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Traditional extended state observer (ESO) design method does not focus on analysis of system recon-
struction strategy. The prior information of the controlled system cannot be used for ESO implementa-
tion to improve the control accuracy. In this paper, composite disturbance rejection control strategy is
proposed based on generalized ESO. First, the disturbance rejection performance of traditional ESO is
analyzed to show the essence of the reconstruction strategy. Then, the system is reconstructed based on
the equivalent disturbance model. The generalized ESO is proposed based on the reconstructed model,
while convergence of the proposed ESO is analyzed along with the outer loop feedback controller.
Simulation results on a second order mechanical system show that the proposed generalized ESO can
deal with the external disturbance with known model successfully. Experiment of attitude tracking task
on an aircraft is also carried out to show the effectiveness of the proposed method.
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1. Introduction

System uncertainties, such as parameters perturbation, unmo-
deled dynamics, external disturbances, and sensor noise, will have
great influence on the performance of a control system, even cause
instability. It is not an easy work to design a controller which
guarantees both disturbance rejection and tracking performance
simultaneously with complicated uncertainties. Thus, composite
disturbance rejection methodology with both outer loop controller
and inner loop observer has been widely concerned [1]. For the
composite disturbance rejection control system, the control
accuracy is largely determined by the estimation accuracy of inner
loop observer. There have been several observer design approa-
ches investigated so far, such as disturbance observer [2], extended
state observer (ESO) [3], unknown input observer [4], perturbation
observer [5], equivalent input observer [6], sliding mode observer
[7], and fuzzy observer [8-10]. Among these works, ESO needs the
least prior information, even if the relative order of the plant is
unknown [11]. On the other hand, comparing with the output
observers, ESO can estimate not only the equivalent disturbance,
but also the internal system states. Thus, state feedback controller
can be designed for ESO based control system. According to these
advantages, ESO based control, also known as active disturbance
rejection control (ADRC), has been widely explored in recent years.
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It is reported that ESO has been employed in many successful
applications, such as uncalibrated visual servoing [12], flight con-
trol [13], vibration control [14], power electronics [15], motor
control [16]. In addition, various theoretical analyses have been
explored based on ESO, such as Lyapunov stability analysis [17],
parameter tuning strategy [18], and generalized ESO design for
system of mismatched uncertainties [19].

As for the ESO based control structure, observation performance
will largely determine the control performance of closed-loop sys-
tem. Thus, various results on convergence analysis have appeared.
For some researches, it is assumed that the change rate of uncer-
tainty is bounded [13,15,19,20]. Then the estimation error of the
ESO remains bounded, and its upper bound decreases mono-
tonously when increasing the bandwidth of the observer. By
introducing assumption on the system uncertainty, Lyapunov sta-
bility analysis of both nonlinear ESO is proposed in [17]. However,
the above analysis is only proposed for traditional ESO design.

Despite the theoretical tools for convergence analysis, the
specific disturbance rejection performance is rarely investigated,
especially for different kinds of time-varying disturbances. It can
be obtained in [21] that typical ESO offers asymptotic convergence
of estimation for constant disturbance. However, time-varying
disturbance, which is widely existing in practice, cannot be esti-
mated by traditional ESO thoroughly [21]. Thus, it is important to
explore the observer design methodology against time-varying
disturbance for better disturbance rejection performance.
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In [22], the generalized ESO with high order is investigated,
showing that it improves in the tracking of fast time-varying
sinusoidal disturbances. From the results, it can be seen that the
high order ESO can improve the estimation accuracy of sinusoidal
external disturbances more or less. However, there still exists a
periodic estimation error, which will in turn decrease the control
accuracy of the closed-loop system [22]. According to internal
model principle, the observer cannot reject the disturbance exactly
unless the disturbance dynamics is embedded into the observer. In
this paper, comparing with the high order ESO [22], the internal
model principle is applied for generalized ESO implementation.

