WLS using 48
types of coherent states. Except the best regularization, all the MSEs tend to
constants as predicted by Theorem 1 and Remark 2 because θi ∈ R(SiB) does not
old.

o regularization. When N > 1010, except the best regularization,
ll the MSEs tend to constants as predicted by Theorem 1 because
i ∈ R(SiB) does not hold.

. Experimental examples

We consider the same quantum optical experimental sys-
em for QDT in Yokoyama et al. (2019) and Wang et al. (2021).
he entire experimental setup is given in Fig. 8. Wang et al.
2021) considered experiments for two different sets of detec-
ors, denoted as Group I and Group II, respectively, and the
asis of the POVM elements is the two-mode Fock state basis as
|0, 0⟩, |1, 0⟩, |0, 1⟩, |2, 0⟩, |1, 1⟩, |0, 2⟩}. The true values of Group
11
Fig. 8. The detailed structure and description for experimental setup can be
found in Wang et al. (2021) and Yokoyama et al. (2019). Att., Attenuator; PBS,
Polarization beam splitter; H, Half wave plate; Q, Quarter wave plate.

Fig. 9. Experimental and simulation QDT results of Tikhonov regularization (LS),
rank-1 adaptive regularization (WLS) and full-rank adaptive regularization (WLS)
for Group I.

I and II can be found in Wang et al. (2021). Wang et al. (2021)
recorded 106 measurement outcomes for each input state, and
repeated the process 6 times. We use these measurement data to
identify the detectors and also plot the identification results using
simulated measurement data as a comparison in Figs. 9 and 10.

For the QDT problem, Wang et al. (2021) employed Tikhonov
regularization with standard LS estimation, where they chose
DTikhonov
i =

103
N I and the estimation is given in (24), while here we

use rank-1 adaptive regularization and full-rank adaptive regular-
ization with WLS. Since the result of kernel-based regularization
is similar to adaptive regularization, we only show the results of
adaptive regularization.

To determine the hyper-parameters in the DI kernel, we use
15 probe states as estimation data and 4 probe states as validation
data. In Group I, we choose c = 0.001, µ = 0.8 in (28) in step
1 and (35) in step 2 for-rank 1 adaptive regularization and for
full-rank adaptive regularization, we choose c = 0.001, µ =

0.8 in (28) in step 1 and (36) in step 2. The results are shown
in Fig. 9. Adaptive regularization (WLS) performs better than
Tikhonov regularization (LS) in Wang et al. (2021), especially
for large resource number N . In addition, the MSE of full-rank
adaptive regularization is a little smaller than rank-1 adaptive
regularization. In Group II, for rank-1 adaptive regularization, we
choose c = 0.0008, µ = 0.9 in (28) in step 1 and (35) in
step 2 and for full-rank adaptive regularization, we choose c =

0.0008, µ = 0.9 in (28) in step 1 and (36) in step 2. The results
are shown in Fig. 10. Adaptive regularization (WLS) performs
better than Tikhonov regularization (LS) when N > 102.5 and the
MSE of full-rank adaptive regularization is always a little smaller
than rank-1 adaptive regularization. Moreover, the MSE of Group
II is a little larger than that of Group I because the amplitudes
of nondiagonal elements in Group II are significantly larger than
zero.
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Fig. 10. Experimental and simulation QDT results of Tikhonov regularization
LS), rank-1 adaptive regularization (WLS) and full-rank adaptive regularization
WLS) for Group II.

. Conclusion

In this paper, using regularization, we improve QDT accu-
acy with given probe states. In the I.C. and I.I. scenarios, we
ave employed WLS estimation, discussed different regulariza-
ion forms, proved the scaling of MSE under the static assumption
nd characterized the best regularization. In the I.C. scenario,
ithout regularization, we have studied resource distribution
ptimization and converted it to an SDP problem. The numer-
cal examples have demonstrated the effectiveness of different
egularization forms and resource distribution optimization. In
quantum optical experiment, our adaptive regularization with
LS has achieved lower mean squared errors compared with
ikhonov regularization with LS. It remains an open problem how
o choose the kernel optimally in adaptive regularization.
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