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Abstract We show that the entanglement dynamics for the pure state of a closed two-
qubit system is part of a 10-dimensional complex linear differential equation defined
on a supersphere, and the coefficients therein are completely determined by the sys-
tem Hamiltonian. We apply the result to two physical examples of Josephson junction
qubits and exchange Hamiltonians, deriving analytic solutions for the time evolution
of entanglement. The Hamiltonian coefficients determine whether the entanglement is
periodic. These results allow of investigating how to generate and manipulate entan-
glements efficiently, which are required by both quantum computation and quantum
communication.

Keywords Quantum entanglement · Entanglement dynamics · Two-qubit system ·
Dynamical equation

1 Introduction

Entanglement is one of the most striking quantum mechanical properties that plays a
central role in quantum computation and quantum communication [1]. It is a major
resource used in many applications such as quantum algorithm, teleportation, and

This work is sponsored by Innovation Program of Shanghai Municipal Education Commission under
Grant No. 11ZZ20, Shanghai Pujiang Program under Grant No. 11PJ1405800, NSFC under Grant No.
61174086, and State Key Lab of Advanced Optical Communication Systems and Networks, SJTU, China.

J. Zhang (B)
Joint Institute of UMich-SJTU, Shanghai Jiao Tong University, Shanghai, China
e-mail: zhangjun12@sjtu.edu.cn

J. Zhang
Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China

123



J. Zhang

quantum cryptography. In recent years, there are several problems receiving considerable
research interests, including dynamical evolution of entanglement where the objective
is to find out how the entanglement of a quantum system evolves as time elapses [2,3].
This is especially important to quantum information processing that relies primarily
upon the generation, manipulation, and detection of quantum entanglement.

Many of the current researches on this topic focus on the entanglement decay or
production for an open quantum system interacting with the surrounding environment.
For example, Yu and Eberly [4–6] revealed that quantum entanglement influenced by
environmental noise can undergo a sudden death. In Ref. [7], Konrad et al. proved
a factorization law for bipartite system that describes entanglement evolutions with
a noisy channel. Ref. [8] studied the time evolution of entanglement of qubits inter-
acting with a common environment. Cui et al. [9] discussed the time evolution of
entanglement in bipartite systems and revealed that the entanglement sudden death
can appear in both open and closed systems and is dependent on the initial condition.
See Refs. [4–18] and the references therein for full details.

Here we consider a different problem: for a given closed two-qubit quantum system
with Hamiltonian H , what are dynamics characterized by differential equations that
governs the time evolution of its pure state entanglement? To our knowledge, this is a
basic yet to be answered question. In many applications of quantum computation and
quantum communication, often desired is to efficiently generate entanglement from
some initial state. Therefore, it is of particular value to investigate how the entangle-
ment of a qubit system evolves as a function of time so as to analyze the capability of
a quantum system to produce and further manipulate quantum entanglement. More-
over, it will also help us to have a deeper understanding of the fundamentals of various
entanglement phenomena such as entanglement sudden death and rebirth [6].

We will show that for a closed two-qubit system, its pure state entanglement dynam-
ics can be described by part of a 10-dimensional complex differential equation. All the
coefficients in this equation are determined by the Hamiltonian. For specific two-qubit
systems of Josephson junction and exchange Hamiltonians, we will derive closed-form
solutions for the time evolution of entanglement.

2 Backgrounds

First we briefly introduce some mathematical backgrounds (See Ref. [19] for details).
The quantum operations for a two-qubit system are defined on the special unitary Lie
group SU (4). The associated Lie algebra is denoted as su(4) and has a direct sum
decomposition su(4) = p ⊕ k, where

k = span
i

2

{
σ 1

x , σ
1
y , σ

1
z , σ

2
x , σ

2
y , σ

2
z

}
,

p = span
i

2
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σ 1

x σ
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x , σ
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x σ
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y , σ

1
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σ 1
y σ

2
z , σ

1
z σ

2
x , σ

1
z σ

2
y , σ

1
z σ

2
z

}
.