This paper devotes to increase the estimating accuracy of ESO
against time-varying external disturbances. The definition of
extended state for ESO is essentially the reconstruction for the
controlled object. However, the existing researches only focus on
the performance of ESO with different orders, while the prior
information of system uncertainties cannot be further used for
ESO implementation. Thus, we first analyze the reconstruction
strategy of traditional ESO, and its limitation in dealing with time-
varying disturbances is pointed out. To solve this problem, the
system is reconstructed based on the model of the system
uncertainties, and then the generalized ESO is proposed. At last,
stability of the closed-loop system is analyzed along with the outer
loop controller.

The rest of this paper is organized as follows. In Section 2,
disturbance rejection performance of the traditional ESO is ana-
lyzed to show its limitations when dealing with time-varying
disturbance. In Section 3, the controlled object is reconstructed by
taking the disturbance model into account. Thus, a generalized
ESO strategy for composite disturbance rejection is proposed. In
Sections 4 and 5, both simulation and experiment are carried out
to verify the effectiveness of the proposed strategy, followed by
Conclusions in Section 6.

2. Problem statement
2.1. Traditional ESO

Consider the following uncertain single-input single-output
(SISO) system, depicted by [17]:
5(] =X
Xy = X3
M
Xn =f(t,X1,X2, ..., Xn) + W(t) +u(t)
Y =x1,

where X1,X», ...,X, are the system states, u and y are the control
input and output, respectively. w is the external disturbance, f(-) is
the equivalent disturbance caused by both internal uncertainty
and external disturbance.

In typical ESO an augmented variable x,, .1 £ f(t,X,X1,...,Xn)+
w(t) is introduced, such that the system can be reconstructed as:

X =Ax+Bu-+Eh
()

y=0Cx,

where
o010 - O 0 0
0 0 1 0 0 0

A=|: + : , B=|: , E= ;
000 - 1 1 0
000 - 0 n+1)x(n+1) 0 (n+1)x1 1 n+1)x1

C=[10--0 0]“(,.,“),

_df(t,x1, %, v.,,xn(t))+dW(t)
- dt dt -

Then the linear ESO can be designed as follows:

Z2=Az+Bu+Ly—y)
y=_Cz

h

3

where ze R™ !, L=l L - ln+1]T such that all the roots of s"*1
+1lis"+--+1lps+1,,1 =0 are located at the right half s-plane. The
selection of the observer gain is investigated in [18] based on
bandwidth theory, which has been widely concerned in practice.

2.2. Disturbance rejection performance analysis

By introducing the Laplace transformation upon Egs. (2) and
(3), we get

H(s) = LES @

Zny1=H(S)Xn 1, R S AR B

where H(s) is an equivalent filter in the disturbance rejection
structure. It is clearly that the control accuracy of the closed-loop
system relies on the accuracy of the estimated disturbance z, 1.

Assume that lim;_ X;(t)=0,i=1,...,n. Without loss of gen-
erality, it is assumed that

lim f(t.x1.X, ... Xn) =0.

Then we get
tllm a(t) = tllm (Xn+1 —Zn+1) = llng 5(] —H(S))W(S)
e - 5o

. STt 4]
—lim +14 + oty

2
ST s sty ®)

From Eq. (5), it can be found that if w(t) is a constant disturbance,
then w(s) =% and lim;_, ..d(t) = 0. Otherwise, there exists an esti-
mation error, or the system even diverges. The estimation error
can also be analyzed in the time domain.

By defining the estimation error of ESO as e=z-x, the
dynamic equation of e is described as:

é—=(A—LC)e—Eh. (6)

When the system is in the steady state, the system states have
converged to the equilibrium point. Then, the component of per-
turbation h that relies on the system states can be regarded as a
constant. Thus, the component that relies on the external dis-
turbance w will have a persistent influence on the control system.
Three situations with different external disturbances can be ana-
lyzed as follows:

1. When the disturbance satisfies %:O, Eq. (6) turns to
e =(A—LC)e. Since (A—LC) is a Hurwitz matrix according to the
definition of A, L and C, the estimation error can converge to
0 exponentially.

2. When the disturbance satisfies %:Constant, the equili-
brium point of Eq. (6) is e =(A—LC)*1E%. At this time, there
exists a constant error of the estimation of ESO. The observation
error is proportional to |%|, is inversely proportional to the
bandwidth of ESO.

