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a b s t r a c t

Quantum detector tomography is a fundamental technique for calibrating quantum devices and
performing quantum engineering tasks. In this paper, we design optimal probe states for detector
estimation based on the minimum upper bound of the mean squared error (UMSE) and the maximum
robustness. We establish the minimum UMSE and the minimum condition number for quantum
detectors and provide concrete examples that can achieve optimal detector tomography. In order to
enhance the estimation precision, we also propose a two-step adaptive detector tomography algorithm
to optimize the probe states adaptively based on a modified fidelity index. We present a sufficient
condition on when the estimation error of our two-step strategy scales inversely proportional to the
number of state copies. Moreover, the superposition of coherent states is used as probe states for
quantum detector tomography and the estimation error is analyzed. Numerical results demonstrate
the effectiveness of both the proposed optimal and adaptive quantum detector tomography methods.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

In the past decades, we have witnessed significant progress in
variety of fields of quantum science and technology, including
uantum computation (DiVincenzo, 1995), quantum communi-
ation (Nielsen & Chuang, 2010) and quantum sensing (Degen,
einhard, & Cappellaro, 2017). In these applications, a funda-
ental task is to develop efficient estimation and identification
ethods to acquire information of quantum states, system pa-

ameters and quantum detectors. There are three typical classes
f quantum estimation and identification tasks: (i) quantum state
omography (QST) which aims to estimate unknown states (Hou
t al., 2016; Mu, Qi, Petersen, & Shi, 2020; Qi et al., 2013);
ii) quantum process tomography which targets in identifying
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parameters of evolution operators (Fiurášek & Hradil, 2001; Wang
et al., 2019; Xiao, Xue, Dong and Zhang, 2021; Yu, Dong, Wang, &
Petersen, 2020; Yu, Wang, Dong, & Petersen, 2021) (e.g., the sys-
tem Hamiltonian (Sone & Cappellaro, 2017a, 2017b; Wang et al.,
2018, 2020; Zhang & Sarovar, 2014, 2015)); and (iii) quantum
detector tomography (QDT) which aims to identify and calibrate
quantum measurement devices. In this paper, we focus on QDT
and aim to present optimal and adaptive strategies for enhancing
the efficiency and precision of QDT.

For general QDT protocols, the first solution was proposed
in Fiurášek (2001) using maximum likelihood estimation (MLE).
Subsequent works divide quantum detectors into
phase-insensitive detectors and phase-sensitive detectors. Phase-
insensitive detectors only have diagonal elements in the photon
number basis, and therefore are relatively straightforward to be
characterized using linear regression (Grandi, Zavatta, Bellini, &
Paris, 2017), function fitting (Renema et al., 2012), or convex opti-
mization (Feito et al., 2009; Lundeen et al., 2009; Natarajan et al.,
2013). In experiment, a regularized least-square method was used
in Brida et al. (2012, 2012) for phase-insensitive detectors. For
phase-sensitive detectors, non-diagonal elements can be nonzero
and they are usually more challenging to reconstruct. The work in
Zhang et al. (2012, 2012) formulated QDT as a convex quadratic
optimization problem for this type of detectors. Ref. Wang et al.
(2021) proposed a two-stage solution with an analytical compu-
tational complexity and error upper bound. Ref. Wang, Dong, and
Yonezawa (2019) further studied a binary detector tomography
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Fig. 1. General procedures for optimal detector tomography and adaptive detector tomography. For optimal detector tomography, we only consider Step 1 and it is
on-adaptive. We focus on finding the optimal probe states. For adaptive detector tomography, we choose adaptive probe states in Step 2 based on Step 1 estimation
o obtain a more accurate estimate.
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ethod with lower computational complexity by projection. Self-
haracterization of one-qubit QDT was proposed in Zhang et al.
2020) which does not rely on precisely calibrated probe states.

In this paper, we consider optimal QDT and adaptive QDT
hich are applicable to both phase insensitive and phase sen-
itive detectors. The general tomography procedures are shown
n Fig. 1. For optimal QDT, we only consider Step 1 where we
btain measurement data and then use the two-stage reconstruc-
ion algorithm in Wang et al. (2021) to identify the unknown
etectors. A natural question would be which input probe states
re optimal, according to some requirements or criteria. Here
e use the upper bound of the mean squared error (UMSE)
Wang et al., 2021) and the robustness described by the condition
umber against measurement errors as two criteria (Xiao, Wang,
ong, & Zhang, 2021). We prove that the minimum UMSE is

(n−1)(d4+d3−d2)
4N where d is the dimension of detector matrices,

n is the number of detector matrices and N is the resource
number (i.e., number of copies of probe states). We also prove
the minimum condition number is

√
d + 1. We then provide two

xamples of optimal probe states–SIC (symmetric informationally
omplete) states with the smallest M = d2 and MUB (mutually
nbiased) states for M = d(d + 1) where M is the type of probe
tates. When restricted to product states, we prove the minimum
f UMSE is 20m(n−1)

4N and that of the condition number is 3
m
2 where

is the number of qubits.
Another focus we consider is to develop adaptive QDT to en-

ance the identification accuracy of quantum detectors. Adaptive
trategies have been employed in QST and existing results show
hat adaptive QST has great potential to enhance the estimation
recision of quantum states (Huszár & Houlsby, 2012; Kravtsov
t al., 2013; Mahler et al., 2013; Pereira, Zambrano, Cortés-Vega,
iklitschek, & Delgado, 2018; Qi et al., 2017; Struchalin et al.,
016). Inspired by adaptive QST, we propose a two-step adap-
ive QDT as shown in Fig. 1. Step 1 is the same as optimal
DT, and adaptive probe states are chosen in Step 2 based on
rough detector estimation in Step 1. With these adaptive probe
tates, we can improve the infidelity from O(1/

√
N) to optimal

alue O(1/N). We also use the superposition of coherent states
to realize QDT and use numerical examples to demonstrate the
effectiveness of our optimal and adaptive QDT. All proof details of
our theoretical results can be found in the extended arXiv version
of this paper (Xiao, Wang, Dong & Zhang, 2021).

This paper is organized as follows. In Section 2, we present
ackground knowledge and reconstruction algorithm. In Sec-
ion 3, we propose optimal QDT and provide concrete exam-
les. In Section 4, we present a two-step adaptive QDT. In Sec-
ion 5, we give numerical examples of optimal and adaptive QDT.
onclusions are presented in Section 6.
Notation: For a matrix A, A ≥ 0 means A is positive semidef-

nite. The conjugation and transpose (T ) of A is A†. The trace
2

of A is Tr(A). The identity matrix is I . The real and complex
domains are R and C, respectively. The tensor product is ⊗.
The set of all d-dimensional complex/real vectors is Cd/Rd. Row
and column vectors also denoted as ⟨ψ | and |ψ⟩, respectively.
The Frobenius norm for matrix and 2-norm for vector are ∥ ·

∥. The Kronecker delta function is δ. i =
√

−1. The column
vectorization function is vec. The diagonal elements of a diagonal
matrix diag(X) are the elements in X and X is a vector. The
estimation of variable X denotes X̂ . For any positive semidefinite
Xd×d with spectral decomposition X = UPU†, define

√
X or X

1
2 as

U diag
(√

P11,
√
P22, . . . ,

√
Pdd
)
U†. Pauli matrices are σx =

(
0 1
1 0

)
,

σy =
(
0 −i
i 0

)
, σx =

(
1 0
0 −1

)
. The fidelity between quantum states ρ

and ρ̂ is Fs(ρ̂, ρ) = [Tr
√√

ρ̂ρ
√
ρ̂]

2.

. Preliminaries

Here we present the background knowledge and briefly intro-
uce the two-stage QDT reconstruction algorithm in Wang et al.
2021), which will be employed as a critical part for developing
ptimal QDT.

