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Signal Estimation for Vehicle
Body Accelerations Using
Piecewise Linear System
Identification in the Frequency
Domain
In this work, we investigate a signal estimation problem which is common and critical for
durability design of vehicle bodies. The relation between the frequency responses of
accelerometers is the target to model so that the ones of easy-to-measure accelerometers
can estimate the responses of hard-to-measure accelerometers. A piecewise linear fre-
quency-domain identification method relying on finite impulse response (FIR) models is
proposed and performed to tackle the nonlinearity issue in the signal estimation problems:
first, the interesting frequency range is segmented into three subranges which are clearly
identified by peak histograms of frequency signals. Then, FIR models which provide a satis-
factory description of the system are constructed to estimate the frequency responses of the
interesting signals at subranges, one for each. The performance of the proposed approach
is validated by using real-world data under multiple working conditions. The results show
that the proposed method has a good estimation accuracy, and it brings the benefit that the
number of accelerometers can be significantly reduced during the durability design of
vehicle bodies. [DOI: 10.1115/1.4054306]

Keywords: data-driven engineering, model-based systems engineering, process modeling
for engineering applications, qualification, verification and validation of computational
models

1 Introduction
When designing a new vehicle, original equipment manufactur-

ers (OEMs) perform direct measurements of vehicle body accelera-
tions during so-called road load data acquisition (RLDA) testing
campaigns during which prototype vehicles are driven on proving
grounds or public roads [1–3]. The data of vehicle body accelera-
tions collected from RLDA testing campaigns contain durability
information which is valuable in the laboratory for the shaker
test. With the data of vehicle body accelerations and the shaker
test, the durability design of the vehicle body can be verified if
the vehicle body under test is capable of withstanding the antici-
pated environmental vibration throughout its service life [4].
During RLDA testing campaigns, multiple prototype vehicles are

needed to acquire data from a range of different road types [2].
However, two critical issues make the RLDA testing campaigns
quite restrictive:

(i) The cost of these high-performance accelerometers can be
very high, and thus the automobile manufacturers may not
be able or willing to equip multiple prototype vehicles with
these accelerometers.

(ii) Deployment, maintenance, and repairing of accelerometers
could take much time and effort.

Soft sensors which are inferential models that use easy-to-
measure variables to estimate hard-to-measure variables have
been reported to deliver similar information as their hardware coun-
terparts [5–7]. Note that the data of hard-to-measure variables are
usually not available in most times (e.g., the online estimation
process) other than a short of time (e.g., the offline training
process). Two classes of soft sensors, namely, model-driven
(most commonly based on first-principle models) and data-driven
(based on black-box models developed from the data), are distin-
guished at a very general level. Due to the complex structures of
vehicles [8–10], highly accurate first-principle models are usually
difficult to obtain or are not available for practical applications [11].
Black-box system identification approaches have proven to be

effective in control design [12,13], prediction [14,15], simulation
[16,17], and diagnosis/fault detection of dynamic systems [18,19]
and have witnessed great success in these areas. To overcome the
vibration estimation issue for prototype vehicles, this work aims
to develop black-box models to connect different signals collected
from accelerometers such that some of them can be estimated by
others. As shown in Fig 1, the overall proposed procedure can be
divided into two stages:

(i) During the offline stage, one of the prototype vehicles is
equipped with all accelerometers to construct black-box
models from the responses of easy-to-measure accelerations
to the responses of hard-to-measure accelerations.
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(ii) During the online stage, only easy-to-measure accelerome-
ters are deployed on each prototype vehicle. The signals col-
lected from these easy-to-measure accelerometers at each
prototype vehicle are fed into the corresponding black-box
models to estimate the hard-to-measure signals.

The problem during the offline stage can be regarded as
sensor-to-sensor system identification problems which are less
typical ones in the system identification community [20–24].
In sensor-to-sensor problems, the true inputs of systems are
unknown. For example, the excitation from the road is unknown
when vehicles are driven under random working conditions. Trans-
missibilities are introduced to model the relation between the
signals collected from different sensors if the true systems can be
approximated by linear time invariant (LTI) systems [21–24].
Moreover, transmissibilities can be approximated by finite
impulse response (FIR) models that have been widely used in
recent years [25–28], given the following reasons [24,29,30]:

(i) FIR models are bounded-inputs bounded-output stable [31].
(ii) The computational cost and memory requirements for hard-

ware implementations of FIR models are low.
(iii) The process of model tuning is time-effective, and the size

of data sets required for identifying FIR parameters is

usually small, compared to other data-driven models, due
to their simple structures.