3. For the other kinds of disturbances, % is a time-varying
signal, the observation error e can only converge in a compact set,
whose bound relies on the upper bound of |%| and the band-
width of ESO.

According to the above analysis, the time-varying disturbance
will have a significant influence on the control performance. In
some cases, the model of the equivalent disturbance can be
obtained, it is necessary for an observer to estimate the component
with known model thoroughly to increase the control accuracy.
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3. Generalized ESO based control system design

The control structure is shown in Fig. 1. By introducing the
disturbance dynamics into account, the generalized ESO is pro-
posed to estimate the equivalent disturbance and system states.
Thus, the outer loop state feedback controller is designed for
desired tracking performance.

In this section, the controlled object is first reconstructed based
on the disturbance dynamics. With the investigation of the system
observability, the generalized ESO is thus proposed. Finally, the
controller is designed and closed-loop stability is analyzed.

3.1. System reconstruction

Consider the SISO nonlinear system with uncertainties:

{X = AX+B(b(x)+a(x)u+d(t)) a

y=Cx.
Assume that Fhe nominal values of the scalar functions a(-) and b(-)
are a(-) and b(-), respectively, which satisfy

A®)=a@®) —a@®), Ap*)=bx) —b().

where a(-) and b() are locally Lipschitz, with the Lipschitz con-
stants of #, and 73, and a(-) is non-singular.
Then, the system can be represented as

®)

X=Ax+B (5(;() +ax)u+D(x, d))
y=_Cx,

where D(-)eR is the equivalent disturbance caused by both
internal uncertainty and external disturbance.

For the SISO nonlinear system in (8), the traditional ADRC
methodology can be applied for observer and controller design
directly. However, from the analysis above, traditional ESO cannot
eliminate the disturbance with known model effectively. This is
because its system reconstruction strategy cannot use the prior
information effectively for ESO implementation. Eq. (6) shows that
the observation accuracy of ESO depends on the upper bound of
ki, while the upper bound of Ihll reflects the uncertainty of the
system. The essence of system reconstruction strategy is the pro-
cess of decreasing the disturbance term h.

A system reconstruction strategy is proposed to solve the above
problem. We establish the model of equivalent disturbance, based
on which the system is reconstructed according to the prior
information as far as possible. Assume that the equivalent dis-
turbance in Eq. (8) satisfies:

0 =p©)+qOu
9
{ D=g@). ©

where 8 € R™ is system state of the disturbance system and y e R
is the input. p< R™" - R™ and q =< R™ - R™ are two smooth vector

d

u t 2
— Dynamics Y -

Generalized
P ————
ESO

Feedback —
Controller |

Fig. 1. Control structure of ESO based controller.

fields. g< R™—R is a smooth map. The input p is a function of
external disturbance d and system state x. The relative order of the
disturbance system satisfies r <n—1.

The Lie derivative of a scalar field g along a vector field p is
defined by the scalar product L,g(@)=(dg(@).p@)), where dg
denotes the gradient of g. Iterated Lie derivatives are defined by
1p8©0) = Ly(L, ™ 'g(©0)).

Since the system relative order of Eq. (9) is r <n—1, we get:
{ Lolyg@)=0, k=0,..r-2, v@eR"

L,,L;;g(a) =0, k=r,...n, VvOeR™.

By introducing the following differential homeomorphism
transformation € = ¥(@), we obtain:

Ei=y10)=g0), & =w,0)=Lg®),...
E=w,0)=L,"'g@).

Then the nonlinear system described in Eq. (8) can be transformed
into:

E=AsE+Byd a0
y=Cdé,
where
[ Ar O(r—l)x(n—r)
Ag= ,
0(n—r+1)><r O(n—r+l)x(n—r)
0o 1.0 - 0
|00 O ewo
0 0 0 - 1
[ O —1)x1
By=1|, , C4=[10...0],
m—-r+1)x1

S=Loly g ' @) +Lpg¥  Ep.