.1. Quantum state and measurement

For a d-dimensional quantum system, its state can be de-
cribed by a d×d Hermitian matrix ρ, satisfying ρ ≥ 0, Tr(ρ) = 1.
When ρ = |ψ⟩⟨ψ | for some |ψ⟩ ∈ Cd, we call ρ a pure state, and
its purity Tr(ρ2) reaches the maximum value 1. Otherwise, ρ is
called a mixed state, and can be represented using pure states
{|ψi⟩} : ρ =

∑
i ci |ψi⟩ ⟨ψi| where ci ∈ R and

∑
i ci = 1.

A quantum detector connects the classical and quantum world
hrough a set of operators known as positive-operator-valued
easure (POVM). A set of POVM elements is a set of Hermitian
nd positive semidefinite operators {Pi}, which is the mathemati-
al representation of quantum detectors, satisfying the complete-
ess constraint

∑
i Pi = I . We directly call {Pi} a POVM element in

his paper. The operators Pi may be finite or infinite dimensional
n theory. When infinite dimensional, we usually truncate them
t a finite dimension d in practice. When ρ is measured using {Pi},

the probability of obtaining the ith result is given by the Born’s
rule

pi = Tr (Piρ) . (1)

Because of the completeness constraint, we have
∑

i pi = 1.
In practical experiments, suppose N (called resource number)
identical copies of ρ are prepared and the ith result occurs Ni
times. Then p̂i = Ni/N is the experimental estimation of the true
value p .
i
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.2. Problem formulation of QDT

By applying known quantum states to an unknown quantum
etector and obtaining the measurement results, one can esti-
ate the detector, which is called quantum detector tomography

QDT). Denote the true value of the detector as {Pi}ni=1. We design
different types of quantum states (called probe states), where

ach state ρj uses the same resource number N/M thus their total
umber of copies is N . One can formulate the problem of QDT as
Wang et al., 2021):

roblem 1. Given experimental data
{
p̂ij
}
, solve

min
P̂i
}n
i=1

n∑
i=1

M∑
j=1

[
p̂ij − Tr

(
P̂iρj

)]2
uch that P̂i = P̂†

i , P̂i ≥ 0 for 1 ≤ i ≤ n and
∑n

i=1 P̂i = I .

There are various methods to formulate and solve the prob-
lem of QDT. For maximum likelihood estimation (MLE) (Fiurášek,
2001), if large data are given, the MLE can asymptotically reach
the Cramér–Rao bound for parameter estimation while the com-
putational complexity is usually high. There also exist several
convex optimization approaches (Feito et al., 2009; Lundeen et al.,
2009; Natarajan et al., 2013) which might be more efficient.
However, an analytical error upper bound is missing for MLE and
convex optimization approaches, making it difficult to optimize
the input probe states in the general case without available prior
information about the detector. Here we choose the linear regres-
sion method due to its simplicity and computational efficiency.
Moreover, Ref. Wang et al. (2021) presents the two-stage QDT
solution to Problem 1, giving an analytical error upper bound
in favor of optimizing general input states. We thus review this
solving procedure as follows.

Let {Ωi}
d2
i=1 be a complete basis set of orthonormal operators

with d-dimension. Without loss of generality, let Tr
(
Ω

†
i Ωj

)
= δij,

Ωi = Ω
†
i where Tr (Ωi) = 0 except Ω1 = I/

√
d. Then we

arameterize the detector and probe states as

i =

d2∑
a=1

θ ai Ωa, ρj =

d2∑
b=1

φb
j Ωb, (2)

where θ ai ≜ Tr (PiΩa) and φb
j ≜ Tr

(
ρjΩb

)
are real. Using Born’s

rule, we can obtain

pij =

d2∑
a=1

φa
j θ

a
i ≜ φT

j θi, (3)

where φj, θi is the parameterization of ρj and Pi, respectively. Sup-
pose the outcome for Pi appears nij times, then p̂ij = nij/(N/M).
Denote the estimation error as eij = p̂ij − pij. According to the
central limit theorem, eij converges in distribution to a normal
distribution with mean zero and variance

(
pij − p2ij

)
/(N/M). We

hus have the linear regression equation

ˆ ij = φT
j θi + eij. (4)

Let Θ =
(
θ T1 , θ

T
2 , . . . , θ

T
n

)T be the vector of all the unknown
parameters to be estimated. Collect the parameterization of the
probe states as X = (φ1, φ2, . . . , φM)

T . Let ŷ = (p̂11, p̂12, . . . ,
p̂1M , p̂21, p̂22, . . . , p̂2M , . . . , p̂nM )T , X = In ⊗ X , e = (e11, e12, . . . ,
e1M , e21, e22, . . . , e2M , . . . , enM )T , H = (1, 1, . . . , 1)1×n ⊗ Id2 ,
dd2×1 = (

√
d, 0, . . . , 0)T . Then the regression equations can be

ewritten in a compact form (Wang et al., 2021):

ŷ = XΘ + e, (5)
3

with a linear constraint

H Θ = d. (6)

Now Problem 1 can be transformed into the following equivalent
form:

Problem 2. Given experimental data ŷ, solve min{
P̂i
}n
i=1

∥ŷ −

X Θ̂∥
2 such that H Θ̂ = d and P̂i ≥ 0 for 1 ≤ i ≤ n, where

Θ̂ is the parameterization of
{
P̂i
}
.

In Wang et al. (2021), Problem 2 is split into two approximate
subproblems:

Problem 2.1. Given experimental data ŷ, solve min{
Êi
}n
i=1

∥ŷ −

X Θ̂∥
2 such that H Θ̂ = d where Θ̂ is the parameterization of{

Êi
}
.

Problem 2.2. Given
∑n

i=1 Êi = I , solve min{
P̂i
}n
i=1

∑n
i=1

Êi − P̂i
2

such that
∑n

i=1 P̂i = I and P̂i ≥ 0 for 1 ≤ i ≤ n.

The reconstruction algorithm has two stages, as shown in
Fig. 1. In Stage 1, Problem 2.1 is solved by Constrained Least
Squares (CLS) method and the form of the solution is further sim-
plified. In Stage 2, Problem 2.2 is solved by matrix decomposition.
We briefly review the two-stage QDT reconstruction algorithm in
Wang et al. (2021) in the next subsection.

2.3. Two-stage QDT reconstruction algorithm

In Stage 1, we directly give the simplified form of the CLS
solution to Problem 2.1 as

Θ̂CLS =

⎛⎜⎜⎝
(
XTX

)−1 XT
(
ŷ1 −

1
ny0
)
+

1
nd

...(
XTX

)−1 XT
(
ŷn −

1
ny0
)
+

1
nd

⎞⎟⎟⎠ , (7)

where ŷi =
(
p̂i1, p̂i2, . . . , p̂iM

)T for 1 ≤ i ≤ n and y0 =

((1, . . . , 1)1×M)
T

=
∑

i ŷi. Let the ith block be Θ̂i,CLS =(
θ̂1i , . . . , θ̂

d2
i

)T
and the Stage 1 estimate is Êi =

∑d2
a=1 θ̂

a
i Ωa which

may have negative eigenvalues. Thus, Stage 2 is designed to
obtain a physical estimate P̂i by eigenvalue correction with three
substages. Firstly, we decompose Êi = F̂i − Ĝi with F̂i ≥ 0, Ĝi ≥ 0.
We then perform a spectral decomposition to obtain Êi = R̂iK̂iR̂

†
i .

Assume there are n̂i nonpositive eigenvalues for Êi, and they are
in decreasing order. Thus, the best decomposition in the sense
of minimizing ∥Ĝi∥ is F̂i = R̂idiag((K̂i)11, (K̂i)22, . . . , (K̂i)(d−n̂i)(d−n̂i),

0, . . . , 0)R̂†
i , and Ĝi = −R̂idiag(0, . . . , 0, (K̂i)(d−n̂i+1)(d−n̂i+1),

(K̂i)(d−n̂i+2)(d−n̂i+2), . . . , (K̂i)dd)R̂
†
i . Secondly, we apply decomposi-

tion I +
∑

i Ĝi =
∑

i F̂i = Ĉ Ĉ†, and hence
∑

i Ĉ
−1F̂iĈ−†

= I .
Let B̂i = Ĉ−1F̂iĈ−† which is positive semidefinite and

∑
i B̂i = I .