However, when it comes to estimate the responses at interesting
locations of vehicle bodies, the behaviors of vehicle systems are
nonlinear due to the complex structures of suspensions, tires, and
other components (the existence of the nonlinearity is also verified
in Sec. 4.3 in this work). For instance, the spring and damping
forces of suspension systems are nonlinear with respect to the defor-
mation of the spring, the relative velocity between the extremes of
the damper, the excitation amplitude, or the excitation frequency
[9,11].
On the other hand, the decisions on using the time or frequency-

domain system identification approaches may depend on choices on
the specific applications from a practical point of view. For certain
engineering applications, frequency-domain approaches can make
prefiltering, condensing large data sets, and combining experiments
easily implemented [32]. For example, when dealing with systems
having a fairly wide spread of time constants, large data sets have to
be collected in the time domain, while they can be condensed easily
by only considering a subset of the entire frequency range.
This work aims to construct high-accuracy black-box models

from the easy-to-measure accelerations to the hard-to-measure
accelerations such that easy-to-measure accelerations can estimate
the hard-to-measure accelerations in the frequency domain. A
piecewise linear system identification approach in the frequency
domain is proposed in order to overcome the nonlinearity issue:
the interesting frequency range is segmented into three subranges
in terms of peak histograms of all accelerations with three steps:
determining the noise level, selecting peaks, and segmenting the
interesting frequency range. Then noncausal FIR models which
provide a satisfactory description of the system at subranges are
developed, one for each. The proposed method is successfully val-
idated in the sense that the estimation accuracy is almost 90% for 14
hard-to-measure accelerations under 70 working conditions by
using only two easy-to-measure accelerometers. To the authors’
best knowledge, this work is the first one in signal estimation for
vibration of vehicle bodies in the frequency domain. It is believed
that using the proposed method with the real test data will facilitate
the durability design of vehicle bodies.
The rest of the paper is organized as follows. The problem state-

ment of estimating frequency responses of interesting accelerome-
ters is given in Sec. 2. Then, a nonparametric method for
segmentation of the frequency-domain range and a frequency-
domain identification method for noncausal FIR models are pre-
sented in Secs. 3 and 4, respectively. After that, the performance
and the results are shown in Sec. 5. Finally, some concluding
remarks are reported in Sec. 6.

2 Scenarios of the Black-Box Identification Problem
In this section, we introduce the black-box identification problem

for the vibration of the vehicle body and aims to develop and vali-
date the black-box models from easy-to-measure accelerations to
hard-to-measure accelerations.
Figures 1 and 2 show the locations of easy-to-measure and

hard-to-measure accelerometers on a sketch of a body frame (top
view) and a 3D body frame, respectively, and some accelerometers
are also shown in a real test vehicle (Fig. 3). Note that three-axis
XYZ accelerometers at the positions marked by “blue bullets” are
referred to as easy-to-measure accelerometers (six accelerations in
total). The other five accelerometers marked by “red bullets” are
hard-to-measure accelerometers, whose frequency signals are
aimed to be estimated. There are 14 hard-to-measure accelerations
in total, and accelerometer 4 measures only two accelerations in X
and Z directions. Both easy-to-measure and hard-to-measure accel-
erometers are deployed in the test vehicle.
Seventy different working conditions tested in this work can be

roughly classified into four categories shown in Table 1,
and several road profile examples are shown in Fig. 4. More than 4Fig. 2 The locations of vehicle body accelerometers

Fig. 1 The procedure at the (a) offline and (b) online stages
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× 104 data samples are collected for each working condition and the
sampling rate is 512 Hz. For working conditions, such as the vehicle
being driven over a speed bump or a pothole, we carried out 8–10
experiments because the data length is short in each experiment
(approximately 5 × 103 data samples are collected for each experi-
ment). For other working conditions, such as the vehicle is driven
at the Belgium block road or smooth gravel road, we carried out
only 4–6 experiments because the data length is longer in each exper-
iment (approximately 1 × 104 data samples are collected for each
experiment).
The signals collected from accelerometers are time-domain ones,

and we transform them into frequency-domain ones for frequency-
domain system identification. The frequency resolution of the fre-
quency data is approximately at the range from 0.02 Hz to 0.1 Hz.
Based on the authors’ prior knowledge, the possible interesting

frequency range is from 0 Hz to 80 Hz and the signals above this
range are noises for this specific problem.
The historical data collected under different working conditions

are split into two parts: training data and validation data, which
will be elaborated in Sec. 5.3. The black-box models describing
the relationship between the responses of easy-to-measure

accelerations and hard-to-measure accelerations in the frequency
domain are constructed using the training data. The constructed
models are validated by evaluating the estimation of hard-to-measure
accelerations using the validation data. Note that in this work the val-
idation is conducted by a single test vehicle, which is an important and
necessary step for the validation by multiple test vehicles.

