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ABSTRACT Parameter identification of quantum systems is a fundamental task in developing practical
quantum technology. In this article, we study the identification of time-varying decoherence rates for open
quantum systems. Given themeasurement data of local observables, this can be formulated as an optimization
problem.We expand the unknown decoherence rates into Fourier series and take the expansion coefficients as
optimization variables.We then convert it into aminimax problem and apply a sequential linear programming
technique to solve it. Numerical study on a two-qubit quantum system with a time-varying decoherence rate
demonstrates the effectiveness of our algorithm.

INDEX TERMS Identification algorithm, minimax problem, open quantum system, sequential linear
programming.

I. INTRODUCTION
In the past two decades, quantum information technol-
ogy made significant progresses in a variety of fields such
as quantum communication [1], quantum computation [2],
quantum simulation [3], and quantum precision measure-
ment [4]. In many of these applications, a fundamental ques-
tion is to obtain accurate dynamical models of the underlying
quantum systems as well as the environments with which
they interact. For example, in quantum computation, accurate
models are required to generate high-fidelity quantum oper-
ations. In quantum control, the knowledge of system models
has direct impact on the system performance [5].
For a closed quantum system that has no interaction with

the environment, its dynamics are entirely determined by the
Hamiltonian, and thus, the system identification is all about
Hamiltonian parameters’ estimation [6]. In [7], the identi-
fiability of a closed quantum system has been studied, that
is, how much knowledge can be attained from the system.
A tomography method has been extensively used to obtain
the Hamiltonian of a chain of interacting spins [8]. The work
in [9] utilizes the time traces of observable measurements
to identify Hamiltonian parameters, and the corresponding

identifiability problem is then studied in [10] and [11]. The
work in [12] proposes an effective two-step optimization al-
gorithm and shows that it has low computational complexity.
In reality, a quantum system usually interacts with its sur-

roundings and, thus, is subject to an inevitable environment.
These types of systems are called as open quantum systems.
In many open quantum systems, the dynamics can be de-
scribed by a Markov approximation, namely, the interaction
time is so short that the information flows from the system to
the environment in a unidirectional manner [13]. The iden-
tifiability of Markovian quantum systems has been studied
in [15]. The work in [16] proposes a dynamical identification
approach by using quantum trajectory. In [17], an algorithm
is developed to estimate system parameters from a temporal
record of measured data. The work in [18] applies continuous
measurement methods to identify system structure.
In some other open quantum systems, when a time-scale

separation between the system and the environment is not
possible, the information can flow from the environment
back into the system, which results in a non-Markovian
open quantum system [13], [14]. Solid-state physics is
a broad arena, where open quantum systems exhibiting
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FIGURE 1. Composite quantum system consisting of a subsystem S and
its surrounding environment E .

non-Markovian effects may appear [19]. To develop an ac-
curate but efficient description of the system–environment
interaction that goes beyond theMarkov approximation, non-
Markovian generalization of the Lindblad equation has been
discussed in [13] and [29]. The work in [20] uses the system
responses to an ensemble of measurements to identify the
noises. In [21], a direct gradient algorithm has been devel-
oped to identify the non-Markovian environment for spin
chains by time-local master equations. Other parameter es-
timation algorithms for quantum dynamics were proposed
in [22]–[24].
The time-varying decoherence rates are important to un-

derstand the correlations of environments for Markovian and
non-Markovian open quantum systems [21], [46]. In addi-
tion, we can measure the non-Markovianity of open quan-
tum systems from time-varying decoherence rates [29], [30],
which can give insights into the nature of non-Markovian
effects.
In this article, we study the estimation of time-varying

decoherence rates for open quantum systems. More specif-
ically, we assume that we have access to local observable
measurements and consider the case when the environment
is characterized by time-varying decoherence rates. By ex-
panding them in Fourier series, we formulate the identifi-
cation into an optimization problem with Fourier expansion
coefficients as optimization variables. We further transform
it into a minimax problem and apply the sequential linear
programming technique to solve it efficiently. A numerical
study on a two-qubit quantum system with one decoherence
rate demonstrates the efficacy of our algorithm.
The rest of this article is organized as follows. In Sec-

tion II, a class of open quantum systems and its dynamic
models are described. The identification problem is formu-
lated in Section III. Section IV presents an identification
algorithm based on sequential linear programming proposed
to solve the parameter estimation problem of open quantum
systems. Numerical examples are presented and the perfor-
mance of the identification algorithm is compared in Sec-
tion V. Section VI concludes this article.