(1)
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Here σx , σy , and σz are the Pauli matrices, and σ 1
ασ

2
β = σα⊗σβ . The set k contains the

local terms, whereas p has the nonlocal or coupling terms. An arbitrary Hamiltonian
for two-qubit system can be represented by a linear combination of the basis matrices
in Eq. (1) as

H = a1

2
σ 1

x + a2

2
σ 1

y + a3

2
σ 1

z + a4

2
σ 2

x + a5

2
σ 2

y + a6

2
σ 2

z

+a7

2
σ 1

x σ
2
x + a8

2
σ 1

x σ
2
y + a9

2
σ 1

x σ
2
z + a10

2
σ 1

y σ
2
x + a11

2
σ 1

y σ
2
y

+ a12

2
σ 1

y σ
2
z + a13

2
σ 1

z σ
2
x + a14

2
σ 1

z σ
2
y + a15

2
σ 1

z σ
2
z , (2)

where ak’s are all real numbers. Denote the state of the quantum system as ψ . The
dynamics of ψ is determined by the Schrödinger equation:

ψ̇ = i Hψ (3)

with initial state ψ(t0), where t0 is the initial time.
We use the concurrence of ψ as an entanglement measure, which is defined in

Refs. [20,21] as

C(ψ) = | Entψ |,

where Entψ = ψT σ 1
y σ

2
y ψ . It can be shown that the concurrence C(ψ) is invariant

under the local operations and it ranges from 0 to 1. The condition C(ψ) = 0 holds
true if and only ifψ is an unentangled state. In the case when C(ψ) achieves maximal
value 1, such ψ is called a maximally entangled state. The sufficient and necessary
condition for ψ to be maximally entangled were analyzed in Ref. [19].

3 Entanglement dynamics

The concurrence C(ψ) defines a measure of entanglement for the two-qubit pure state
ψ . In what follows, we will derive the dynamics of Entψ , that is, the differential
equation that governs its time evolution. To this end, take derivative of Entψ :

d

dt
Entψ = ψ̇T σ 1

y σ
2
yψ + ψT σ 1

y σ
2
y ψ̇

= iψT
(

H T σ 1
y σ

2
y + σ 1

y σ
2
y H

)
ψ

= iψT (
a11 I − a15σ

1
x σ

2
x − a7σ

1
z σ

2
z − a8iσ 1

z + a12iσ 2
x

+a13σ
1
x σ

2
z + a14iσ 1

x + a9σ
1
z σ

2
x − a10iσ 2

z

)
ψ. (4)

The derivative of Entψ depends on the terms such as ψTψ and ψT σ 1
x σ

2
xψ in Eq. (4).

To get the complete dynamics of Entψ , we need to find the derivatives of all these
terms. For the ease of notation, define
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xk = ψT Pkψ, k = 1, . . . , 10, (5)

where

P1 = σ 1
y σ

2
y , P2 = I, P3 = σ 1

x σ
2
x ,

P4 = σ 1
z σ

2
z , P5 = iσ 1

z , P6 = iσ 2
x ,

P7 = σ 1
x σ

2
z , P8 = iσ 1

x , P9 = σ 1
z σ

2
x , P10 = iσ 2

z .

(6)

It is clear that x1 = Entψ , and Eq. (4) can be rewritten as

ẋ1 = i(a11x2 − a15x3 − a7x4 − a8x5 + a12x6

+ a13x7 + a14x8 + a9x9 − a10x10).

For the other xk’s, we can similarly obtain

ẋk = ψ̇T Pkψ + ψT Pkψ̇ = iψT (H T Pk + Pk H)ψ. (7)

One salient feature of the matrices {Pj }10
j=1 defined in Eq. (6) is that any matrix in

the form of H T Pk + Pk H can be represented by a linear combination of all these
matrices. However, they do not form a subalgebra of su(4). Now, ẋk in Eq. (7) can be
written as a linear combination of all the x j ’s.