3 Segmentation of the Range in the Frequency Domain
As mentioned in the Introduction, the behavior of the vehicle

system could be nonlinear. In this work, we assume that the relation
between two subsets of vehicle body accelerations can be approxi-
mately represented by piecewise FIR models in the frequency
domain. Thus, we propose a nonparametric method to segment
the interesting frequency range into several subranges such that
FIR models can be constructed over each small subrange. The seg-
mentation is performed in the following three steps:
Determine the noise level in the frequency range from 0 Hz to

80 Hz: The noise may come from two aspects: the measurement
noise from accelerometers and the noise from the vehicle itself.
Note that the accelerometers in this work are high precision ones
and thus the measurement noise of accelerations are assumed to
be small enough which can be neglected. Here the noise from the
vehicle itself mainly refers to the engine noise which is varying
with respect to the vehicle speed. Given an arbitrary frequency
response X( f0:80), where f0:80 denotes the frequency range from
0 Hz to 80 Hz, the noise level is determined as follows. We itera-
tively go through the following three substeps:

(i) Calculate the mean of the magnitudes of the frequency com-
ponents in the frequency range from 0 Hz to 80 Hz, where
the mean is denoted by |X( f0:80)|ave.

(ii) Remove the frequency components whose magnitudes are
larger than δ|X( f0:80)|ave from the current frequency
response, where δ is a threshold taken as 3∼5.

(iii) Refresh the frequency response after the removing process
above.

Table 1 Four categories of working conditions

Category Description

1. Driving straight on roads of random or periodic profiles such as
Belgium block, smooth gravel, and washboard roads at various
vehicle speeds

2. Driving over bumps, railway crosses, and potholes at various
vehicle speeds

3. Steering at various vehicle speeds
4. Braking on roads of random or periodic profiles at slight,

medium, and heavy levels

Fig. 4 Three examples of road profiles: (a) Belgium block road
profile, (b) smooth gravel road profile, and (c) pothole road
profile

Fig. 3 The locations of two hard-to-measure accelerometers
deployed in a test vehicle: (a) The hard-to-measure accelerome-
ter 5 is deployed near the drive shaft, (b) The hard-to-measure
accelerometer 4 is deployed near the driver seat
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The iteration stops until no magnitudes are larger than δ|X( f0:80)|ave.
Note that X( f0:80) is the updated frequency response after the itera-
tion stops. At the end, |X( f0:80)|ave is the estimated noise level,
and the frequency components whose magnitudes are larger than
δ|X( f0:80)|ave are considered as informative frequency signals.
In order to validate the effectiveness of the proposed method for

estimating noise levels, we conduct two experiments:

(i) To measure the engine noise, the vehicle is driven on a
smooth road at the speed of 50 km h−1.

(ii) The vehicle is driven on a broken cement road at the speed of
50 km h−1.

The effectiveness of the estimation method is validated as follows:
we compare the estimated noise level driving on a broken cement
road and the measured noise driving on a smooth road. Two exam-
ples of the comparison are shown in Fig. 5. We can see that the esti-
mated noise level is close to the measured noise level. Thus, we
validate that the proposed estimation method can successfully
assess the noise level.
Remark 1. The noise is nonstationary and difficult to estimate. Here
we admit that the proposed algorithm is ad hoc. Nevertheless, the
approach is effective to some degree in real-world data. Developing
an algorithm theoretically to guarantee the estimates of the noise
level may become future works.
Select peaks at the frequency range from 0 Hz to 80 Hz: In order

to condense the informative frequency signals from the data sets, we
select peaks that represent informative signals at the frequency
range from 0 Hz to 80 Hz. Note that peaks refer to the frequency
signals that are maximum with a neighborhood of 1 Hz. For
instance, Fig. 6 shows the interesting peaks at the frequency
range from 0 Hz to 80 Hz. Let the threshold be δ= 4. Also, let
the frequency components whose magnitudes are larger than δ|
X( f0:80)|ave be informative signals. The signals marked by upward-
pointing triangles are the selected peaks. Note that the results are

similar when δ = 3 or 5, and we can conclude that the proposed
method can effectively select the main peaks that represent the
informative frequency components.
Determine and segment the frequency range from 0 Hz to 80 Hz

into subranges: Figure 7 shows the peak histograms of
easy-to-measure and hard-to-measure accelerations at the frequency
range from 0 Hz to 80 Hz, from which we can draw two
conclusions:

(i) From Fig. 7, we can observe that the number of peaks at the
frequency range from 50 Hz to 80 Hz is significantly less
than the one at the frequency range from 0 Hz to 50 Hz. The
reason behind this is that the signal from 50 Hz to 80 Hz con-
tains much noise (almost no peaks in this frequency range),
and hence the corresponding signal-to-noise ratio (SNR) in

Fig. 5 Two examples of the comparison between the estimated
noise level driving on a broken cement road and the measured
noise level driving on a smooth road at the same speed: (a) the
results of accelerometer 1 in Z direction, and (b) the results of
accelerometer 4 in Z direction

Fig. 6 Illustration of peaks in the frequency domain. Threshold δ
is taken as 4.