II. BACKGROUND AND PRELIMINARIES
Consider a composite quantum system, as shown in Fig. 1,
which consists of a quantum subsystem S and its surrounding
environment E. In particular, S is the physical system under

investigation, e.g., a qubit network. This can be used to de-
scribe a wide range of applications in quantum information
technology, e.g., spin wire that enables quantum state trans-
fer [25]. We now briefly introduce the procedure to derive the
dynamics of S [26].
The physical state of the composite system can be de-

scribed by a density operator ρse(t ), which is a positive-
semidefinite Hermitian matrix with unity trace. This is a
closed system, and its dynamics is governed by the von Neu-
mann equation

d

dt
ρse(t ) = −i [H(t ), ρse(t )] (1)

where i = √−1, [A,B] = AB− BA, we set � = 1, and H(t )
is the Hamiltonian and given by

H(t ) = Hs(t ) ⊗ Ie + Is ⊗ He(t ) + HI (t ).

Here, Hs(t ) is the Hamiltonian for the subsystem S, He(t ) is
the Hamiltonian for the environment E, HI (t ) is the interac-
tion Hamiltonian between the subsystem S and the environ-
ment E, I is the identity matrix, and ⊗ denotes the tensor
product.
The physical state of S can be described by a reduced

density operator ρs ∈ CN×N , which is also a positive-
semidefinite Hermitian matrix with unity trace, and it can be
obtained from ρse as ρs = Trs ρse, where Trs is an operation
known as the partial trace [2].
By employing the time-convolutionless projection opera-

tor technique [27], [28], we obtain that the dynamics of ρs
can be approximated by the following time-local quantum
master equation [29]:

ρ̇s = Lρs = −i[Hs(t ), ρs] + LDρs

= −i[Hs(t ), ρs]

+ 1

2

N2−1∑
j,l=1

r jl (t )
([
Lj, ρsL

†
l

]
+
[
Ljρs,L

†
l

])
(2)

where LD is the Lindblad generator, r jl (t ) are the time-
varying decoherence rates that characterize the environment
and r̄ jl (t ) = rl j(t ), and {iL j} is an orthonormal basis for the
Lie algebra su(N), i.e., Lj = L†j with † denoting conjugate
transpose. In the following sections, ρ(t ) refers to ρs(t ).
From (2), we can form the decoherence matrix R as

R = {
r jl (t )

}N2−1
j,l=1 . (3)

Because R is Hermitian, it can be diagnolized as R = U�U†.
We can also write it in the component form

r jl (t ) =
∑
k

Ujk(t )�k(t )U
†
lk(t ) (4)

where �k(t ) are the eigenvalues of R and often referred as
canonical decoherence rates.
Now, the environment E is called Markovian if �k(t ) are

nonnegative throughout the whole time evolution [29]. This
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results in that the distinguishability between any two arbi-
trary initial states of S decreases over the time. In the infor-
mation interpretation, it indicates that the information flows
from the system S to the environment E continuously, and
there is no information flowing from E back to S [26]. This
is the memoryless effect that is consistent with the definition
of Markovian in the classical case.
On the other hand, the environment E is called non-

Markovian if there exists some time instant t at which �k(t )
is negative [29]. This, in turn, indicates that the distinguisha-
bility between any two arbitrary initial states of S might
increase, and there may exist information flowing from E
back to S. This is the memory effect, and it is also consistent
with the definition of non-Markovian in the classical case.
For more details, see [13] and [26].

III. PROBLEM FORMULATION
In this article, we assume that the Hamiltonian Hs is known
and time independent, andwe are interested in identifying the
time-varying decoherence rates r jl (t ) from the measurement
data of the quantum system as it evolves.
Introducing a coherence vector

x(t ) =
⎡
⎣ x1(t )

. . .

xN2−1(t )

⎤
⎦

we can obtain a linear differential equation characterizing the
complete quantum dynamics [21]

ẋ(t ) = A(t )x(t ) + b(t ) (5)

where the jth component of x(t ) is the expectation of the
observable Lj, namely, x j(t ) = TrLjρ(t ), where Lj is the
same as (2). The detailed procedure of deriving A(t ) ∈
R(N2−1)×(N2−1) and b(t ) ∈ R(N2−1) from (2) can be found
in [31] and [32]. Denote Re(x) as the real part of x and Im(x)
as the imaginary part of x. From [31] and [32], the uvth ele-
ment of the matrix A(t ) ∈ R(N2−1)×(N2−1) can be calculated
as Auv = Quv + Ruv , where

