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In this paper we survey the geometric method in quantum control. By presenting a geometric representation of nonlocal two-qubit
quantum operation, we show that the control of two-qubit quantum operations can be reduced to a steering problem in a tetrahedron.
Two physical examples are given to illustrate this method. We also provide analytic approaches to construct universal quantum circuit
from any arbitrary quantum gate.
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Control on quantum mechanical systems has received exten-
sive interests in the past decade due to its fundamental im-
portance in many physical applications of quantum phenom-
ena, e.g. , NMR, nanotechnology, molecular systems, quan-
tum optics, and quantum computation [1]. The early research
on this topic can be traced back to 1980s. In [2, 3], Tarn
et al. investigated modeling and controllability of quantum
mechanical control systems. Rabitz et al. discussed optimal
control in quantum systems with emphasis on the quantum
state transitions [4, 5].

After Shor published his seminal paper on factoring al-
gorithm in mid 1990s [6], quantum system control has at-
tracted particular research efforts as an indispensable part of
quantum information processing. The generation of quan-
tum operation is a prerequisite condition for many real phys-
ical applications of quantum phenomena. For example, often
required in quantum algorithm is to apply Quantum Fourier
Transform, which amounts to control the physical system to
generate a prescribed quantum operation from initial condi-
tion. Other examples include using robust control techniques
to protect quantum coherence against environmental noises,
and applying quantum feedback control to improve the con-
trol performance.

Just as in the case of traditional control, the very first ques-
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tion that quantum system control has to address is how to de-
sign open-loop control law. In this paper, we survey the con-
trol synthesis technique on generating a desired quantum op-
eration from a given quantum mechanical system. This cor-
responds to the universality problem in quantum information
processing. We consider only discrete variable quantum sys-
tems. For continuous variable systems, readers are referred
to [7].

Mathematically, a discrete quantum system can be de-
scribed by quantum states, which are unit vectors in a com-
plex vector space:

{ψ ∈ CN : ‖ψ‖ = 1}. (1)

When N = 2, this corresponds to a 2-dimensional state called
a quantum bit, or qubit. A qubit is the simplest quantum sys-
tem, and it can be used to describe, for example, an electron
moving in a magnetic field. A single-qubit state has two basis
states denoted as |0〉 and |1〉, and any single-qubit state can be
expressed as a linear superposition of these two basis states.
For an n-qubit state, it contains 2n basis states, and similar
to the single-qubit case, an arbitrary n-qubit state is a linear
superposition of its basis states.

To manipulate quantum system, we can apply quantum op-
erations to the quantum state. For an n-qubit system, a quan-
tum gate can be represented by a 2n ×2n unitary matrix. Here
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are several single-qubit gates:

σx =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1

1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , σy =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 i

−i 0

⎤
⎥⎥⎥⎥⎥⎥⎦ , σz =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0

0 −1

⎤
⎥⎥⎥⎥⎥⎥⎦ .

These are indeed the Pauli matrices in quantum physics.
For two-qubit quantum operations, we can distinguish two

different types. The first type is local gates, which consists of
two single-qubit gates K and L that are applied to an individ-
ual qubit. The matrix representation of this local gate is K⊗L,
i.e. , the tensor product of K and L. Tensor product is also
called Kronecker product in control theory. The other type is
nonlocal gates, which are the gates that cannot be written as
the tensor product of two single-qubit gates. Two important
nonlocal gates are CNOT and SWAP gates [8]:

CNOT =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, SWAP =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The main problem we consider here is to generate any ar-
bitrary quantum operation from a quantum physical system.
This can be treated as a geometric control problem on a Lie
group. For the quantum system, the state space is the unitary
Lie group that is composed of all the 2n × 2n unitary matri-
ces. The dynamics of quantum system is determined by the
Schrödinger equation:

iU̇ = H(v)U, U(t0) = I. (2)

From the perspective of control theory, this is a right invari-
ant vector field on unitary Lie group. Note that the control
field v is in the Hamiltonian. Now the generation of quan-
tum gates from quantum system becomes a steering problem,
that is, we aim at finding control field v such that the system
trajectory generated by Schrödinger equation can achieve the
desired target at certain final time.