For any unitary Û , Ĉ Ĉ†
= Ĉ ÛÛ†Ĉ† holds. Therefore, Û†B̂iÛ can

also be an estimate of the detector. To neutralize the effect of
Û†Ĉ−1(·)(Ĉ†)−1Û on F̂i, we define an optimal unitary matrix Ûop

to minimize ∥Ĉ Ûop − I∥ (Wang et al., 2021) and its analytical
expression is Ûop =

√
Ĉ†Ĉ Ĉ−1. Therefore, the final estimate is

P̂i = Û†
opB̂iÛop. This general algorithm can be used for arbitrary

n ≥ 2.
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. Optimal quantum detector tomography

In detector tomography as shown in Step 1 in Fig. 1, a natural
ay to reduce the tomography error is to carefully choose the
robe states according to a certain optimality criterion, which
hould be independent of the detector. In this section, we propose
criterion based on two non-conflicting indices (UMSE and con-
ition number), subsequently present the conditions on achieving
ptimal detector tomography and provide illustrative examples.

.1. Optimality criterion

One index to evaluate probe states is to score their worst
erformance, i.e., their upper bounds of estimation errors. Let E
enote the expectation w.r.t. all possible measurement results.
he Stage 1 error

Êi − Pi
 between the estimate Êi and its true

alue Pi is bounded by UMSE (upper bound of the mean squared
rror) (Wang et al., 2021)(∑

i

Êi − Pi
2) = E

(Θ̂CLS −Θ

2)
≤

(n − 1)M
4N

Tr
[
(XTX)−1], (8)

and the final estimation error for all detectors
E
(
Σi

P̂i − Pi
2) is bounded by (Wang et al., 2021)

E

(∑
i

P̂i − Pi
2)

≤
(dn + 2

√
dn + 1)(n − 1)M
4N

Tr
[
(XTX)−1]

+ o
(

1
N

)
.

(9)

Since in (8) and (9) the parts dependent on probe states are both
M Tr

[
(XTX)−1

]
, we take it as our first criterion. For general QDT,

we have no special prior knowledge on the detectors, and the
following conditions are equivalent: (i) the detector cannot be
uniquely identified; (ii) the probe states do not span the space of
all d-dimensional states; (iii) XTX is singular; (iv) the UMSE is in-
finite. From (i) and (iv), it is thus reasonable to take M Tr(XTX)−1

as an evaluation index. We require the optimal probe states
to minimize M Tr(XTX)−1. This criterion is conservative and its
limitation is that the UMSE might not be tight. The relation (8)
is only tight for the case P1 = P2 = I/2 and (9) is always loose.
Therefore, minimizing UMSE is not equivalent to minimizing MSE.
In addition, UMSE depends on the assumption that there only
exists statistics error in the measurement data from finite state
copies (discussed in Remark 4). Despite these limitations, numer-
ical results in Wang et al. (2021) (e.g., Fig. 4 therein) indicate a
very similar behavior between UMSE and MSE when changing
the probe states while maintaining the other parameters n, M ,
N fixed. Hence, UMSE is also a useful index evaluating the probe
state set.

The second index we consider is, for a set of probe states,
how robust the generated estimation result is w.r.t. measurement
noise. Note that our CLS estimation (7) is in fact equivalent to the
least squares estimation of the linear regression problem⎛⎜⎝ŷ1 −

1
ny0
...

ŷn −
1
ny0

⎞⎟⎠ = (In ⊗ X)

⎛⎜⎝Θ1 −
1
nd

...

Θn −
1
nd

⎞⎟⎠ . (10)

ypically, the sensitivity of a linear system solution to pertur-
ations in the data is evaluated by the condition number of
he coefficient matrix, defined (among several possible choices)
4

in this paper as cond(A) =
σmax(A)
σmin(A)

, where σmax /min(A) is the

maximum/minimum singular value of A. Hence, to maximize
the estimation robustness w.r.t. measurement noise amounts
to minimizing the condition number in (10) cond(In ⊗ X) =

cond(In) cond(X) = cond(X). Therefore, the second evaluation
index is chosen as cond(X). To sum up, the optimal probe states
should minimize M Tr(XTX)−1 and minimize cond(X) simultane-
ously. In the following we give specific characterization and show
that the two optimal indices can be achieved simultaneously for
several examples.

3.2. Optimal probe states

We now give the condition on optimal probe states (OPS).

Theorem 1. For a d-dimensional detector with n matrices, assume
each type of probe states has the same number of copies, altogether
summed to N copies. Then the minimum of UMSE is (n−1)(d4+d3−d2)

4N
and the minimum of cond(X) is

√
d + 1. These minima are achieved

simultaneously if and only if there exist M different types of probe
states such that XTX is diagonal and its eigenvalues are λ1 =

M
d and

λ2 = · · · = λd2 =
M

d(d+1) .

Our results also show that the description of OPS in Assump-
tion 1 in Wang et al. (2021) needs to be more precise. For certain
M , if there exist OPS, all of them must be pure states because∑M

j=1 Tr(ρ
2
j ) =

∑d2
j=1 λi = M . This indicates that pure states are

better than mixed states. However, it is not clear whether these
OPS exist for arbitrary M ≥ d2. Thus, whether we can always find
a pure state set which is better than arbitrary mixed state set for
given M is still an open problem.

Remark 1. In system identification, the similar problem called
input design problem has been widely discussed. There are many
existing results, e.g., D,A,E-optimal input design (Boyd & Van-
denberghe, 2004). The common idea behind the problem of our
optimal probe states and optimal input design is that both prob-
lems consider minimizing the trace of the covariance matrix,
which is A-optimal input design (Boyd & Vandenberghe, 2004).
The difference is that we also consider robustness and other phys-
ical eigenvalue constraints (e.g., purity) for probe states. Thus,
we cannot directly adapt classical input design problem for the
quantum case.

Remark 2. If we only want to reach the minimum condition
number

√
d + 1 without considering UMSE, we need to ensure

λ1
λd2

= d + 1 which can be satisfied even for mixed states. For
xample, for a concentric sphere inside the Bloch sphere, we
an also find the corresponding platonic solid on it which has
he smallest condition number

√
d + 1 (this case will be dis-

cussed later). Therefore, if we only consider minimum condition
number, we cannot obtain the minimum UMSE. However, if we
only consider minimum UMSE, the eigenvalues also satisfy the
requirement of minimum condition number. Hence, when we
solve the optimization problem and analyze optimal probe states,
it suffices to only consider minimum UMSE.

Remark 3. In quantum state tomography, the condition number
for the optimal measurement is 1, achieved by special mea-
surement such as the optimal generalized Pauli operators (Mi-
ranowicz et al., 2014). However, in QDT, OPS need to satisfy the
unit-trace constraint. Therefore, the largest eigenvalue λ1 must be
equal to or larger than M

d and the minimum condition number is
√
d + 1.
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emark 4. We consider two criteria for optimization—upper
bound of the mean squared error (UMSE) and the robustness
described by the condition number. For UMSE, we assume there
only exists statistics error from finite state copies and the analyt-
ical upper bound depends on this assumption. If this assumption
is not satisfied, the UMSE should be adjusted by adding the
unmodeled noise (e.g., apparatus noise) to the error e in (5).
or robustness, condition number characterizes the sensitivity of
he estimation result to errors in measurement data. Hence, this
riterion is unrelated to the specific sources of the errors.

We then give two examples of OPS for M = d2 and M =

(d + 1) which are motivated by projection measurements.
The first example is motivated from SIC-POVM. To reconstruct

n unknown quantum state ρ, a generalized measurement must
have at least d2 linear independent elements, which is called
nformationally complete. Furthermore, if the measurement re-
ults are maximally independent, the POVM is called symmetric
nformationally complete POVM (SIC-POVM). The simplest math-
matical definition of an SIC-POVM is a set of d2 normalized
ectors |φk⟩ in Cd satisfying (Renes, Blume-Kohout, Scott, & Caves,
004)⏐⏐⟨φj|φk

⟩⏐⏐2 =
1

d + 1
, j ̸= k. (11)

It has been conjectured that SIC-POVMs exist for all dimensions
(Renes et al., 2004) and their existence has been given for d ≤

121, and some other sporadic values (Scott, 2017). When SIC-
POVMs exist in d dimension, we define the d2 pure states |φk⟩ ∈

Cd(1 ≤ k ≤ d2) to be SIC states if they satisfy (11). Then we have
the following conclusion.