Considering both system model in Eq. (8) and disturbance
model in Eq. (9), define the generalized states of the system as

T
X= [xT !,‘T] , the generalized system model can be obtained as:

. [A BCs]_ [B] - A 0
x=|, Ay x+[0}(b(f)+a(x)u)+ B, S
—_—
A B E
y=[CO]X 11

Cm
D =0 Cy]%, X = [Inxn OIX.
& Sl

Cy Cs

Assumption 1. For the disturbance model in Eq. (9), the input
satisfies:

161 < ky+ky IXII,
where k; and k, are positive constants.
Remark 1. Similar assumption can be seen in [17].

Theorem 1. For the reconstructed system shown in Eq. (11), the
system state X is observable if and only if the system in Eq. (7) is
observable.

Proof. The Gram matrix criterion is employed to investigate the
observability. For the system state X, its Gram matrix is defined as:

to_r
Wx[O,ﬁ]z/ A (C Tt dt,
0

where

@ye, @ye
2! 3!

- -
Nl =Inim+A t+
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T, @A) @AYe
In+A t+ o 30 0
= AT)2¢2 (ATata
% Im+A§t+( ‘12)! 5’3)!
—2 —3
i — A A
e = lm HALH
A2 A3
Celn+At+2—! +T+"' *
- Alr Al
0 In+Agt+=3— +=4— +

2! 3!

Then, it can be obtained that:

S _ ty T\242
wx[o,m:/O A 1C Of'[C 0t dt:/o <1+ATt+(A2)!t +.-->cTc

T\242 .
x <1 +ATt+(A2),t +--->dt= / et tcTce dt.
. 0

Since the system in Eq. (7) is observable, fél ertcTee de is
nonsingular. It can be concluded that the reconstructed system is
shown in Eq. (11), and the system state x is observable if and only
if the system in Eq. (7) is observable.c

Remark 2. Comparing with the reconstructed methodology of
traditional ESO scheme, the proposed system reconstruction takes
the model of equivalent disturbance into account, which is more
precise.

3.2. Observer design and stability analysis

From the reconstructed system model in Eq. (11), the observer
is designed as follows:

{i —AX+BOO@E) +a@u+Ly—p) (12)

5’ :fﬂ’li:& :fxis

where L is the observer gain to be designed, the state of the
T

observer is defined as X = [&T 01 .

By defining the estimation error of the observer as e =X — ¥, we
have the following equation:

e=A—-LCne—ES+Ax.R), (13)

where Ax,&) = b(®)—b(x)+(a(&)—a(x))u. The observer gain L is
selected such that (A —LCy,) is a Hurwitz matrix.

From (13) we can find that the estimation accuracy is deter-
mined by the bandwidth of the ESO and the perturbation term &.
Thus, there are two ways to increase the estimation accuracy of
the ESO. The first way is to increase the bandwidth of the ESO.
However, the bandwidth is usually limited by the robustness and
measurement noise. The second way is to decrease the perturba-
tion term &. Both the proposed reconstruction strategy and the
high order ESO in [22] are aiming at decreasing the perturbation
term . In a word, the basis of these two methods is to decrease
the uncertainty by using different nominal models. The difference
is that for the proposed control strategy, the equivalent dis-
turbance model can be used for ESO implementation, which
makes the design procedure more flexible. However, the high
order ESO can only adjust the order of ESO.

Remark 3. In [19,20,13,15], if the system uncertainty is assumed
to be bounded directly, then it can be concluded that the esti-
mation error is bounded. However, in most applications, the per-
turbation component 6 not only depends on external disturbance,

but also relies on internal states of the system. At this time, the
convergence of the observer should be analyzed in combination
with the outer loop controller.

By taking the states and disturbance estimation of the observer
into account, we define a target system of controlled object
described by Eq. (8):

X =AX+B(O®E) +a®u+C40). (14)

Assumption 2. For the nonlinear system described in Eq. (14),
there exists a controller u = f(t,y4, X, 0) such that the system state
x is globally asymptotically stable. There exists a Lyapunov func-
tion V; such that:

T
1

= [A&+B(B(&)+a(&)u+cdé)] < —N@®), VReR" (15)
where N(-) is a classical « function, which satisfies that Z%’\ :=0is
a positive constant. For all the system states in a compact set €2,
there exists a positive constant M such that:

M > max Il f(t,yq, &, 0)l. (16)
XeQ

From the analysis above, we have lim;_, ..X(t) = 9 according to
the definition of observation error, we have x=Cyxe+X. Conse-
quently, we only need to analyze the convergence of observation
error e.