The control of an n-qubit system is a difficult problem. The
reason is threefold. First, the dimension of the problem in-
creases exponentially because the dimension of an n-qubit
system is 2n. Secondly, the dynamics is determined by the
bilinear Schrödinger equation. Thirdly, the dynamics is de-
fined on the unitary Lie group, which has complicated group
structure.

To simplify this problem, researchers have developed the
approach of universal gate set [9]. It is well-known that in
classical circuit design NAND is a universal gate because it
can be used to implement any arbitrary logic gate. In quan-
tum information processing, the idea is similar. We want to
use a set of elementary quantum gates such that any large and
complicated quantum gate can be decomposed as a combi-
nation of these elementary gates. The standard result in the
literature is that any quantum gate on arbitrarily many qubits
can be decomposed as a composition of single- and two-qubit

gates. Therefore, to implement any arbitrary quantum gate,
we need to implement only single- and two-qubit gates. The
single-qubit gates are defined on the Lie group S U(2). The
control of S U(2) is the same as that of S O(3), the rotation
matrix group, because S U(2) is a double cover of S O(3).
This is a well-studied problem in many other disciplines such
as robotics [10], and its extension to one-qubit gates has been
studied in details in, e.g. , [11].

In the rest of this paper, we will thus assume that the
single-qubit gates can be readily generated, and we will focus
on the implementation of two-qubit gates, which is a control
problem on the Lie group S U(4).

1 Basic control strategy

We first give a brief introduction about the mathematical
background of the control problems on S U(4), the set of all
the two-qubit quantum operations.

The Lie algebra su(4) has a direct sum decomposition
su(4) = k ⊕ p, where

k = span
i
2
{σ1

x, σ
1
y , σ

1
z , σ

2
x, σ

2
y , σ

2
z },

p = span
i
2
{σ1

xσ
2
x, σ

1
xσ

2
y , σ

1
xσ

2
z , σ

1
yσ

2
x, σ

1
yσ

2
y , σ

1
yσ

2
z ,

σ1
zσ

2
x, σ

1
zσ

2
y , σ

1
zσ

2
z }. (3)

Here σx, σy, and σz are the Pauli matrices, and σ1
ασ

2
β =

σα ⊗ σβ. From the Lie bracket computation, it is easy to
obtain that

[k, k] ⊂ k, [p, k] ⊂ p, [p, p] ⊂ k. (4)

Therefore su(4) = k ⊕ p is a Cartan decomposition, and any
U ∈ S U(4) can be decomposed as

U = k1Ak2 = k1 exp{ i
2

(c1σ
1
xσ

2
x + c2σ

1
yσ

2
y + c3σ

1
zσ

2
z )}k2, (5)

where k1, k2 ∈ S U(2) ⊗ S U(2), and c1, c2, c3 ∈ R.
Our basic control strategy to generate any arbitrary two-

qubit operation is to separate the implementation of one-
and two-qubit gates. To explain this idea, we need to in-
troduce the notion of local equivalence. Two unitary trans-
formations U, U1 ∈ S U(4) are called local equivalent if
they differ only by local operations: U = k1U1k2, where k1,
k2 ∈ S U(2) ⊗ S U(2) are local gates. We denote this equiv-
alence relation as U ∼ U1, and the equivalence class of U
as [U]. It can be easily proved that this local equivalence
relation defines an equivalence class on the whole space of
all the two-qubit quantum operations. Now remember we as-
sume all the 1-qubit gate can be implemented. Therefore, to
implement a two-qubit gate U, we only need to implement
a gate U1 that is locally equivalent to U. Once we obtain
U1, we can just add on those two local gates k1 and k2 to
achieve U exactly. Therefore, our original control problem
on the unitary Lie group becomes a control problem on the
local equivalence classes.
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Before we can solve the control on the equivalence classes,
we need to answer the following two questions:

(1) Given two gates U and U1, how to determine whether
or not they are locally equivalent?