Proposition 1. d-dimensional SIC states (when they exist) are a
set of OPS with the smallest M as M = d2.

The second example is motivated from MUB measurement.
Two sets of orthogonal bases Bk

= {
⏐⏐ψk

i

⟩
: i = 1, . . ., d} and

Bℓ
=
{⏐⏐ψℓ

j

⟩
: j = 1, . . . , d

}
are called mutually unbiased if and

only if (Adamson & Steinberg, 2010)⏐⏐⟨ψk
i |ψ

ℓ
j

⟩⏐⏐2 =

{
1/d for k ̸= ℓ,

δi,j for k = ℓ.
(12)

n particular, one can find maximally d + 1 sets of mutually un-
iased bases in Hilbert spaces of prime-power dimension d = pk,

with p a prime and k a positive integer (Durt, Englert, Bengtsson,
& Życzkowski, 2010). When d+1 sets of MUB measurement exist
in Cd, we view each projective MUB measurement operator as a
pure state and we call them MUB states. Thus, MUB states always
exist for m-qubit systems (d = 2m). Then we have the following
conclusion.

Proposition 2. d-dimensional MUB states (when they exist) are a
set of OPS for M = d(d + 1).

For M ̸= d2 and M ̸= d(d + 1), we leave it an open
problem when there always exist OPS satisfying the two indices
simultaneously. For two-qubit detectors, from the above results
we know the optimal probe states can be constructed using 4-
dimensional MUB states and SIC states as shown in Appendix
A in Xiao, Wang et al. (2021). A similar two-qubit problem for
QST was discussed in Qi et al. (2013) to determine the optimal
measurement based on UMSE and in Miranowicz et al. (2014)
based on condition number.

For one-qubit probe states, they have simple geometric prop-
erty; i.e., they are in the Bloch sphere. The pure states are on
the surface and the mixed states are inside the sphere. Hence,
an alternative method to search for one-qubit OPS is based on
5

geometric symmetry. For M = 4, when the probe states are on
the surface of Bloch sphere and become the four vertices of a
tetrahedron concentric with Bloch sphere, they are OPS. In fact,
they are also SIC states. For M = 6, one can construct OPS
similarly using octahedron, and they are also MUB states. We
also have cube, icosahedron, dodecahedron for M = 8, 12, 20,
respectively, which are OPS. We conjecture all one-qubit OPS are
constructed from the five platonic solids on the Bloch sphere in
this way, and we show there do not exist OPS for M = 5 in
Appendix B in Xiao, Wang et al. (2021). For multi-qubit states,
we still do not fully know the geometric property and it is thus
an open problem to find other optimal probe states.

3.3. Product probe state

In experiment, product states are among the ones most
straightforwardly to be implemented. In this subsection we con-
sider the case d = 2m for some integer m and each probe state is
an m-qubit tensor product state as ρj = ρ

(1)
j1

⊗ · · · ⊗ ρ
(m)
jm where

1 ≤ j1 ≤ M1, . . . , 1 ≤ jm ≤ Mm and there are Mi different types
of one-qubits for the ith qubit of the product states. The total
number of these m-qubit tensor product states is thus

∏m
i=1 Mi.

We then give their optimal UMSE and condition number.

Theorem 2. The minimum UMSE of m-qubit product probe state is
20m(n−1)

4N and the minimum condition number is
√
3m. These minima

re achieved simultaneously if and only if each qubit is among
ptimal one-qubit states.

Here we compare the two criteria—UMSE and condition num-
er between OPS and optimal product states for an m-qubit de-
ector with the dimension d = 2m. The UMSEs are (n−1)(16m+8m−4m)

4N
or OPS and 20m(n−1)

4N for optimal product states. UMSE of optimal
probe states is always smaller than that of optimal product states
form ≥ 2. Form = 1, they are both 20(n−1)

4N . For condition number,
it is

√
2m + 1 for OPS and

√
3m for optimal product states. Thus,

or both UMSE and condition number, OPS play better than
ptimal product states in multi-qubit systems. Because most of
he OPS are entangled states, this is an example showcasing the
dvantage of entanglement in QDT.
We give an example of optimal two-qubit product probe

tates. The detailed derivation is shown in Xiao, Wang et al.
2021) and the optimization problem is

min
16∑
i=1

M
λi

s.t.
16∑
i=1

λi = M, λ1 ≥
M
4
,

4∑
i=1

λi ≥
M
2
,

7∑
i=1

λi ≥
3M
4
.

(13)

It can be proven that
∑16

i=1
M
λi

reaches its minimum 400 and
he minimum UMSE is 100(n−1)

N when λ1 =
M
4 , λ2 = · · · = λ7 =

M
12 , λ8 = · · · = λ16 =

M
36 . It can be verified that this minimum

UMSE can be reached by using the tensor of platonic solid states
such as M = 36 (Cube). The minimum condition number is√

λ1
λ16

=

√
M/4
M/36 = 3.

3.4. Superposition of coherent probe state

In quantum optics experiments, the preparation of number
states (or Fock states) |k⟩(k ∈ N) is usually a difficult task,
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specially when k is large. Therefore, it is also difficult to prepare
IC and MUB states. Coherent states, more straightforward to be
repared, are more commonly used as probe states for QDT in
ractice. Thus, a good approach is to use the superposition of
everal coherent states to approximate SIC states and MUB states.
A coherent state is denoted as |α⟩ where α ∈ C and it can be

xpanded using number states as

α⟩ = e−
|α|

2
2

∞∑
i=0

αi

√
i!
|i⟩. (14)

he inner product relationship between two states |α⟩ and |β⟩ is

⟨β|α⟩ = e−
1
2

(
|β|

2
+|α|

2
−2β∗α

)
. (15)

et |αd⟩ = e−
|α|

2
2
∑d−1

i=0
αi
√
i!
|i⟩. Coherent states are in essence

nfinite dimensional. To estimate a d-dimensional detector, we
mploy |αd⟩ as the approximate description of |α⟩, and we as-
ume that the discarded part |α⟩ − |αd⟩ has a small enough
nfluence such that it can be neglected. A matrix or vector with
ubscript d means it is truncated in d dimension.

emark 5. It can lead to significant error to approximate a
eneral pure state using only one coherent state instead of the
uperposition of many. This problem is often referred to as the
onclassicality of states. As an example, we now consider a Fock
tate |n⟩. The infidelity is

− Fs(|n⟩⟨n|, |α⟩⟨α|) =

[
2
(
1 − exp(−|α|

2)
|α|

2n

n!

)]1/2
.

he minimum infidelity is obtained by |α|
2

= n and for n =

, 1, 2, the minimum infidelity is 0, 0.6321, 0.7293, respectively.
hus, the distance between one Fock state and one coherent
tate may be quite large. This also shows that the Fock state |n⟩
ecomes more and more non-classical as the value n increases
Wünsche, Dodonov, Man’ko, & Man’ko, 2001).