Theorem 2. Consider the nonlinear system shown in Eq. (7). Assume
that the equivalent disturbance model caused by system uncertainty
satisfies Assumption 1, let the observer proposed by Eq. (12), and the
feedback controller under Assumption 2. Then the error of both
control system and observer is bounded.

Proof. Since the scalar functions a(-) and b(.) are both locally
Lipschitz, the following inequality holds:

IA@,%) I <ZI&—xI </ICxle, a17)

where ¢ £ ¢4+ ¢, M.

Since matrix A —LC,, is Hurwitz, for any given positive definite
symmetric matrix N, there exists a positive definite symmetric
matrix P such that P(A—LCy)+(A—LC)'P= —N. Define a Lya-
punov function V, = e'Pe, its time derivative is given as

Vo< —Amin(N)1€l1124+221PIIBI IC, I el +21PIIENIC,Il el
+2IPEllel(ki+k IR < —cyllel>+c3lIRNIZ+cqllell, (18)
where

Amin(N)— Q2B =2k IE I IICx Il 1Pl
C) = 2
B 2(k, I PE I1)?
" AdminN)—Z1B 1 =2k, IE I ICx 1 IP1I
Cq = Zk] IPEI.

C3

Consider the Lyapunov function candidate

Vi@®)
V(x,e)= /0 7(s) ds+Vs(e).

Since the feedback controller u can stabilize the target system
asymptotical, from converse Lyapunov theorem, there exist k.,
functions a4(-), a2(-) and as(-) such that:

(1R < Vi(®) < ap(I1& 1),

Vit . X
aﬁl f®) < —az(Ix1),
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where  f(®)2 A% +B(b®&)+a®u+Cy0), and according to
Assumption 2, we have as(r) > csr? holds for ¢s > 0.

For a « function #() that satisfies 7(lIXI)>cs(ci+
c3)I&112 /as(l1&11), by selecting y(-) = #(a; '(-)), we can get the time
derivative of V(%, e) as:

V&, e)< —y(a1(IX1)as(1R1)—cy el +c3 X112 +cqllell

<—qlzIZ=cyllel?+c4lel. (19)

From the above inequality, V is strictly negative if llel > c4/cy.
Thus, the upper bound of observation error e is c4/c;. Since
lim;_, ..X(t) = 0, the system state x is bounded according to the
definition of observation error.c

4. Simulation results

In this section, simulation on a second-order mechanical system
is employed to analyze the disturbance rejection performance of the
traditional ESO. Thus, the effectiveness of the proposed generalized
ESO is verified. The motion control system is described as [18]:

j=—141y+bd+u), (20)

where u, y and d are the input, output and external disturbance,
respectively, b=23.2 is the control gain of the system. Define the
system states as X; =y and x, =y, then a standard integral form can
be obtained:

5(1 =X2
X3 =f(x1,X2,d)+bou 1)
y==X1,

where by = 25 is the nominal gain of control system, f = (] —%Q)Xz

-1.41 ”Fﬂxz +bod is the equivalent disturbance. For a point stabiliza-
tion problem, the traditional ESO can be designed as

Z1=2-h(z1-y)

2y =23— 12(21 —y)+bou (22)
23=—hz1-y),
15
&
2
5§05 o
---2
0
0 2 4 6 8 10
time(sec)
4
T2
- =)
8 2
2
& 0
-2
0 2 4 6 8 10
time(sec)
30
§ 20 [
14
—~ 1
= top —/0)
I A
0
0 2 4 6 8 10
time(sec)

where [;-I3 are the observer gains, which are selected such that the
bandwidth is 15 rad/s. Different kinds of external disturbances, such
as constant disturbance, sawtooth disturbance and sinusoidal dis-
turbance, are taken into account. The estimating errors are defined as

e1 =X1—21, e3 =f(x1,x2,d)—2z3.

Assume that the constant disturbance d=1, then, the first order
time derivative of d equals 0. The first order time derivative of
equivalent disturbance at steady state satisfies f(-) = 0. Simulation
result in Fig. 2 shows that traditional ESO can deal with constant
external disturbance successfully without steady state error.