Quv =
N2−1∑
l=1

Clvuhl

Ruv = −1

4

N2−1∑
j,l,m=1
( j≤l)

(2−δ jl ) Re
(
r jl (t )

)
(CjmuClmv+ClmuCjmv )

+ 1

2

N2−1∑
j,l,m=1
( j<l)

Im
(
r jl (t )

) (
Clmud jmv −Cjmudlmv

)
(6)

and the uth element of b ∈ RN2−1 is

bu = − 2

N

N2−1∑
j,l,m=1
( j<l)

Im(r jl (t ))Cjlu. (7)

All the structure constants Cjlm and d jlm are real following
from the Lie structure and the hermiticity of the decoherence
matrix R and hl are from the specific Hamiltonian [31], [32].
The explicit form of Cjlm and d jlm can be found in [32,
Appendix A.1] for su(2), su(3), and su(4) for given ba-
sis, and we also give these structure constants of su(4) in
Appendix B. Note that because the decoherence rates r jl (t )
are time varying, both A(t ) and b(t ) are time-varying real
matrices [21].
In physical experiments, we can measure the expectation

values of certain observables, e.g., local observables in a
qubit network are frequently tracked as a function of time.
These expectations can be expressed by a linear combination
of the coherence vector x and, thus, can be written as

y(t ) = cx(t ) (8)

where c is a time-independent matrix with N2 − 1 columns.
Equations (5) and (8) completely describe the dynamics of a
qubit network subject to environments.
The dynamics of the coherence vector x(t ) is given in (5).

Because it is possible that not all the elements in x(t ) are
involved in the time evolution of the measured observable,
we may find a reduced dynamical equation. This can be
achieved by the following constructive procedure, which is a
generalization of the filtration procedure in geometric control
theory [33].
Since x j(t ) = Tr Ljρ(t ), we define the adjoint generator of

dynamics through

ẋ j = Tr
[
Lj(Lρ)

] = Tr
[(

L†Lj
)

ρ
]
. (9)

An iterative procedure can then be defined as

G0 = M, Gi = L† [Gi−1
] ∪ Gi−1 (10)

where M is the collection of unique basis elements that
appear in the expansion of all the measured observables and

L† [Gi−1
] =

{
Lj : tr

(
L†jL†g

)
�= 0, where g ∈ Gi−1

}
.

That is, at each iteration, we compute the adjoint evolution
of each of the elements of Gi−1, and if the result has nonzero
inner product with a basis element not already in Gi−1, this
basis element is added to Gi. Since the dynamical system is
finite dimensional, this iterationwill saturate at amaximal set
Ḡ after finite steps, which is referred as accessible set in [17].
More discussion about how to generate accessible sets can be
found in [34].
This leads to a reduced dynamical equation

˙̃x(t ) = Ã(t )x̃(t ) + b̃(t )

y(t ) = c̃x̃(t ) (11)

where Ã(t ), b̃(t ), and c̃ are submatrices of A(t ), b(t ), and c,
respectively. This filtration procedure is important because
it can significantly reduce the dimension of the quantum
systems, as shown in [9], [10], and [17].
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IV. IDENTIFICATION ALGORITHM
Our objective is to use the time traces of the measured ob-
servable expectation values to estimate the unknown time-
varying decoherence rates that characterize the environment.
The estimation setting we consider is as follows. Suppose

that we prepare the qubit network at a given initial condition
and let this system evolve for a fixed time duration [0,T ].
We then measure a local observable at regular time instants
k�t for some sampling period �t and let K = T/�t. After
repeating this measurement for multiple times and taking
average, we obtain an approximation of the expectation value
for the prescribed observable at all the sampling time in-
stants, which is named time traces of system observables.
The details of the measurement process can be found in [35].
Denote these measurement results as y = [y(1), . . . , y(K)].
The estimation problem was formulated as an optimization
problem in [21]

min
r jl (t )

J = 1

2

∑K

k=1
(ŷ(k) − y(k))2 (12)

where ŷ(k) are the outputs generated by the estimated deco-
herence rate r(t ) from the dynamical equation (11).
In general, the time-varying decoherence rates r jl (t ) are

complex, and therefore, Ã and b̃ depend on both real and
imaginary parts of r jl (t ). For brevity of presentation, we
consider a simplified case when Ã and b̃ are dependent on
a single real decoherence rate r(t ). In general, if there are n
decoherence rates, we need to identify the real and imaginary
parts for each of them, which amounts to 2n functions. As
can be seen from later discussion on Fourier decomposition,
the computational load grows linearly with number of de-
coherence rates, and thus, it is straightforward to extend the
ensuing identification technique to the multiple r jl (t ) case.