(2) What is the structure of local equivalence classes?
The first question was answered by Makhlin in [13], where a
procedure was given to calculate two local invariants G1 and
G2. The assertion is that if two-qubit operations U and U1 are
locally equivalent to each other if and only if they have iden-
tically the same local invariants. We include this procedure
here for completeness. For a given two-qubit gate U, define
UB = Q†UQ, where

Q =
1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 i

0 i 1 0

0 i −1 0

1 0 0 −i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (6)

Let m = UT
B UB. Then the local invariants are given by

G1 =
trace2 (

m(U)
)

16 det U
, (7)

G2 =
trace2 (

m(U)
) − trace

(
m2(U)

)

4 det U
. (8)

In the following table, we list the local invariants for several
commonly-used two-qubit gates.

G1 G2

Local gates 1 3

CNOT 0 1

C(Z) 0 1

SWAP −1 −3

It is evident that CNOT and Controlled-Z (referred as C(Z))
are locally equivalent because they possess identical local in-
variants G1 = 0 and G2 = 1.

To answer the second question, we insert Cartan decom-
position (5) into Makhlin’s procedure and obtain that [14]

G1 = cos2 c1 cos2 c2 cos2 c3 − sin2 c1 sin2 c2 sin2 c3

+
i
4

sin 2c1 sin 2c2 sin 2c3,

G2 = 4 cos2 c1 cos2 c2 cos2 c3 − 4 sin2 c1 sin2 c2 sin2 c3

− cos 2c1 cos 2c2 cos 2c3. (9)

Eq. (9) unravels the relation between the local invariants G1

and G2 and the coordinates [c1, c2, c3] of a two-qubit gate.
From this relation, given a triplet [c1, c2, c3], we can easily
compute the local invariants; and vice versa, from a given
pair of local invariants G1 and G2, we can also find the corre-
sponding triplet. The real space R3 thus provides a geomet-
ric representation of local equivalence classes. However, this
representation is not unique, as we can find multiple points in

R
3 that correspond to the same local equivalence class. We

need to remove the redundancy in this representation.
After examining eq. (9), we have the following observa-

tions:

(1) Periodicity: [c1, c2, c3] ∼ [c1+m1π, c2+m2π, c3+m3π];

(2) Symmetry:

Permutation: [c1, c2, c3] ∼ [c3, c2, c1];
Sign flips: [c1, c2, c3] ∼ [−c1, c2,−c3].

From periodicity, we can cut down the redundancy and vi-
sualize the geometric structure of the two-qubit gates as a
cube with side length π in R3 as shown in Figure 1(a). This
provides an equivalent representation of the points on the 3-
Torus, since T 3 � R3/Z3. Every point in this cube corre-
sponds to a local equivalence class, yet different points in the
cube may belong to the same local equivalence class.

To further remove the redundancy, we notice that the sym-
metric points correspond to those points that are reflections of
each other with respect to some diagonal planes in the cube.
We can cut along these diagonal planes, and the resulting two
pieces contain the same local equivalence classes. We can
thus discard one of them. After this procedure, we obtain
a tetrahedral representation of local equivalence classes of
two-qubit as shown in Figure 1(b). Note that for any point
[c1, c2, 0] on the base of this tetrahedron, its mirror image
with respect to the line LA2, which is [π − c1, c2, 0], corre-
sponds to the same local equivalence class. Therefore, with
the caution that the basal areas LA2A1 and LA2O are identi-
fied together, we obtain a geometric representation of local
equivalence classes. This is also called Weyl chamber in the
Lie group representation theory [12].