€2 =X3—2,

4.1. Sawtooth disturbance

Considering the sawtooth external disturbance with period of
5s and amplitude of 0-2. The first order time derivative of the
equivalent disturbance at steady state is a constant. It is shown in
Fig. 3 that there exists a constant error with traditional ESO, and
from the analysis above, the steady state error is

-5 1 071\ T0
co—a—10) EMO_ ||, 0 1| | |o|.b-04
-3 0 0 1
_1
53 —0.00296
= | % | -bo-04=| ~0.13300 23)
; —2.00000
_h
15}

It can be seen that the calculation results are consistent with the
simulation results. In order to deal with the sawtooth disturbance,
a generalized ESO is designed based on the proposed strategy

z1=2-h(z1-y)
zy =23—D(z1 —y)+bou

, (24)
23=24-hk(z1-y)
Z4= —la(z1-Y),
0.04
- 0.02 %0
b5 Y:9.9486-014
0 o —
JR——C
-0.02
0 2 4 6 8 10
time(sec)
2
1 X:9
& Y: 4.332¢-012
0 -—
€2
-1
0 2 4 6 8 10
time(sec)
40
20 X:9
& Y: 5.997e-011
0 o —
—_
-20
2 4 6 8 10
time(sec)

Fig. 2. Estimation performance with constant disturbance.
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0.05
— ]
T 0V —
X:9
Y: 0.002963
-0.05
0 2 4 6 8 10
time(sec)
2
0}~ —
] X:9
© Y:0.1333
-2
€
-4
0 2 4 6 8 10
time(sec)
50
€3
& 0y —
X:9
Y:2
-50
0 2 4 6 8 10
time(sec)

Fig. 3. Estimation performance with traditional ESO.
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Fig. 4. Estimation performance with generalized ESO.

where the observer gains -l are selected such that the gen-
eralized ESO has the same cut-off frequency with traditional ESO.
It is shown in Fig. 4 that with the sawtooth disturbance, the esti-
mation error of generalized ESO can converge to 0 asymptotically.

4.2. Sinusoidal disturbance

Considering the sinusoidal external disturbance with period of
2zs and amplitude of 0.5. The first order time derivative of
external disturbance is periodic signal. Using the similar calcula-
tion method, we get the peak estimation error of traditional ESO as

[0.0074 0.3333 5.0000]", which can be verified in Fig. 5. To deal
with sinusoidal external disturbance, the proposed strategy is
employed to design the following generalized ESO as:

Z1=2-h(z1-y)

Zy =23 —b(z1 —y)+bou
23=24—-l(z1-Yy)

Z4= —03z3+25—l4(z1 - Y)
zs = —Is(z1 - Y),

(25)

where the observer gains l-Is are selected such that the
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generalized ESO has the same cut-off frequency with traditional
ESO. It is also shown in Fig. 6 that with the sinusoidal dis-
turbance, estimation error of generalized ESO can converge to
0 asymptotically.

4.3. Case study of nonlinear system

Although the proposed ESO is designed in linear form, it can
also deal with the nonlinear control problem. A nonlinear system

is given as
y=—-141y+23.2d+yy+0.2¢¥ +23.2u, (26)

Define the system states as x; =y and x, =y, then a standard
integral form can be obtained:

X1=X
X2 =f(x1,X2,d)+bou 27)
y=x1,

where by =25 is the nominal gain of control system, f = (1 —%")

Xy — 1.41%%2 +Xx1X2 +0.2e¥ +bgd is the equivalent disturbance. The
proposed strategy is compared with the traditional ESO design
method and high order ESO proposed in [22].

Figs. 7 and 8 are the comparison of control effect and estima-
tion error for nonlinear system. It is shown by the results that,
although the proposed ESO is designed under linear form, it can
successfully deal with the nonlinear control problem. Comparing
with traditional ESO, the high order ESO proposed in [22] can
obtain higher estimating accuracy. However, periodic estimation
error still exists. However, the estimation error of proposed
strategy can converge to O by introducing the disturbance
dynamics into ESO design procedure. Thus, the proposed strategy
can obtain higher control accuracy for nonlinear systems with fast
time-varying disturbances.