Let x = [x1, . . . , x10]T . After some derivations, we obtain that x satisfies the
following linear differential equation

ẋ = i Ax, (8)

where

A =
⎡
⎢⎣

A11 A12 A13

A†
12 A22 A23

A†
13 A†

23 A33

⎤
⎥⎦ (9)

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 a11 −a15 −a7 −a8 a12 a13 a14 a9 −a10
a11 0 a7 a15 −ia3 −ia4 a9 −ia1 a13 −ia6

−a15 a7 0 −a11 a10 −ia1 ia5 −ia4 ia2 a8
−a7 a15 −a11 0 −ia6 −a14 −ia2 −a12 −ia5 −ia3

−a8 ia3 a10 ia6 0 a13 a12 −ia2 ia4 a15
a12 ia4 ia1 −a14 a13 0 −a8 a7 ia3 ia5
a13 a9 −ia5 ia2 a12 −a8 0 −ia6 a11 −ia1

a14 ia1 ia4 −a12 ia2 a7 ia6 0 −a10 a9
a9 a13 −ia2 ia5 −ia4 −ia3 a11 −a10 0 a14

−a10 ia6 a8 ia3 a15 −ia5 ia1 a9 a14 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (10)

The block matrices Ai j ’s in Eq. (9) have a conforming partition as those in Eq. (10). The
elements in the k-th row of A are exactly those coefficients to represent H T Pk + Pk H
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as a linear combination of {Pj }10
j=1. Equations (8) and (9) reveal that the dynamics

for pure state entanglement of a closed two-qubit system is part of a 10-dimensional
complex linear differential equations. We can also split the real and imaginary parts
of x to get a real differential equation with dimension 20. This is the key result of this
paper.

Note that the matrix A is Hermitian, i.e., A = A†. Then,

d

dt
x†x = ẋ†x + x† ẋ = −i x† A†x + x†i Ax = 0,

which yields that

‖x(t)‖2 = x†(t)x(t) = x†(t0)x(t0),

for all t ≥ t0. The norm of x(t) is thus conserved along the trajectory of the Schröding-
er equation (3). We now show that this conserved quantity is 2. Let the initial state of
ψ be

ψ(t0) = [ψ1 + iψ2, ψ3 + iψ4, ψ5 + iψ6, ψ7 + iψ8]T , (11)

where ψl ’s are real numbers and satisfy
∑8

l=1 ψ
2
l = 1. Let the initial condition of xk

be

xk(t0) = pk + iqk, (12)

i.e., pk and qk are the real and imaginary parts of xk(t0), respectively. Substituting
Eq. (11) into Eq. (5), we can represent pk and qk in terms of ψl ’s as

p1 = 2(ψ3ψ5 − ψ4ψ6 − ψ1ψ7 + ψ2ψ8),

p2 = ψ2
1 − ψ2

2 + ψ2
3 − ψ2

4 + ψ2
5 − ψ2

6 + ψ2
7 − ψ2

8 ,

p3 = 2(ψ3ψ5 − ψ4ψ6 + ψ1ψ7 − ψ2ψ8),

p4 = ψ2
1 − ψ2

2 − ψ2
3 + ψ2

4 − ψ2
5 + ψ2

6 + ψ2
7 − ψ2

8 ,

p5 = 2(−ψ1ψ2 − ψ3ψ4 + ψ5ψ6 + ψ7ψ8),

p6 = 2(−ψ2ψ3 − ψ1ψ4 − ψ6ψ7 − ψ5ψ8),

p7 = 2(ψ1ψ5 − ψ2ψ6 − ψ3ψ7 + ψ4ψ8),

p8 = 2(−ψ2ψ5 − ψ1ψ6 − ψ4ψ7 − ψ3ψ8),

p9 = 2(ψ1ψ3 − ψ2ψ4 − ψ5ψ7 + ψ6ψ8),

p10 = 2(−ψ1ψ2 + ψ3ψ4 − ψ5ψ6 + ψ7ψ8),

(13)
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and

q1 = 2(ψ4ψ5 + ψ3ψ6 − ψ2ψ7 − ψ1ψ8),

q2 = 2(ψ1ψ2 + ψ3ψ4 + ψ5ψ6 + ψ7ψ8),

q3 = 2(ψ4ψ5 + ψ3ψ6 + ψ2ψ7 + ψ1ψ8),

q4 = 2(ψ1ψ2 − ψ3ψ4 − ψ5ψ6 + ψ7ψ8),

q5 = ψ2
1 − ψ2

2 + ψ2
3 − ψ2

4 − ψ2
5 + ψ2

6 − ψ2
7 + ψ2

8 ,

q6 = 2(ψ1ψ3 − ψ2ψ4 + ψ5ψ7 − ψ6ψ8),

q7 = 2(ψ2ψ5 + ψ1ψ6 − ψ4ψ7 − ψ3ψ8),

q8 = 2(ψ1ψ5 − ψ2ψ6 + ψ3ψ7 − ψ4ψ8),

q9 = 2(ψ2ψ3 + ψ1ψ4 − ψ6ψ7 − ψ5ψ8),

q10 = ψ2
1 − ψ2

2 − ψ2
3 + ψ2

4 + ψ2
5 − ψ2

6 − ψ2
7 + ψ2

8 .