In quantum state engineering, a central problem is how to
onstruct a pure state by superposition of coherent states. There
re two main approaches to do this. One is to write the pure state
s a superposition of coherent states along the real axis in phase
pace

ψ⟩ =

∫
∞

−∞

F (α)|α⟩dα, (16)

here F (α) is the distribution function. The other choice is the
uperposition on a circle

ψ⟩ =

∫ 2π

0
FR(φ)

⏐⏐Reiφ ⟩ dφ, (17)

here R is the radius of the circle and FR(φ) a circle distribution
unction. The analytical solutions of F (α) and FR(φ) were given
n Szabo, Adam, Janszky, and Domokos (1996). They also gave
he discrete superposition of coherent states to construct pure
tates by discretizing the above equations. Ref. Janszky, Domokos,
zabó, and Adam (1995) evaluated the performance to construct
queezed displaced number states and Szabo et al. (1996) gave
representation of a Fock state |n⟩ by n + 1 coherent states. If
e can construct all Fock states with high accuracy, we can use
hese Fock states to construct all the ideal pure states we need.
owever, in practice, the technique to superpose many coherent
tates arbitrarily is still developing.
In this paper, we use the finite superposition of s coherent

tates |ψ̃⟩ =
∑s

k=1 ck |αd⟩k to approximate an ideal pure state
ψ⟩ where |ψ̃⟩ indicates that it has not been normalized. Hence,
6

ψ̃⟩ is not yet a quantum state in the most strict sense. To find
he superposition state |ψ̃⟩, at first sight it can be formulated as
n optimization problem to maximize fidelity as

ax
|ψ̃⟩

|⟨ψ |ψ̃⟩|
2, (18)

ince the fidelity is Fs(ρ̂, ρ) = [Tr
√√

ρ̂ρ
√
ρ̂]

2
= |⟨ψ |ψ̃⟩|

2. How-
ver, for the purpose of QDT, this cost function is not the most
uitable. The most important part of the superposed state |ψ̃⟩ is
ts direction. We hope to align it in the same direction as |ψ⟩,
ven if the norm∥|ψ̃⟩∥ can be different from ∥|ψ⟩∥ = 1. Hence,

we need the normalized state |ψ̃⟩
√

⟨ψ̃ |ψ̃⟩

to be a good approximation

o |ψ⟩, which thus leads to the numerator of (19). Also, if ∥|ψ̃⟩∥

s too small, we cannot neglect elements in the dimension larger
han d and the corresponding measurement data Tr

(⏐⏐ψ̃ ⟩ ⟨ψ̃⏐⏐ Pi)
ill be small, leading to low measurement accuracy for given the
ame resource number N . Therefore, we add a penalty ⟨ψ̃ |ψ̃⟩ to
revent the norm |ψ̃⟩ from being too small. Thus, we design a
ew cost function as

in
|ψ̃⟩

∥
|ψ̃⟩

√
⟨ψ̃ |ψ̃⟩

− |ψ⟩∥
2

⟨ψ̃ |ψ̃⟩
. (19)

This optimization problem is usually non-convex, and thus we
select different initial points and numerically search for the best
solution.

3.5. Error analysis for state preparation

When we prepare probe states such SIC states and MUB states
in experiment, there usually exist state preparation errors. For
example, if we use superposition of coherent states, there exists
approximation error between the ideal target probe state and the
superposition of coherent states when the number of coherent
states for superposition is not large enough. We give the error
analysis on UMSE and condition number when there exists state
preparation error (see Appendix C in Xiao, Wang et al. (2021) for
the proof detail).

Theorem 3. Given two probe state sets
{
ρj
}M
1 and

{
ρ̂j
}M
1 , if

maxj
ρj − ρ̂j

 ≤ ε and ε ≤
λd2
2M , the corresponding error in (n−1)M

4N⏐⏐ Tr (XTX
)−1

−Tr
(
X̂T X̂

)−1 ⏐⏐ is upper bounded by
2(n − 1)d2M2ε

4N
(
λd2 − 2Mε

)2
here λd2 > 0 is the smallest eigenvalue of the parameterization
atrix XTX and the corresponding error on condition number is

pper bounded by
M
(
λ1 + λd2

)
ε(

λd2 − 2Mε
)2 where λ1 is the largest eigenvalue

of XTX.

4. Adaptive detector tomography

As shown in Fig. 1, after employing partial resources to obtain
a rough estimate of the detector through Step 1, one can design
new probe states dependent on the specific estimation value
of the detector to further improve the accuracy in Step 2. Our
adaptive QDT scheme is applicable for arbitrary reconstruction
algorithm.

4.1. Evaluation index

In quantum information, fidelity (or infidelity) has profound
physical meaning to characterize the distance and similarity be-
tween two quantum states (or operations). It has been a widely
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sed metric (Hübner, 1992; Jozsa, 1994; Nielsen & Chuang, 2010).
n developing adaptive QDT, we also employ infidelity as the
valuation index.
The fidelity between two arbitrary states ρ̂ and ρ is defined

y

s(ρ̂, ρ) ≜ [Tr
√√

ρ̂ρ
√
ρ̂]

2, (20)

hich has three basic properties:

i) Fs(ρ̂, ρ) = Fs(ρ, ρ̂); (21)

ii) 0 ≤ Fs(ρ̂, ρ) ≤ 1; (22)

iii) Fs(ρ̂, ρ) = 1 ⇔ ρ̂ = ρ. (23)

o extend the fidelity definition from states to detectors, a natural
dea is to normalize the POVM element such that it has the
ame mathematical property as a quantum state. This leads to
he definition

0

(
P̂i, Pi

)
≜

[
Tr

√√
P̂iPi

√
P̂i

]2

/

[
Tr (Pi) Tr

(
P̂i
)]
. (24)

This definition has been widely used in QDT (Feito et al., 2009;
Lundeen et al., 2009; Zhang, Datta et al., 2012) to evaluate the
estimation performance, and corresponding infidelity is defined
as 1 − F0

(
P̂i, Pi

)
. However, we find that this definition is not

always appropriate, because in certain circumstances the third
property (23) does not hold for (24) (we call this phenomenon
distortion). More specifically, for certain detector {Pi}ni=1, distortion
means there exists

{
P̂i
}n
i=1

such that F0
(
P̂i, Pi

)
= 1 for all 1 ≤ i ≤

n while P̂i = Pi fails for at least one i. For example, suppose the
detector is P1 = P2 = P3 =

I
3 and the estimations are P̂1 = a1P1,

ˆ2 = a2P2, P̂3 = a3P3 where a1, a2 and a3 are three arbitrary
positive numbers satisfying a1 +a2 +a3 = 3. The fidelities for the
three detectors are all maximum 1, but the estimation is in fact
usually not accurate. We characterize when the evaluation index
(24) will distort in the following proposition whose proof can be
found in Appendix D in Xiao, Wang et al. (2021).

Proposition 3. The evaluation index (24) will distort if and only if
{Pi}ni=1 are linearly dependent, i.e., there exists nonzero c ∈ Rn such
that

∑n
i=1 ciPi = 0. Specially, if d2 < n, there must exist distortion.

When distortion happens, limF0(P̂i,Pi)→1 P̂i = Pi fails. That is, the

estimation can be on a wrong track even if the fidelity approaches
to 1. To fix this problem, we add

[
Tr(Pi − P̂i)

]2
/d2 and propose a

new detector fidelity as

F
(
P̂i, Pi

)
=

[
Tr(

√√
P̂iPi

√
P̂i)

]2

/

[
Tr (Pi) Tr

(
P̂i
)]

−

[
Tr
(
Pi − P̂i

)]2
/d2.