Here, fast time-varying disturbances with period of 0.4x s is
considered in the simulation. Fig. 9 shows the estimation effect of
proposed strategy and high order ESO in [22]. It is shown that the
proposed strategy can obtain better estimation accuracy compar-
ing with high order ESO.
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5. Applications and experiments
5.1. System model

In this section, attitude tracking control problem of an aircraft
is employed to show the effectiveness of the proposed strategy.

By choosing modified Rodrigues parameters (MRPs) as the
attitude representations, the attitude tracking error model is
described as follows [23]:
{&:qu

S L s S e (28)
@ =] [ (@ +Rwy) x J(@ +Rwy)+Fu+d)— (Rw 4 —[@ x]Rwy),

where JeR3*3 is a symmetric square positive definite inertia
matrix, F is the input matrix, Fu is the control torque, d is the
external disturbance. &, @ and R are, respectively, MRPs, angular
velocity and attitude transition matrix error defined as:

6=c6®0;', @=w—-Rwy, R=RR. (29)
From Eq. (28), we can obtain:
6 =G(6.6)G"(6)6 +G(6)@. (30)

where G(6,6) is the time derivative of G(&). Define the system
states as X; = 6, X, = 6. Assume that the nominal values of inertia
matrix and input matrix are Jo and Fy, respectively, with their
errors defined as Aj=J—J, and AF=F—F,. We can use the
feedback linearization

u=FO"]()G’l(&)(V—C(&.&)G’l(&)&)+FalL(a”) +RQJE+F o(Ra g — [ xIRwyg),
31

to reduce the system dynamics to 6 =v+f, where L(-) and vec(-)

satisfy L(@ +Rwq)vec(y) = (@ +Rwy) x Jo(@ +Rwy). The system

uncertainty is described as

f= -1 "Fol6@ + L@ +Rwg)vec(d) + SR ¢ — [@ xRwg) —d], (32)

where § 2 (FFg) ™' (FoAJ — AF).

When the desired MRPs are sinusoidal signal, correspondingly,
@y and w4 are sinusoidal signals with same period. The system
states remain almost time invariant when the system converges to
steady state such that 6 ~0, @ ~ 0, @ ~ 0 and R ~ I5. At this time,
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Fig. 5. Estimation performance with traditional ESO.
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Fig. 6. Estimation performance with generalized ESO.
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Fig. 9. Estimation effect comparison with fast time-varying disturbance.
Fig. 7. Control effect comparison with difference ESOs.
thus the equivalent disturbance can be modeled as
6 T T T T T T T T - T 0 10 0
Tradition ESO . 27[
— High order ESO 0= -w? 0 1|6;+]|0 hi(t), wo=>—
E 3 ol S N AN N — Proposed ESO t 0 1 A\ TO 34
0 00 1 34
2 fi=11000, i=1.2,
g o . . . . .
where i = 1, 2 are the nick and roll axis of the aircraft, respectively.
2
u 5.2. Control system implementation
A . L . L . L . \ . The attitude heading reference system (AHRS) can provide both
0 ! 2 8 4 tim:(%c) 6 7 8 e e attitude and angular velocity. However, these measurements are
o ) ) usually affected by the noise and constant (or slowly time-varying)
Fig. 8. Estimation effect comparison for nonlinear system. bias. To decrease these influences, we define the generalized

. . observation error
the system uncertainty can be rewritten as
: e=p(6—21)+(1-p)6 —22), (35)
F~ —Jg 'Fo[L@qa)5* +5@ 4 —d. (33)
where 0 <y <1 is a constant, Z; and 2, are the estimation of &
It is clearly that the system suffers from a periodic disturbance at and &, respectively. The measurements can be acquired by Eq. (29)

steady state. Assuming that the period of the desired MRPs is T, and 6 =G~ '(6)@. By using the proposed strategy in this paper,
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Fig. 10. Frequency response of equivalent filter. (a) Frequency responses of H(s).
(b) Frequency responses of 1—H(s).

the ESO is proposed as

21 =22+11€
iz =v+23+he
ZA'3 =24+l3e . (36)

N

4= —a)%23 +25+l4€
ZAs =lIse,

where I;-I5 should make the matrix A—LC, a Hurwitz matrix.
Then, the controller v can be simply designed as

V= — kpZ] — kd22 —2Z3, (37)

where z3 is the estimated disturbance, kp, k, > 0 are the controller
parameters. By substituting Eq. (37) into Eq. (31), the control input
can be finally obtained.