Fig. 7 Peak histograms at the frequency range from 0 Hz to
80 Hz with threshold δ=4. The data set consists of frequency
signals collected under 70 working conditions: (a) Peak histo-
gram of six easy-to-measure accelerations at the frequency
range from 0 Hz to 80 Hz, (b) Peak histogram of 14
hard-to-measure accelerations at the frequency range from
0 Hz to 80 Hz.
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this frequency range is much less than that in the frequency
range from 0 Hz to 50 Hz. This observation coincides with
the engineering experience in the field, where the signals
above 50 Hz are less interesting and usually not considered
in the vehicle durability design. Thus, we subsequently con-
sider the signal from 0 Hz to 50 Hz.

(ii) We observe that peaks approximately from 4 Hz to 8 Hz and
from 18 Hz to 22 Hz are smaller than those of their neighbor-
ing frequency ranges. On the other hand, we hope that the
splitting subranges used for constructing local FIR models
include as many peaks as possible, which indicates that the
data are informative. Thus, a reasonable choice is to split
the frequency range into ranges from 0 Hz to 6 Hz, 6 Hz to
20 Hz, and 20 Hz to 50 Hz.

Remark 2. We may further segment the frequency range into more
subranges. From our experiences on the real-world data, it has no
significant improvement on the fitting performance. Also, it may
need more training data in the identification of FIR models at
each subrange, and the computational cost would increase when
the frequency range is segmented into too many subranges.
Furthermore, we choose the working conditions in Table 1 for

constructing FIR models in the frequency domain. It is noted that
the SNRs of the interesting frequency ranges should be sufficient
under the chosen working conditions. The reason behind this is the
easy-to-measure variables that are corrupted by the noise (e.g., the
engine noise), which could degenerate the identification accuracy
of FIRmodels [25,29]. Thus, we construct the FIRmodels by choos-
ing the working conditions under which the frequency responses
contain as many high peaks as possible, such that the effect of the
noise corrupting the easy-to-measure variables can be reduced as
much as possible. Figure 8 shows the signals in the frequency
domain when the vehicle is driven under several typical working
conditions, from which we can see that the working conditions for
constructing the FIR models can be determined as follows:

(i) Working condition set W1: the working conditions under
which the driver of the test vehicle is braking or steering
are used for constructing the FIR model at the frequency
range from 0 Hz to 6 Hz.

(ii) Working condition set W2: the working conditions under
which the test vehicle is driven on roads with random or
periodic profiles, such as Belgium block and smooth
gravel roads, are used for constructing the FIR model at
the frequency range from 6 Hz to 20 Hz.

(iii) Working condition set W3: the working conditions under
which the test vehicle is driven on washboard road are
used for constructing the FIR model at the frequency
range from 20 Hz to 50 Hz.

Given three subranges and working condition sets above, three
different FIR models can be constructed, one for each, aiming at
providing a satisfactory description of the relation between the
easy-to-measure and hard-to-measure accelerations.

4 Identification of Piecewise Linear Finite Impulse
Response Models
In this section, we elaborate on the identification of noncausal

FIR models at subranges from 0 Hz to 6 Hz, 6 Hz to 20 Hz, and
20 Hz to 50 Hz. First, we consider a system identification method
for identifying multiple-inputs single-output (MISO) FIR models
in the frequency domain in Sec. 4.1. Without loss of generality,
14 hard-to-measure accelerations can be estimated independently.
Then, two practical considerations regarding to regularization and
merging multiple experimental data sets are taken into account in
Sec. 4.2. Finally, the piecewise linear FIR models are given in
Sec. 4.3.

4.1 Identification of Noncausal Finite Impulse Response
Models. Consider the system diagram of the vehicle vibration
system shown in Fig. 9. Let yI ∈ Rm denote easy-to-measure accel-
erations, an arbitrary hard-to-measure acceleration is denoted by

Fig. 8 The signals in the frequency domain when the vehicle is
driven under several typical working conditions: (a) Signals in
the frequency domain when the driver of test vehicle is steering.
The SNR is high at the frequency range from 0 Hz to 6 Hz,
(b) Signals in the frequency domain when the vehicle is driven
on the Belgium block road. The SNR is high at the frequency
range from 6 Hz to 20 Hz, and (c) Signals in the frequency
domain when the vehicle is driven on washboard road. The
SNR is high at the frequency range from 20 Hz to 50 Hz

Fig. 9 The system diagram of sensor-to-sensor problems,
where yI ∈ Rm is the easy-to-measure signals, yO ∈ R is the
hard-to-measure signal, and u is the unknown input
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yO ∈ R, and u (its dimension is less than or equal to m) denotes the
unknown excitation from roads.
Given the specific working condition set (e.g., the working con-

dition setW1,W2, orW3), assume that the system is LTI, and then
the relation from yI to yO can be described as a transmissibility [21].
Furthermore, the transmissibility can be approximated by a discrete-
time noncausal FIR model [25]

yO(t) = G(q)yI (t) + ϵ(t) (1)

where ϵ(t) is the residual, q is the forward shift operator, i.e., q yI(t)
= yI(t+ 1), and G(q) = G1(q) · · ·Gm(q)