In Figure 1(b), the local gates correspond to the points O
and A1, and CNOT is L, SWAP is A3, and Controlled-U gates
are the line OL.

2 Steering in the tetrahedron

With the geometric representation of local equivalence
classes, we can use the steering in the tetrahedron to generate
any arbitrary two-qubit operation.

The general idea is as follows. For a given quantum system
whose dynamics is determined by the Schrödinger equation
in eq. (2), control field v will generate a trajectory in the state

c1

c2

c3

A1

O

A3

L

A1

O

A2

(a) (b)

�3

�2

�1

Figure 1 Tetrahedral representation of nonlocal two-qubit operations. (a)
Cubic representation. (b) Tetrahedron representation: every point corre-
sponds to a local equivalence class of two-qubit operations.
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space U(4). At any time instant t, U(t) is a point on that tra-
jectory. From Makhlin’s procedure, we can calculate local
invariants from U(t) as G1(U(t)) and G2(U(t)). Then from
eq. (9), we can locate a point [c1(t), c2(t), c3(t)] in the tetrahe-
dron. As time evolves, we can obtain a continuous trajectory.
Now if our control target is to generate a quantum operation,
say CNOT, we can first find the control field v that drives the
trajectory in the tetrahedron to hit the point L. Since we have
implemented a gate that is locally equivalent to CNOT, what
is left is just to add on two local gates that we assumed can
be implemented readily. This is the idea of steering in the
tetrahedron.

We illustrate the idea by the following two examples.

Example 2.1. Consider a purely nonlocal Hamiltonian

H = −1
2

(cxσ
1
xσ

2
x + cyσ

1
yσ

2
y + czσ

1
zσ

2
z ). (10)

For constant control fields cx, cy, and cz, the quantum opera-
tions generated by this Hamiltonian can be written as

U(t) = exp(−iHt) = exp
i
2

(cxtσ1
xσ

2
x + cytσ1

yσ
2
y + cztσ

1
zσ

2
z ).

It thus yields a trajectory [cx, cy, cz]t in the tetrahedron, which
is a straight line. We can apply certain gate from a finite group
of local operations (dubbed as Weyl group [14]) to change the
evolution direction of this trajectory. This indeed corresponds
to the reflection with respect to some diagonal plane of the
cube in Figure 1(a). Then we can obtain new directions such
as [cx,−cy,−cz]t, [−cx, cy,−cz]t, and [cx, cz, cy]t. Piecing to-
gether two such trajectories, we can get a quantum operation,
e.g. ,

e
i
2σ

1
xπ · exp(−iHt2) · e− i

2σ
1
xπ · exp(−iHt1),

whose endpoint can be written as

[cx,−cy,−cz]t2 + [cx, cy, cz]t1.

We can thus achieve anywhere in the plane OA1A2. If chang-
ing direction twice, we can arrive any arbitrary point in the
tetrahedron.

We then have the following result [14].

Proposition 2.2. For a pure nonlocal Hamiltonian, the fol-
lowing quantum circuit can implement any two-qubit gate.

k0 e−iHt1 k1 e−iHt2 k2 e−iHt3 k3

Example 2.3. Consider an isotropic exchange with local
terms

H = (g1 ·−→σ)⊗ I+ I⊗ (g2 ·−→σ)+ J(σ1
xσ

2
x+σ

1
yσ

2
y +σ

1
zσ

2
z ), (11)

where g1, g2 ∈ R3, and −→σ = (σx, σy, σz). This Hamil-
tonian can be used to describe, e.g. , spin-coupled quantum
dots [15, 16]. We can tune the single-qubit control fields g1

and g2 to be parallel, that is, g1 = αg2, where α characterizes
the ratio. In this case, the tetrahedral trajectory is given by

c1(t) = 2Jt,

c2(t) = c3(t) =

∣
∣
∣∣
∣
∣
sin−1

(
2J
ω

sinωt

)∣∣
∣∣
∣
∣
,

whereω =
√

(||g1|| − ||g2||)2 + 4J2. We can implement CNOT
by choosing 2Jt = π

2 and ωt = kπ. One particular choice of
control parameters can be given as

k = 4, t = 2.5π, g1 = [4, 4, 4], g2 = [3, 3, 3]. (12)

The corresponding tetrahedral trajectory is shown in Figure 2.