(25)

he fidelity (25) takes values in ( 1d −1, 1] and we give the proof of
he lower bound in Appendix E in Xiao, Wang et al. (2021). When(

P̂i, Pi
)

= 1, we must have P̂i = Pi (and vice versa), solving the
istortion problem of (24). For the rest of this paper, we refer
o ‘‘fidelity’’ as (25), unless otherwise declared. The infidelity is
efined as 1 − F

(
P̂ , P

)
.
i i

7

4.2. Two-step adaptive quantum detector tomography

Let {|λt⟩} be the eigenvectors of Pi for given i, where the zero
eigenvalues are λr+1 = · · · = λd = 0. We can view Pi

Tr(Pi)
and

P̂i
Tr
(
P̂i
) as two quantum states. Thus, we may use the analysis in

ereira et al. (2018) to obtain the Taylor series expansion of the
ew infidelity 1 − F (P̂i, Pi) based on (25) up to the second order
s

E
(
1 − F (P̂i, Pi)

)
E
(
1 − F0

(
P̂i, Pi

)
+

[
Tr
(
Pi − P̂i

)]2
/d2
)

=E

⎛⎝1 − F0
(
P̂i, Pi

)
+

(
d∑

t=1

⟨λt |∆2|λt⟩

)2

/d2

⎞⎠

=E

(
d∑

t=r+1

⟨λt |∆1|λt⟩

)
+ E

(
1
2

r∑
t,k=1

|⟨λt |∆1|λk⟩|
2

λt + λk

)

− E

⎛⎝1
4

[
d∑

t=r+1

⟨λt |∆1|λt⟩

]2
⎞⎠

+ E

(
d∑

t=1

d∑
k=1

⟨λt |∆2|λt⟩ ⟨λk|∆2|λk⟩ /d2
)

+ O
(
∥∆1∥

3) ,
(26)

where ∆1 =
Pi

Tr(Pi)
−

P̂i
Tr
(
P̂i
) ,∆2 = Pi − P̂i. Crucially, the new term[

Tr
(
Pi − P̂i

)]2
/d2 is in the second order instead of in the first

rder, and we can thus imitate the analysis for QST in Pereira et al.
2018). Note that we use a perturbation method thus (26) is valid
nly around Pi. The condition can be guaranteed because we are
nalyzing the asymptotic behavior as N tends to infinity (large
nough).
According to the Taylor series, the scaling performance of the

nfidelity depends on the rank of the detector. For instance, for a
ull-rank POVM element, the first-order term vanishes and the
nfidelity scales as O(1/N) using just non-adaptive QDT. For a
ank deficient Pi, the first-order term dominates and thus the
nfidelity scales as O(1/

√
N) by QDT which only has Step 1 in

Fig. 1. The optimal scaling of infidelity 1 − Fs(ρ̂, ρ) is O(1/N) for
unbiased estimate in QST (Zhu, 2012) and the optimal scaling of

−

[
Tr
(
Pi − P̂i

)]2
/d2 is always not worse than O(1/N). Thus, the

optimal scaling of infidelity 1 − F0(P̂i, Pi) or 1 − F (P̂i, Pi) is also
(1/N). From Pereira et al. (2018), we know the second-order
erms always scale as O(1/N). Therefore, for rank-deficient de-
ectors, the behavior of the infidelity can be corrected to O(1/N)
f one can eliminate the influence of the first-order term (Pereira
t al., 2018). This depends on the diagonal coefficients of∆1 in the
ernel of Pi

Tr(Pi)
, which suggests performing QDT in a basis aligning

with the eigenvectors of Pi (Pereira et al., 2018).
The detailed adaptive procedure is as follows. To simplify the

expression, we use P to represent each POVM element Pi. For
P , given a probe state set {ρj}

M
j=1, we choose one among them

(e.g., ρa) and its spectral decomposition is ρa = VaΓaV
†
a . The

spectral decomposition of Pi is P = UΛU†. To perform QDT in a
basis that agrees with the eigenvectors of P (Pereira et al., 2018),
we change each probe state ρj to ρ̃j by a common conjugation as

ρ̃ = UV †ρ V U†. (27)
j a j a
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owever, in practice, we do not know Ui. Therefore, we have two
teps as shown in Fig. 1. In Step 1, we obtain an estimator

{
P̃
}

y applying non-adaptive QDT on an ensemble of size N0. Then
n Step 2, we use new probe states ρ̃j as

˜ j = ŨV †
a ρjVaŨ†, (28)

or an ensemble of size N−N0, where P̃ = ŨΛ̃Ũ†. For each POVM
lement, we need to repeat the above procedure.
Furthermore, to guarantee that the infidelity scaling is im-

roved to O(1/N), one needs to carefully choose the probe states.
efore showcasing how to do this, we first introduce several basic
efinitions. For a d-dimensional Hermitian space, we define bases({

|i⟩di=1

})
consisting of the following elements,

z
i = |i⟩⟨i| (1 ≤ i ≤ d), (29)

x
ij = (|i⟩⟨j| + |j⟩⟨i|)/

√
2 (1 ≤ i < j ≤ d), (30)

y
ij = (−i|i⟩⟨j| + i|j⟩⟨i|)/

√
2 (1 ≤ i < j ≤ d), (31)

where the set
{
|i⟩di=1

}
is an arbitrary orthogonal basis. Note that

all the operators are orthogonal w.r.t. the inner product ⟨A, B⟩ =

Tr
(
A†B

)
. For a given basis {ξk}

K1
k=1, denote span

{
{ξk}

K1
k=1

}
as the

set of all finite real linear combinations of ξk (1 ≤ k ≤ K1).
If span

{
{ξk}

K1
k=1

}
= span

{
{µk}

K2
k=1

}
, we say {ξk}

K1
k=1 and {µk}

K2
k=1

are equivalent. If the span of the probe state set contains all d-
dimensional Hermitian matrices and M = d2, we say the probe
state set is complete. If we further have M > d2, we say it is
over-complete.

In this section, we assume the true value of a rank r POVM
element is P , the Step 1 estimation is P̃ and the Step 2 estimation
is P̂ . The spectral decomposition of P is P =

∑d
i=1 λi |λi⟩ ⟨λi|

here λ1 ≥ λ2 ≥ · · · ≥ λr > 0, λr+1 = · · · = λd = 0. In (29)–
31), if we change {|i⟩} to {|λi⟩} for i = 1, . . . , d, we call this new
asis B

({
|λi⟩

d
i=1

})
ideal bases. If we change {|i⟩} to {|λi⟩} with i

estricted in [r+1, d], we call the set B
({

|λi⟩
d
i=r+1

})
of these new

d− r)2 elements as the null bases of P . If we change {|i⟩} to {|λi⟩}

ith i restricted in [1, r], we call the set B
({

|λi⟩
r
i=1

})
of these

ew r2 elements as the range bases of P . After Step 1, we obtain an
stimate P̃ and the spectral decomposition is P̃ =

∑d
i=1 λ̃i

⏐⏐λ̃i⟩ ⟨λ̃i⏐⏐.
f we change {|i⟩} to {|λ̃i⟩} for i = 1, . . . , d, we call this new basis({

|λ̃i⟩
d
i=1

})
estimated bases. If we change {|i⟩} to {|λ̃i⟩} with i

estricted in [r + 1, d], we call the set B
({

|λ̃i⟩
d
i=r+1

})
of these

ew (d − r)2 elements estimated null bases.
Then we give the following theorem as a guideline to design

he probe state set.

heorem 4. For two-step adaptive QDT using arbitrary recon-
truction algorithm with an O(1/N) scaling for the MSE, suppose the
esource number is N0 in Step 1 and N − N0 in Step 2, both evenly
istributed for each probe state. The infidelity E

(
1 − F (P̂, P)

)
of any

ank-deficient POVM element scales as O
(

1√
N0(N−N0)

)
+O

(
1

N−N0

)
if

(c1) the probe states in Step 1 are complete or over-complete;
(c2) the probe states in Step 2 are complete or over-complete;
(c3) the probe state set in Step 2 includes a subset equivalent to

the (d− r)2 estimated null basis B
({

|λ̃i⟩
d
i=r+1

})
from Step 1.

We have the following corollary if we use GPB (generalized
auli basis) states in Step 2.
8

Corollary 1. For a POVM element P, using GPB states in Step 2, the
infidelity reaches the optimal scaling O(1/N) if N0 = αN for certain
0 < α < 1.

The proof is straightforward. If the POVM element P is full
rank, it does not have first-order term and the infidelity scales
as O(1/N). If P is rank deficient with an unknown rank r , GPB
states always satisfy Conditions (c1)–(c3) and thus the infidelity
still scales as O(1/N) by choosing N0 = αN for certain 0 < α < 1.
Because GPB states are effective for all cases, we will show their
performance in Numerical Examples (Section 5).