( )
is a row vector. For the

sake of simplicity, all Gj(q)’s are of the same order and are given by

Gj(q) =
∑r
ℓ=−d

bℓ,jq−ℓ, j = 1, . . . , m (2)

where b−d,j,…, b0,j,…, br,j are Markov parameters.
Let {yO(t)}

N−1
0 be a finite sequence, then the discrete Fourier

transform (DFT) of the sequence {yO(t)}
N−1
0 is defined as

YO(ωk) = DFT{yO(t)}
N−1
0 =

1
N

∑N−1
t=0

yO(t)e
−iωkt (3)

where ωk= 2πk/N, k= 0,…, N− 1. Similarly, let YI(ωk) be the DFT

of yI(t), and YI (ωk) = YI,1(ωk) · · · YI,m(ωk)
[ ]T

.
For large data size N, it is a well-known fact [29,33] that the

DTFs YI(ωk) and YO(ωk) satisfy

YO(ωk) = G(eiωk )YI(ωk) + E(ωk) (4)

where E(ωk) is the residual, and

Gj(e
iωk ) = (Rc(ωk) − iIs(ωk))

Tbj, j = 1, . . . , m (5)

where

Rc =

cos (dωk)

..

.

1
cos (ωk)

..

.

cos (rωk)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Is =

sin ( − dωk)

..

.

0
sin (ωk)

..

.

sin (rωk)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
, bj =

b−d,j

..

.

b0,j
b1,j

..

.

br,j

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Note that the transient effect is neglected in Eq. (4) when the data
size N is large, which is easily guaranteed in this work. Rewriting
Eq. (5) yields

G(eiωk ) = (Rc(ωk) − iIs(ωk))
TB (7)

where B = b1 . . . bm( ) is an (n+ 1) ×m matrix whose entries are
model parameters. Also, YO(ωk) and YI(ωk) are expressed as the
sum of real and imaginary components

YO ωk( ) = RYO (ωk) + iIYO (ωk)

YI(ωk) = RYI (ωk) + iIYI (ωk)
(8)

where RYO (ωk) and IYO (ωk) are real and imaginary components of
YO(ωk), respectively. Similarly, RYI (ωk) and IYI (ωk) are real and
imaginary components of YI(ωk), respectively. Substituting
Eqs. (7) and (8) into Eq. (4) yields

RYO (ωk) + iIYO (ωk)

= (Rc(ωk) − iIs(ωk))
TB(RYI (ωk) + iIYI (ωk)) + E(ωk) (9)

By using the property of Kronecker product [34], Eq. (9) can be
rewritten as

RYO (ωk) + iIYO (ωk)

= (RYI (ωk) + iIYI (ωk))
T ⊗ (Rc(ωk) − iIs(ωk))

Tθ + E(ωk) (10)

where θ= vec(B). By rearranging Eq. (10), we have

RYO (ωk)
IYO (ωk)

[ ]
= ϕ(ωk) ψ(ωk)
[ ]T

θ +
RE(ωk)
IE(ωk)

[ ]
(11)

where

ϕ(ωk) = RYI (ωk)⊗ Rc(ωk) + IYI (ωk)⊗ Is(ωk) (12)

ψ(ωk) = IYI (ωk)⊗ Rc(ωk) − RYI (ωk)⊗ Is(ωk) (13)

and RE(ωk) and IE(ωk) are real and imaginary parts of the residual
E(ωk), respectively. Aggregating over all frequencies ωk at specific
subrange (e.g., from 6 Hz to 20 Hz), we have

ΓRYO

ΓIYO

[ ]
=

Πϕ

Πψ

[ ]
θ +

ΞRE

ΞIE

[ ]
(14)

where

ΓRYO
= RYO (ω0) · · ·RYO (ωN−1)
[ ]T

(15)

ΓIYO
= IYO (ω0) · · · IYO (ωN−1)
[ ]T

(16)

Πϕ = ϕ(ω0) · · ·ϕ(ωN−1)
[ ]T

(17)

Πψ = ψ (ω0) · · ·ψ (ωN−1)
[ ]T

(18)

ΞRE = RE(ω0) · · ·RE(ωN−1)
[ ]T

(19)

ΞIE = IE(ω0) · · · IE(ωN−1)
[ ]T

(20)

Equation (14) can be rewritten as

Γ = Πθ + Ξ (21)

where

Γ =
ΓRYO

ΓIYO

[ ]
, Π =

Πϕ

Πψ

[ ]
, Ξ =

ΞRE

ΞIE

[ ]
(22)