3 Quantum circuit construction

In this section we consider the problem of generating any
two-qubit operation from a given two-qubit gate Ug and local
gates. This is closely related to the control problem discussed
earlier, and can be another example illustrating the applica-
tion of tetrahedral representation of nonlocal gates.

The motivation is that in many physical situations the
Hamiltonian is unknown; or the Hamiltonian is known, but
it can be switched on for only a fixed amount of time, e.g. , in
encoded quantum systems [17]. Under these circumstances,
we are given a specific two-qubit operation, and we want
to construct any arbitrary operation from this given gate to-
gether with local gates.

We now review some results from [18]. The first step in
the construction is to implement a Controlled-U gate from
two applications of Ug:

Ug
k12

k11
Ug

Recall that the Controlled-U gates are located on the line
OA1. We can then use the Controlled-U as a basic building
block to generate any desired two-qubit gate. Interested read-
ers may find the detailed analytical procedure in [18].

c1

c2

c3
A3

A1
A2

O

L

Figure 2 (Color online) Tetrahedral trajectory generated by the Hamilto-
nian in eq. (11) with parameters (12).
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One particularly interesting problem is the efficiency of
Controlled-U, that is, for a given Controlled-U gate Ug =

eγ
i
2σ

1
xσ

2
x , how many applications do we need to construct any

arbitrary two-qubit operation? By Kostant’s convexity the-
orem, we can prove that the minimum number required is
given by

nmin =

⌈
3π
2γ

⌉

.

In Figure 3, we plot the minimum upper bound for Ug to con-
struct any two-qubit gate as a function of γ. It is clear that the
most efficient Controlled-U is when γ = π

2 , which is none
other than the CNOT gate. Analytical results can be obtained
to construct a universal quantum circuit from CNOT by three
applications. Probing further, we find that DCNOT given be-
low is equally efficient

exp
{ i

2

(
π

2
σ1

xσ
2
x +

π

2
σ1

yσ
2
y

)}

,

as it can generate any two-qubit gate by three applications as
well.

Note that DCNOT is not a Controlled-U gate, which leads
us to wonder what is the most efficient universal gate among
all the two-qubit operations. The answer is a gate that we
named as the B gate:

B = exp
{ i

2

(
π

2
σ1

xσ
2
x +

π

4
σ1

yσ
2
y

)}

.

The significance of the B gate is that with only two applica-
tions it can generate any two-qubit operation:

[c1 , c2 , c3] ∼ B
ec1

i
2 σy

eβ2
i
2 σz · eβ1

i
2 σy · eβ2

i
2 σz

B

where the parameters β1 and β2 are determined by c2 and c3

in a closed-form solution.

0 N1 N M NN MM
0

2

4

6

8

10

12

14

r

Figure 3 Minimum upper bound of applications required for Ug =

eγ
i
2 σ

1
xσ

2
x to construct an arbitrary two-qubit gate.

4 Summary

In this paper we reviewed the geometric method in the control
of quantum mechanical system. We discussed that a generic
open-loop state transfer control is equivalent to the univer-
sality problem in quantum information processing. We pre-
sented a geometric representation of two-qubit quantum op-
erations, and showed that a control problem on two-qubit sys-
tem can be converted into a steering problem in a tetrahedron.
Two physical examples are given to illustrate this approach.
We then studied analytic solutions to generate quantum op-
erations from a generic quantum gate, and investigated the
efficiency in the construction of universal quantum circuit.
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