(14)

Proceeding further, we have

‖x(t)‖ =
√

x†(t0)x(t0) =
√√√√ 10∑

k=1

(
p2

k + q2
k

) = 2
8∑

l=1

ψ2
l = 2.

Therefore, the dynamics of Eq. (8) is defined on a supersphere with radius 2. At this
point, the physical interpretation of this quantity remains unclear to us.

For a general Hamiltonian in Eq. (2), there exists a local operation k ∈ SU (2) ⊗
SU (2) such that all the coupling terms in k Hk† vanish except σ 1

x σ
2
x , σ 1

y σ
2
y , and

σ 1
z σ

2
z [19]:

k Hk† = a1

2
σ 1

x + a2

2
σ 1

y + a3

2
σ 1

z + a4

2
σ 2

x + a5

2
σ 2

y + a6

2
σ 2

z

+ a7

2
σ 1

x σ
2
x + a11

2
σ 1

y σ
2
y + a15

2
σ 1

z σ
2
z . (15)

By an abuse of notation, we again use ak to denote the coefficients in the right hand
side of Eq. (15). Because

ei Htψ(t0) = k†(eik Hk†
)kψ(t0)

and the local operation k† does not change the entanglement of quantum state, the
function Entψ generated by H with initial state ψ(t0) is the same as that by k Hk†

with kψ(t0). We then only need to study a simplified differential equation, where
all the entries in A corresponding to cross-coupling terms are 0. In particular, two
diagonal blocks A22 and A33 in Eq. (9) both become zero matrices.

123



Entanglement dynamics of two-qubit pure state

4 Physical examples

To illustrate the ideas, we now study the dynamic equation of pure state entanglement
for two physical examples, namely, charge-coupled Josephson junction and exchange
Hamiltonians. We focus on the Hamiltonians rather than physical implementation
details, because the Hamiltonian completely determines the entanglement dynamics.

First consider a charge-coupled Josephson junction qubit system discussed in
Ref. [22]. The Hamiltonian is given by

H1 = − E J

2

(
σ 1

x + σ 2
x

)
+ E2

J

EL
σ 1

y σ
2
y , (16)

which contains both local and nonlocal terms. Then a1 = a4 = −E J and a11 =
2E2

J /EL . Setting all the other ak’s to 0 in Eq. (9), we obtain a reduced order differen-
tial equation:

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4
ẋ6
ẋ8

⎤
⎥⎥⎥⎥⎥⎥⎦

= i

⎡
⎢⎢⎢⎢⎢⎢⎣

0 a11 0 0 0 0
a11 0 0 0 −ia1 −ia1
0 0 0 −a11 −ia1 −ia1

0 0 −a11 0 0 0
0 ia1 ia1 0 0 0
0 ia1 ia1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
x6
x8

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Let α = E J /EL . Then a11 = −2αa1. Solving the differential equation above yields

Entψ(t) = x1(t) = r1(t)+ is1(t),

where

r1(t) = (p1 − p4)+ (q6 + q8)α

2(1 + α2)
+ (q2 + q3)α

2
√

1 + α2
sin

√
1 + α2 E J t

+ (p1 − p4)α − (q6 + q8)

2(1 + α2)
α cos

√
1 + α2 E J t

+ (p1 + p4)

2
cosαE J t + (q2 − q3)

2
sin αE J t, (17)

and

s1(t) = (q1 − q4)− (p6 + p8)α

2(1 + α2)
− (p2 + p3)α

2
√

1 + α2
sin

√
1 + α2 E J t

+ (q1 − q4)α + (p6 + p8)

2(1 + α2)
α cos

√
1 + α2 E J t

+ (q1 + q4)

2
cosαE J t − (p2 − p3)

2
sin αE J t. (18)
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Here pk’s and qk’s are defined in Eqs. (13) and (14). Hence,

C(ψ) =
√

r2
1 (t)+ s2

1 (t).