The least squares solution of θ is given by

θ̂ = (ΠTΠ)−1ΠTΓ (23)

provided that Π is of full column rank.
Remark 3. We decompose complex signals into real and imaginary
parts in the derivation of θ such that Eq. (21) produces a real-valued
estimate of θ. The fact that the estimate of θ is a real value is not
guaranteed in the conventional formulation of FIR system identifi-
cation methods [29,35], unless two distinct subranges of frequen-
cies are jointly considered, i.e., the subrange K1 = {ωi, . . . , ω f }
and the subrange K2 = {ωN− f , . . . , ωN−i}, where N is the size of
data set, i≥ 0, f ≤ ⌊N2⌋, and ⌊·⌋ is floor operator. However, the sub-
range K2 is essentially unnecessary in our method. The reason is
that the complex signals at the subranges K1 and K2 are complex
conjugate of each other, i.e.,

X(ωN−1−k) =
1
N

∑N−1
t=0

x(t)e−i
N−1−k

N 2πt (24)

=
1
N

∑N−1
t=0

x(t)e−i
−(k+1)

N 2πt = �X(ωk) (25)

where ωk∈ {ωi,…, ωf}, x(t) denotes either yI(t) or yO(t) in the time
domain, X(·) is the DFT of x(t), and �X(·) is the complex conjugate of
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X(·). Also, regarding to Eqs. (12) and (13), it is easily verified that

ϕ(ωN−1−k) = ϕ(ωk)

ψ (ωN−1−k) = −ψ (ωk)
(26)

which indicates that redundant information is used when two dis-
tinct subranges are considered in Eq. (21). Thus, when constructing
Γ and Π in Eq. (21), we only need the information at the frequency
subrange K1.
Remark 4. One of the attractive factors of the FIR model is its
BIBO property such that the estimation for hard-to-measure accel-
erations is stable.

4.2 Practical Considerations. Regularization: An issue arises
when the matrix Π in Eq. (23) is not full of column rank with two
possible reasons:

(i) The model order r and d are unknown and it might be
selected too large such that the FIR model is over-fitting [36].

(ii) Multicollinearity among easy-to-measure accelerations (e.g.,
some of accelerations are redundant) occurs.

Here, a regularization technique is introduced to tackle this issue:
The order of an FIR model is typically quite large (a couple of
hundred or so [37]), and hence we select a relatively large order
(e.g., 100). According to Eq. (21), a regularized least squares
(RLS) problem is considered

minimize
θ

‖Γ − Πθ‖22 + λθTθ (27)

where λθTθ is a flexibility term, and λ is a tuning parameter [36].
The optimization problem (27) admits a closed-form solution

θ̂
ridge

= (ΠTΠ + λI)−1ΠTΓ (28)

where I is an identity matrix with the compatible dimension. In this
case, the form of the RLS problem (27) is called ridge regression,
and we can use a common general tool called cross validation to
choose an appropriate value of λ [36].
Merging multiple experiments: When multiple experiments for

constructing FIR models are conducted under different working

conditions, under which the data size and the input power levels
are varied, the RLS problem (27) can be revised as

minimize
θ

∑H
h=1

1

‖Γh‖22
{‖Γh − Πhθ

∥∥2
2} + λθTθ (29)

where Γh and Πh are corresponding matrices in Eq. (27) in the hth
experiment, andH is the number of experiments. The solution to the
problem (29) is

θ̂ =
[∑H

h=1

ΠT
hΠh

‖Γh‖22
+ λI

]−1[∑H
h=1

1

‖Γh‖22
ΠT

hΓh

]
(30)

Remark 5. Given the situations that the signal magnitudes and data
sizes from various experiments are different, the values 1/‖Γh‖’s
serve as weighting parameters to “equally” value the importance
of H experiments.

4.3 Piecewise Linear Finite Impulse Response Models in the
Frequency Domain. According to the identification of FIR models
in the subranges from 0 Hz to 6 Hz, 6 Hz to 20 Hz, and 20 Hz to
50 Hz introduced in Sec. 4.1 and Sec. 4.2, the piecewise linear
FIR model can be represented as follows:

Gp

(
e
i2πfk
Fs

)
=

G(W1)
0 : 6

(
e
i2πfk
Fs

)
, 0 ≤ fk < 6

G(W2)
6 : 20

(
e
i2πfk
Fs

)
, 6 ≤ fk < 20

G(W3)
20 : 50

(
e
i2πfk
Fs

)
, 20 ≤ fk ≤ 50

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(31)

where Gp(ei2πfk/Fs ) is the piecewise linear FIR model, fk= (k/N)Fs,
k = 0, …, N− 1, Fs is the sampling frequency, G(W1)

0 : 6 is the trained
FIR model constructed from the data of working condition set W1

in the frequency subrange from 0 Hz to 6 Hz. Similarly,G(W2)
6 : 20 is the

trained FIR model constructed from the data of working condition
set W2 in the frequency subrange from 6 Hz to 20 Hz, and G(W3)

20 : 50
is the trained FIR model constructed from the data of working con-
dition set W3 in the frequency subrange from 20 Hz to 50 Hz.