We may use three methods to further make the estimation
from Step 1 more accurate if the rank is not precise. The first one
is to use Corollary 1. We use d2 GPB states which always span
the null basis. The second one is the possible scenario where we
know the rank value from prior information. The third method
is, from the rough estimation of Step 1, we may know an exact
rank interval of the to-be-estimated POVM element. Since we
know the upper bound of the estimated error as (9) here, we
thus know the variation range of all the eigenvalues. Assume the
rank interval is [a, b] where 1 ≤ a < b ≤ d, and r ∈ [a, b] is
the unknown rank. The more accurate is the estimation result
from Step 1, the smaller is the interval length b − a. Then to
ensure the infidelity scaling is O(1/N), a conservative method is
to add (d− a)2 quantum states spanning the estimated null basis
B
({

|λ̃i⟩
d
i=a+1

})
.

Remark 6. The key in proving Theorem 4 is to characterize
the first-order term, which is unaffected by the added term

−

[
Tr
(
Pi − P̂i

)]2
/d2 comparing (25) with (24). Hence, when (24)

holds without distortion (see Proposition 3), one can still use (24)
as the definition of fidelity, and GPB states still reach O(1/N)
scaling for the infidelity.

The choice of N0 plays a key role in the performance of the
two-step adaptive QDT. In this paper, we choose N0 =

N
2 and

he infidelity scales as O(1/N). Note that the infidelity behavior
or different detector matrices can be different, even for binary
etectors. For example, if P1 = U1 diag (1, 0, 0, 0)U

†
1 for certain

unitary U1 and P2 = I − P1, P2’s eigenvalues are 1, 1, 1, 0. Since
2 has one zero eigenvalue, the infidelity reaches O(1/

√
N) by

non-adaptive QDT. However, if P1 = U1 diag (0.1, 0, 0, 0)U
†
1 , P2’s

eigenvalues are 1, 1, 1, 0.9. Since P2 has no zero eigenvalues, the
infidelity can reach O(1/N) by non-adaptive QDT. Therefore, for a
complete characterization and analysis, we need to calculate the
infidelity for every POVM element.

5. Numerical examples

Both the non-adaptive and adaptive QDT protocols need to
prepare certain (in this paper pure) states {|ψ⟩} (we call them
ideal states) as the probe states, which can be difficult to achieve
in practice. As stated in Section 3.4, a realistic way in quantum
optics experiments is to use the superposition of coherent states
to approximate the ideal states. In this section we demonstrate
the performance of our optimal and adaptive protocols both
using ideal probe states and using superposed coherent probe
states. We use the two-stage QDT reconstruction algorithm for
numerical simulations.

5.1. Optimal detector tomography

For non-adaptive QDT in d = 4 systems, we test 14 different
protocols using different probe states in Table 1. In protocols 1–
5, we compare M Tr

[
(XTX)−1

]
and condition numbers of ideal

pure states such as MUB, Cube, SIC, GPB probe states which are
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Table 1
Comparison of various four-dimensional QDT protocols.
Protocol Probe states Number(M) M Tr

[
(XTX)−1

]
cond(X)

1 SIC 16 304a
√
5a

2 MUB 20 304a
√
5a

3 Cubeb 36 400 3

4 GPB 16 640

√
9 +

√
73

9 −
√
73

5 Random pure 32 629.16 2.39

6 1-coherent SIC 16 2.48 × 104 307.11
7 1-coherent MUB 20 2.46 × 103 82.37
8 1-coherent Random 32 9.81 × 103 26.03

9 2-coherent SIC 16 400.61 3.44
10 2-coherent MUB 20 470.67 3.27
11 2-coherent Random 32 607.35 5.48

12 3-coherent SIC 16 352.82 2.79
13 3-coherent MUB 20 364.01 2.60
14 3-coherent Random 32 532.85 4.95

aThis is the optimal value.
bCube states are product probe states.

constructed as Appendix A in Xiao, Wang et al. (2021). ‘‘Cube’’
states here are product states of one-qubit MUB states, assuming
that the d = 4 system here is the composition of two d = 2
ystems. GPB states are similar to the optimal measurement-
eneralized Pauli operators in Miranowicz et al. (2014). ‘‘Random
ure’’ means that we generate 32 random pure states using the
lgorithm in Miszczak (2012) and Zyczkowski and Kus (1994)
9

where M Tr
[
(XTX)−1

]
and condition number are obtained by

the average of 1000 results. We find SIC states and MUB states
have the minimum value of M Tr

[
(XTX)−1

]
as 304 and minimum

condition number as
√
5, satisfying Theorem 1. For two-qubit

product states—Cube states which are easier to generate in exper-
iment, the values of UMSE and condition number are 400 and 3,
respectively, a little larger than the optimal values and satisfying
Theorem 2.

In protocols 6–14, we use superposition of nc (nc = 1, 2, 3)
oherent states (denoted as nc-coherent SIC/MUB) to approximate
he four-dimensional SIC and MUB states by solving the optimiza-
ion problem (19). The case of nc = 1 is using one coherent
tate without superposition. As a comparison, we also add the
rotocols of using the superposition of nc random coherent states
denoted as nc-coherent Random). The random algorithm is the
ame as the coherent states preparation procedure in Wang et al.
2021). The optimization landscape might have local minima.
herefore, we run the optimization algorithm with 100 different
nitial values and choose the best result.

We find for one coherent state, it cannot approximate SIC and
UB states well and both the condition number and UMSE are

arge. For the superposition of two and three coherent states, they
an approximate SIC and MUB states well and the corresponding
ondition number and UMSE are close to the optimal values,
nd smaller than 2,3-coherent Random protocols. Also, with nc
ncreasing, the superposition result becomes close to ideal probe
tates and thus the UMSE and condition number decrease.
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5.2. Adaptive QDT using ideal probe states

5.2.1. Binary detectors
For binary detectors P1 + P2 = I , P1 and P2 can be simulta-

neously diagonalized by a common unitary (Wang et al., 2019).
Hence, the eigenvalues of P1 will affect the eigenvalues of P2. This
determines the rank of P2, which will further influence the scaling
of non-adaptive tomography. Let

P1 = U1 diag (µ, 0, 0, 0)U
†
1 . (32)

With non-adaptive tomography, when µ < 1, P2 is full-ranked
and the infidelity of estimating P2 scales as O(1/N), while for
µ = 1, P2 is rank-deficient and the infidelity of estimating P2
scales as O(1/

√
N).

Therefore, we firstly consider a binary detector for µ = 1
here

1 = U1 diag (1, 0, 0, 0)U
†
1 . (33)

his detector is fully specified by the projection measurement
1. The matrix U1 is randomly generated using the algorithm
n Johnston (2016) and Zyczkowski and Kus (1994). For each
esource number, we run the algorithm 100 times and obtain the
verage infidelity and standard deviation.
The four curves in Fig. 2 are as follows:

• Random Non-adaptive: We only have Step 1 and choose 48
random pure states.
10
• Adaptive SIC: In Step 1, we use 16 SIC states
{
ρ
(SIC)
j

}
and in

Step 2, we use 32 new states as (28).
• Adaptive MUB: In Step 1, we use 20 MUB states

{
ρ
(MUB)
j

}
and in Step 2, we use 40 new states as (28).

• Adaptive GPB: In Step 1, we use 16 GPB states and in Step 2,
we use 32 new GBP states by replacing the set {|i⟩} by

{⏐⏐λ̃i⟩}
as shown in Appendix A in Xiao, Wang et al. (2021).

As shown in Fig. 2, Random Non-adaptive tomography only
reaches 1 − F = O(1/

√
N) for both P1 and P2 because they both

have zero eigenvalues and the first-order term scales as O(1/
√
N).