The entanglement evolution has two frequency components
√

1 + α2 E J and αE J .
When the ratio between these two values,

√
1 + α2/α, is a rational number, entangle-

ment is periodic; otherwise, it is aperiodic.
Next let us consider two-qubit exchange Hamiltonian H2 = 1

2 (a7σ
1
x σ

2
x +a11σ

1
y σ

2
y +

a15σ
1
z σ

2
z ). In this case, all the local terms vanish, i.e., a1 = 0, …, a6 = 0. For the

block matrices in Eq. (9), we have A12 = A13 = 0. Therefore, the dynamics of
xu = [x1, x2, x3, x4]T is decoupled from that of [x5, . . . , x10]T , which leads to

ẋu = i A11xu, (19)

or more explicitly,

⎡
⎢⎢⎣

ẋ1
ẋ2
ẋ3
ẋ4

⎤
⎥⎥⎦ = i

⎡
⎢⎢⎣

0 a11 −a15 −a7
a11 0 a7 a15

−a15 a7 0 −a11
−a7 a15 −a11 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x1
x2
x3
x4

⎤
⎥⎥⎦. (20)

Because A11 is also a Hermitian (or symmetric indeed) matrix, the norm of xu is also
conserved. Let

T = 1

2

⎡
⎢⎢⎣

−1 1 1 1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤
⎥⎥⎦.

The matrix A11 can be diagonalized as

T −1 A11T = diag{a7 − a11 + a15, −a7 − a11 − a15,

− a7 + a11 + a15, a7 + a11 − a15}. (21)

The entanglement evolution therefore has four frequency components as given in
Eq. (21). We can obtain the same diagonal matrix if transforming the Hamiltonian H2
into the Bell basis. We then have

Entψ(t) = x1(t) =
(

r T (t)+ isT (t)
)

l,
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where l = [p1, p2, p3, p4, q1, q2, q3, q4]T , and

r T (t) = [ cos a7t cos a11t cos a15t, sin a7t cos a11t sin a15t,

− sin a7t sin a11t cos a15t, − cos a7t sin a11t sin a15t,

sin a7t sin a11t sin a15t, − cos a7t sin a11t cos a15t,

cos a7t cos a11t sin a15t, sin a7t cos a11t cos a15t],

sT (t) = [ sin a7t sin a11t sin a15t, cos a7t sin a11t cos a15t,

− cos a7t cos a11t sin a15t,− sin a7t cos a11t cos a15t,

cos a7t cos a11t cos a15t, sin a7t cos a11t sin a15t,

− sin a7t sin a11t cos a15t, − cos a7t sin a11t sin a15t].

Therefore,

C(ψ) =
√

lT
(
r(t)r T (t)+ s(t)sT (t)

)
l.

Examining the frequency components in Eq. (21), we know that if the pairwise ratios
between a7, a11, and a15 are all rational numbers, the entanglement measure is a
periodic function.

For specific exchange Hamiltonian, we can further simplify the entanglement
measure. For instance, for two-dimensional XY exchange Hamiltonian H3 = σ 1

x σ
2
x +

σ 1
y σ

2
y , we have

C2(ψ) = 1

4
((p2 − p4) sin 2t + (q1 + q3) cos 2t + q1 − q3)

2

+1

4
((q2 − q4) sin 2t − (p1 + p3) cos 2t − p1 + p3)

2 .

For Ising Hamiltonian H4 = σ 1
x σ

2
x , we have

C(ψ) =
√
(p4 sin t − q1 cos t)2 + (q4 sin t + p1 cos t)2.

It is evident that in these two cases, the concurrence measure C(ψ) are both periodic
functions.

5 Conclusions

In summary, we have derived the dynamical equation that governs the time evolu-
tion of pure state entanglement for closed two-qubit systems. This turns out to be a
10-dimensional differential equation defined on a supersphere. We applied the result to
investigate two physical applications, namely, Josephson junction and exchange Ham-
iltonians. For both cases, we derived analytic solutions for the concurrence measure
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of entanglement. The coefficients in the Hamiltonian completely determine whether
or not the entanglement is a periodic function. We expect to extend the result to mixed
state and open systems in the future.
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