Fig. 10 An example of estimated results of piecewise linear FIRmodels as FRFs curves. Note thatGp,1,…,Gp,6 are
components of the FRFs.
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Figure 10 shows the frequency response function (FRF) curves
from 0 Hz to 50 Hz, from which we can observe that the FRFs
are significantly different in different subranges, which indicates
that the system is nonlinear.

5 Results and Performance
In this section, we investigate the performance of the piecewise

linear system identification method proposed in Secs. 3 and 4.
First, a comparative study between the piecewise linear FIR
models and the individual FIR linear models is conducted in
Sec. 5.1. Then, another comparative study between the piecewise
linear FIR models and nonlinear models is given in Sec. 5.2.
Finally, the overall estimated results of 14 hard-to-measure acceler-
ations under 70 working conditions are discussed in Sec. 5.3.

5.1 A Comparative Study Between the Piecewise Linear
Finite Impulse Response Models and the Individual Finite
Impulse ResponseModels. In this subsection, we show a compar-
ative study between the piecewise linear estimator Gp shown in

Sec. 4.3 and four individual linear FIR estimators. Note that we
use the data of three working condition sets W1, W2, and W3
from 0 Hz to 50 Hz to construct three individual FIR estimators
G(W1)

0 : 50, G
(W2)
0 : 50, and G(W3)

0 : 50, respectively. In addition, we use the data
of all three working condition sets from 0 Hz to 50 Hz as a whole
to construct an “average” FIR estimator denoted by G(avg)

0 : 50.
Figure 11 shows the estimated examples of individual FIR estima-
tors and the piecewise linear estimators in three subranges, from
which we can observe that the piecewise linear FIR estimator out-
performs the individual linear estimators in the interesting fre-
quency ranges, which validates the advantage of the piecewise
linear estimator.

Fig. 11 The examples of estimated results of piecewise linear
estimator and individual FIR estimators: (a) the results of accel-
erometer 4 in Z direction, (b) the results of accelerometer 4 in Z
direction, and (c) the results of accelerometer 4 in Z direction

Fig. 12 The estimated results when the vehicle is driven on a
smooth gravel road at different vehicle speeds: (a) The vehicle
is driven at speed of 30 km h−1, (b) The vehicle is driven at
speed of 40 kmh−1, (c) The vehicle is driven at speed of 50 kmh−1

021003-8 / Vol. 23, APRIL 2023 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/com

putingengineering/article-pdf/23/2/021003/6880940/jcise_23_2_021003.pdf by Shanghai Jiaotong U
niversity user on 31 July 2023



5.2 A Comparative Study of the Piecewise Linear Finite
Impulse Response Models and Nonlinear Models. Now the
comparative study between the proposed piecewise linear method
and the nonlinear system identification methods is conducted
under multiple working conditions. Nonlinear system identification
methods are often used to build black-box models for complex
dynamic systems [38]. In this subsection, two common nonlinear
models, wavelet and sigmoid network models [39], are used to esti-
mate the hard-to-measure accelerations under multiple working
conditions.
Figures 12–14 show some typical examples of the estimated

results of

(i) steady-state data: the vehicle is driven on a smooth gravel
road at the speeds of 30 km h−1, 40 km h−1, and 50 km
h−1, see Fig. 12;

(ii) transitional data: the driver is braking at the speeds of 30 km
h−1 and 70 km h−1, see Fig. 13. Also, the driver is
driving across a speed bump at speeds of 10 km h−1,
20 km h−1, and 30 km h−1, see Fig. 14.

Note that these working conditions are not included in the train-
ing data sets. From Figs. 12–14, it can be observed that the esti-
mated result from the proposed method and that from the
measurements are close to each other, which indicates that the pro-
posed piecewise linear estimator is applicable to the scenarios with
different speeds and road profiles. Also, the performance of the pro-
posed piecewise linear method is comparable to that of the nonlin-
ear methods. For better performance of nonlinear methods, more
sophisticated nonlinear methods or hyper-parameter tuning
methods should be involved, which is difficult to generalize in

practice. For example, the modeling process might need to be con-
ducted from the scratch when a new type of prototypes is aimed to
be developed.
Now we report the run-time of the proposed method and the non-

linear system identification methods. The experiments are con-
ducted using 2.50 Hz Intel Core i5-7200U processor, and all
implementations are done in Matlab 2018b. Table 2 shows the
run-time of the investigated methods, from which we can see that:

(i) The run-time of the proposed method during the validation
stage is much shorter than the actual time duration for the
validation (10 s).

Fig. 13 The estimated results when the driver is braking at dif-
ferent vehicle speeds: (a) The driver is braking at speed of
30 km h−1, (b) The driver is braking at speed of 70 km h−1

Fig. 14 The estimated results when the vehicle is driven
across the speed bump at different speeds: (a) The vehicle is
driven at speed of 10 km h−1, (b) The vehicle is driven at speed
of 20 km h−1, (c) The vehicle is driven at speed of 30 km h−1
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(ii) The nonlinear methods are much more time-consuming than
the proposed one, during both the training and validation
stages.