Adaptive GPB tomography can reach 1−F = O(1/N) for P1 and P2
s proved in Corollary 1. For adaptive SIC and MUB tomography,
hey can only reach 1 − F = O(1/

√
N) for P1 probably because

adaptive SIC and MUB states do not have a subset equivalent to
the 9 estimated null bases and do not satisfy Condition (c3) in
Theorem 4. They can reach 1−F = O(1/N) for P2 because adaptive
IC and MUB states have a subset equivalent to the estimated null
asis and satisfy Condition (c3).
Then we show infidelity for non-adaptive tomography with

ifferent eigenvalues µ = 0.25, 0.5, 0.75, 1 in (32) of binary de-
tectors in Fig. 3. For each resource number, we run the algorithm
100 times and obtain the average infidelity and the standard
deviation. Because P1 is always rank deficient, the infidelity for
P1 scales as O(1/

√
N). As µ increases, the measurement accuracy

increases and thus the infidelity of P1 becomes smaller for a given
N . Because P2 is full rank for µ < 1, its infidelity scales as O(1/N).
In addition, the infidelity of P becomes larger as µ increases for
2
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Fig. 4. Infidelity for 200 different binary detectors by changing U1 in (33). (a) P1; (b) P2 .
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a given N . When µ increases to 1, both the infidelities of P1 and
2 scale as O(1/

√
N) because they are both rank deficient.

To test the robustness of our adaptive protocol, we perform
daptive QDT on 200 random binary detectors in the form of (33)
y changing the unitary matrix U1 which is randomly created
sing the algorithm in Johnston (2016) and Zyczkowski and Kus
1994). For each U1, we run our tomography algorithm 100 times
nd obtain the mean infidelities for given resource number N .
hen we calculate the mean values and the standard deviations
f these 200 mean infidelities. The result is shown in Fig. 4. It is
lear that Adaptive GPB tomography can reach 1 − F = O(1/N)
or P1 and P2. In addition, all the standard deviations are small,
hich demonstrates that our Adaptive GPB protocol is robust.
We then consider the case that P1 is a perturbed projection

easurement,

1 + P2 = I,

1 = U1 diag (0.6, 0.001, 0.001, 0.001)U
†
1 .

(34)

The tomography errors are shown in Fig. 5. From Fig. 5(a), we
an see that the curves of adaptive QDT can be roughly divided
nto three segments from left to right for the detector P1, which
s similar to the phenomenon in QST (Qi et al., 2017). In the
irst segment, the resource number is not large enough (N ≤

04) and the near-zero eigenvalues are not strong enough to
ake a difference from zero. The performance is thus the same
s projection measurement. Hence, the infidelity decreases as
(1/N) firstly. When the resource number increases (104

≤ N ≤

05.5), the near-zero eigenvalues start to take effect. We cannot
11
istinguish them from zero accurately and thus the infidelity
cales as O(1/

√
N). Finally, when the resource number is large

enough (N ≥ 105.5) to clearly distinguish between the near-
zero eigenvalues and zero, we are performing full rank detector
tomography actually, which has O(1/N) decay rate for infidelity.
For Random Non-adaptive tomography, it can be divided into
two segments. When the resource number is not enough (N ≤

106.5) to estimate the near-zero eigenvalues accurately, the infi-
delity decreases as O(1/

√
N). When the resource number is large

enough (N ≥ 106.5) to clearly distinguish between the near-zero
eigenvalues and zero, the infidelity scales as O(1/N). Overall, the
Adaptive GPB tomography is the best among these methods.

For detector P2, all the eigenvalues are significantly larger than
zero, and P2 is full-rank. Hence, the infidelity decreases as O(1/N)
for both non-adaptive and adaptive tomography.

5.2.2. Three-valued detectors
Three-valued detectors are different from binary detectors

because three-valued detector matrices generally cannot be di-
agonalized by the same unitary matrix like binary detectors. We
consider a three-valued detector as
P1 + P2 + P3 = I,

P1 = U1 diag (0.4, 0, 0, 0)U
†
1 = 0.4U1(|00⟩⟨00|)U

†
1 ,

P2 = U2 diag (0, 0.5, 0, 0)U
†
2 = 0.5U2(|01⟩⟨01|)U

†
2 .

(35)

This detector is constructed from two-qubit MUB measurement
(see Appendix A in Xiao, Wang et al. (2021)). The first detector
P is from |00⟩ where we product a coefficient 0.4 and conjugate
1
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Fig. 5. Infidelity for binary detectors in (34). (a) P1; (b) P2 .

Fig. 6. Infidelity for three-valued detectors with given unitary matrices U1 and U2 in (35). (a) P1; (b) P2; (c) P3 .

Fig. 7. Infidelity for 200 different three-valued detectors by changing U1 and U2 in (35). (a) P1; (b) P2; (c) P3 .

12
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Fig. 8. Infidelity for three-valued detectors in (36). (a) P1; (b) P2; (c) P3 .
Fig. 9. Superposition of nc -coherent states for (33) where nc = 1, 2, 3. (a) P1; (b) P2 .
unitary rotation U1. In a similar way, P2 is from |01⟩ where we
roduct a coefficient 0.5 and conjugate a unitary rotation U2. We
an prove that P3 = I − P1 − P2 is always positive semidefinite.
he unitary rotations U1 and U2 are generated by the random
nitary algorithm in Johnston (2016) and Zyczkowski and Kus
1994). For each resource number, we run the algorithm 100
imes and obtain the average infidelity and standard deviation.
e focus on the comparison between Adaptive GPB tomography

nd Random Non-adaptive tomography. The simulation result is
n Fig. 6 where our adaptive tomography can reach O(1/N) for P1
nd P2 as proved in Corollary 1, improving the O(1/

√
N) scaling

f non-adaptive tomography. For P3, all the eigenvalues are far
rom zero and both tomography methods can reach O(1/N). We
13
also test robustness by performing adaptive QDT on 200 random
three-valued detectors in the form of (35) by changing unitary
matrices U1 and U2, which is similar as binary detectors. The
result is shown in Fig. 7. For P1 and P2, the adaptive tomography
is robust (with small standard deviation) and their infidelities can
reach O(1/N). For full rank P3, both tomography methods can
reach O(1/N). Then we consider that P1 and P2 have three small
eigenvalues as

P1 + P2 + P3 = I,

P1 = U1 diag (0.4, 0.001, 0.001, 0.001)U
†
1 ,
†

(36)
P2 = U2 diag (0.001, 0.5, 0.001, 0.001)U2 .
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Fig. 10. Superposition of nc -coherent states for (34) where nc = 1, 2, 3. (a) P1; (b) P2 .
The results for P1 and P2 can also be divided into three seg-
ents as shown in Fig. 8 and we have explained for binary
etectors. For P3, all the eigenvalues are far from zero and hence,

both tomography can reach O(1/N).

.3. Adaptive QDT using coherent states

Since the adaptive GPB states can improve the infidelity for all
etectors if they have zero or near-zero eigenvalues, in this part,
e use the superposition of coherent states to approximate the

deal adaptive GPB states. We consider binary detectors as (33).
e use nc-coherent states as shown in Fig. 9 where nc = 1, 2, 3.

For given nc , the adaptive tomography performance is usually
better than non-adaptive one. As nc increases, the approximation
error decreases. When the resource number N is not large enough
to distinguish the approximation error, the infidelity scales close
to O(1/N), like nc = 2, adaptive for P2 in Fig. 9(b) when N ≤ 105.
When N ≥ 105, the infidelity scales to O(1/

√
N) because of the

pproximation error.
For binary detectors as (34), the similar results are shown in

ig. 10. For P1, all the curves can be roughly divided into two
egments. For 1-coherent state, the infidelity scales as O(1/

√
N)

when N ≤ 107 and scales as O(1/N) when N ≥ 107. For 2,3-
oherent states, the infidelity scales as O(1/

√
N) when N ≤ 106

nd scales as O(1/N) when N ≥ 106. This result is similar to Fig. 5
ithout the first segment. For P2, the infidelity scales as O(1/N)

because all the eigenvalues are significantly larger than zero.
14
6. Conclusion

In this paper we have investigated how to optimize the probe
states in quantum detector tomography. We have characterized
the optimal probe state sets based on minimizing the UMSE and
minimizing the condition number. We have proven that SIC and
MUB states are optimal. In the adaptive scenario we have pro-
posed a two-step strategy to adaptively optimize the probe states,
and proven that our strategy can improve the modified infidelity
from O(1/

√
N) to O(1/N) under certain conditions. Numerical

examples were presented to demonstrate the effectiveness of our
strategies.
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