5.3. Results and analysis

The experiment of attitude tracking is accomplished, while the
desired MRPs are expressed as follows:
41 = 0.03 cos (%Hn), G2 = 0.03 sin (gt) Ga3=0 (38)

The performance of proposed strategy is compared with tra-
ditional ESO. The parameters of traditional ESO are selected to
make sure it has the same cut-off frequency with proposed ESO.
Assuming that the equivalent filter of traditional and generalized
ESOs are Hq(s) and H,(s), respectively. The frequency responses of
these two observers are illustrated in Fig. 10. From the frequency
response of H(s), the two ESOs have same cut-off frequency. It is
shown that 1— Hs(s) is lower than 1—H;(s) when the frequency is
less than 1rad/s, and 1—Hy(s) has a valley value at about
0.63 rad/s. Consequently, the proposed generalized ESO has better
disturbance rejection performance against traditional ESO, espe-
cially at the corresponding frequency. From Eq. (33), the equivalent
disturbance contains the component of signal with the period of o.
According to Eq. (38), the frequency is 0.628 rad/s, which means
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Fig. 11. Comparison of tracking control performance of roll axis.
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Fig. 12. Comparison of tracking control performance of pitch axis.
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Fig. 13. Tracking error comparison of &;.

the generalized ESO can suppress the period component of the
equivalent disturbance.

Figs. 11 and 12 show the tracking performance comparison of
the proposed generalized ESO and traditional ESO. It is illustrated
from the larger view that while the desired attitude has a max-
imum differential of desired angular velocity, there exists a
tracking error obviously. However, the proposed generalized ESO
can successfully eliminate the tracking error for the time-varying
desired attitude. Fig. 13 shows the tracking error 6 of traditional
and generalized ESOs. It is clearly that the tracking error is sinu-
soidal signal with same period as desired MRPs. This is because
traditional ESO cannot suppress the time-varying component of
equivalent disturbance completely. Nevertheless, since the gen-
eralized ESO has taken the model of equivalent disturbance into
account, it can eliminate the periodic tracking error successfully.
Table 1 shows the comparison of the attitude tracking accuracy.
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Table 1
Comparison of control performance (RMS error).

Variables o1 o2 o3

Without ESO 71 %1073 7.7 x1073 88x 1073
With Traditional ESO 29x10°% 26x10"% 1.7x10°4
With Generalized ESO 09 x107* 1.0x 1074 1.9x 1074

6. Conclusions

ESO plays an important role in ADRC methodology. By analyz-
ing the disturbance rejection performance of ESO, it is first pointed
out that ESO approach is essentially the system reconstruction and
state estimation of the controlled object. For traditional ESO
design, the simple system reconstruction strategy makes it
impossible to suppress time-varying disturbance effectively. The
proposed methodology can apply the prior information of the
system uncertainties as far as possible, thus the estimating accu-
racy can be increased. Simulations show that the proposed
methodology can obtain better performance under time-varying
disturbances. Experiments of attitude tracking are carried out on a
quadrotor aircraft. Comparing with traditional ADRC methodology,
the generalized ESO based control can eliminate the influence
caused by the component of disturbance with known model
thoroughly.

The proposed strategy can successfully deal with the equivalent
disturbances with known model. However, it cannot identify the
parameter of the disturbances online, i.e. the period of the sine
disturbances. Thus, in future works, the adaptive law and learning
based algorithm will be investigated to estimate the parameters of
disturbances online. Meanwhile, it is shown in many researches
that the bandwidth of ESO is key point that determines the per-
formance. The parameters optimization method with constraint of
bandwidth will also be under investigation. It is also known that
the controller and observer design for systems with dead-zone
and constraints have been widely concerned [9,24]. Thus, the ESO
design for such systems will also be under investigation.
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