This result indicates that the proposed method is more computation-
ally efficient for real-time estimation.

5.3 Estimated Results of 14 Accelerations Under 70
Working Conditions. Furthermore, we collect the data from 70
working conditions, and 14 hard-to-measure accelerations are
required to be estimated.
Given the specific frequency range and a working condition set

Wℓ, ℓ= 1, 2, 3 (cf. Sec. 3), we use a subset of data sets under the
working condition set Wℓ to train the models. The validation con-
sists of self-validation and cross-validation:

(i) In self-validation, the data sets used for validating the effec-
tiveness of the trained models are the remaining data sets
under the same working condition set Wℓ.

(ii) In cross-validation, the data sets used for validating the
effectiveness of the trained models are from working
conditions which are different from the working condition
set Wℓ.

In order to evaluate the results quantitatively, we define the nor-
malized mean square error (NMSE) [40–42] as

NMSE =
‖Z − Ẑ‖22
‖Z‖22

(32)

where Z is the magnitude vector of frequency signals collected from
hard-to-measure accelerometers at specific frequency ranges, and Ẑ
is the corresponding estimate. Also, we define NMSE= 0.3 as an
acceptable level. Note that the value of the acceptable level is rec-
ommended by the engineers from SAIC motor company who are
responsible for the durability design. Four examples of measured
signals and their estimates are shown in Fig. 15.
Figure 16 reports the results of 14 accelerations at three fre-

quency subranges in detail. We divide 980 cases into seven catego-
ries, and the total acceptable results (adding up results of category 1,
5, 7) at the three subranges are shown in Table 3, from which we can
observe that the acceptable percentages from 0 Hz to 20 Hz are high
(around 90%). We also notice that the acceptable percentage in the
frequency range from 20 Hz to 50 Hz (around 80%) is lower than
that from 0 Hz to 20 Hz. Particularly, the result of category 1 at
the frequency range from 20 Hz to 50 Hz is only 20.8%. That is
because the SNR of easy-to-measure accelerations at this frequency
subrange is lower than those in the other subranges. As shown in
Fig. 7, the number of peaks from 20 Hz to 50 Hz is significantly
smaller than the number of peaks from other subranges.
Note that the estimated results of both category 5 and 7 are

acceptable, because

(i) For the results of category 5, where easy-to-measure signals
are informative, hard-to-measure signals and their estimates
are noninformative, we validate that both the
hard-to-measure signals and their estimates are noninforma-
tive, which indicates that the estimator does not make any
“mistakes” even though the NMSEs of estimated results
might be greater than a threshold.

(ii) For the results of category 7, where both easy-to-measure
and hard-to-measure signals are noninformative, there is no

Fig. 15 Four examples of NMSEs. The acceptable level is chosen as NMSE=0.3: (a) Example: NMSE= 0.1, (b) Example: NMSE
= 0.2, (c) Example: NMSE = 0.3, (d) Example: NMSE = 0.4.

Table 2 Run-time of the proposed method and the nonlinear
methods

Method Training Validation

Proposed method 8.23 s 0.73 s
Wavelet network 236.72 s 1.13 s
Sigmoid network Over 10 min 5.37 s

Note: The data length in the validation is 10 s.
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need to estimate and we can isolate the data of category 7.
Also, the hard-to-measure signals are noninformative,
which indicates that the results of category 7 are acceptable.

6 Conclusion
In this work, we present a piecewise linear system identification

method in the frequency domain to claim that it is promising to

Fig. 16 The estimation result of 14 accelerations at three frequency ranges under 70 working conditions.
The procedure of classifying 980 cases is as follows: are easy-to-measure signals informative ? → are
hard-to-measure signals informative ? → are estimated hard-to-measure informative ? → Is NMSE less
than 0.3 ?: (a) The estimation result of 14 accelerations at the frequency range from 0 Hz to 6 Hz under
70 working conditions, (b) The estimation result of 14 accelerations at the frequency range from 6 Hz to
20 Hz under 70 working conditions, (c) The estimation result of 14 accelerations at the frequency range
from 20 Hz to 50 Hz under 70 working conditions

Table 3 Overall results at three frequency subranges

Frequency range (Hz) Percentage of acceptable results

0–6 91.9% (901/980)
6–20 90.0% (882/980)
20–50 79.3% (777/980)
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estimate the responses of hard-to-measure accelerations by the
responses of easy-to-measure accelerations. The possible reason
behind the success of the piecewise linear system identification
method is that the nonlinear dynamic responses are mainly influ-
enced by the frequency of the excitation from roads, as investigated
in Ref. [9], and the behaviors of the system are linear in certain fre-
quency ranges.
We verify that FIR models can serve as good candidates for

signal estimation in the vehicle body system: by using only two
easy-to-measure X, Y, Z accelerometers as the inputs of FIR
models, almost 90% estimation accuracy is achieved for 14
hard-to-measure accelerations under 70 working conditions.
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