We use Fourier series decomposition to express r(t ) as a
finite summation of harmonics

r(t ) = a0 +
M∑
m=1

[am cosmωt + bm sinmωt] (13)

where ω = 2π
T . We do not assume that r(t ) is periodic be-

cause we only need to identify it in a fixed time duration
[0,T ]. The expansion is truncated at a value M, which can
be chosen so that most of the energy of decoherence rate
stays within the limitMω. In real physical experiments, there
usually exists an upper bound for the significant frequency
components in a signal. If such information is known a pri-
ori, we may chooseM such that the expansion up to theMth
order contains the major part of the energy spectrum. If there
is no information about the frequency distribution, we can
choose a large enough value of M and then verify at a later
time.
Note that Fourier series decomposition is widely used

in many applications of physical systems. For instance,
Niu et al. [36] used Fourier series decomposition to better
estimate the total building energy consumption of heating,
ventilation, and air conditioning. Chen et al. [37] developed a

general model to characterize multicomponent chirp signals
by using Fourier series.
For a given time-varying r(t ), there is generally no ana-

lytical method to solve (11). To obtain numerical solutions,
we use a piecewise constant function to approximate r(t ).
For simplicity, we use the same time gridding as in the local
observable measurements, that is, K equally distributed in-
tervals {[tk, tk+1]}K−1

k=0 each of length �t on the time duration
[0,T ]. On each interval [tk, tk+1], assume that the decoher-
ence rate r(t ) takes constant value, which is equal to that on
the left boundary t = tk:

r(k) = a0 +
∑M

m=1

[
am cosmk

2π

K
+ bm sinmk

2π

K

]
.

(14)
Therefore, the matrices Ã(t ) and b̃(t ) in (11) become constant
matrices Ãk and b̃k on the interval [tk, tk+1], for k = 0, 1,
. . . , K − 1. The time-varying (11) becomes a time-invariant
equation

˙̃x(t ) = Ãkx̃(t ) + b̃k

ŷ(t ) = c̃x̃(t ), t ∈ [tk, tk+1] (15)

where Ãk and b̃k refer to Ã(tk ) and b̃(tk ), respectively. The
solution of (15) can be obtained as

x̃k+1 = eÃk�t x̃k +
∫ �t

0
eÃkτ b̃kdτ (16)

where x̃k+1 and x̃k refer to x̃(tk+1) and x̃(tk ), respectively.
Now, we can explicitly compute the output from a piecewise
constant approximation of r(t ), as defined in (14).
Note that the optimization problem (12) uses a least mean

square type of cost function, which sums up the difference
between the real measurement y(k) and the output ŷ(k) gen-
erated by an estimated r(k) at all the time instants tk and,
thus, makes the optimization algorithm difficult to converge.
To effectively estimate the decoherence rate, we transform it
into a minimax problem, which instead minimizes the upper
bound for all these individual errors. This makes it possible
to reduce these errors simultaneously and solve the prob-
lem efficiently by using the sequential linear programming
technique and, therefore, has smaller computational load and
converges faster [38], [39].
Juxtaposing all the coefficients a0, am, and bm into a vector,

we obtain

p = [a0, a1, . . . , aM, b1, . . . , bM]
T . (17)

To identify p, we need to ensure K ≥ 2M + 1, and we can
obtain the following minimax problem:

min
p

max
k∈{1,2,...,K}

Jk(p) (18)

where

Jk(p) = 1

2
(ŷ(k) − y(k))2. (19)

The function Jk measures the difference between y(k) and
ŷ(k), and maxk Jk is the maximum error over all the time
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instants {tk}Kk=1. When this maximum error is minimized, we
achieve the goal of finding an approximate estimation of the
decoherence rate.
Define γ = max{Jk}Kk=1. The minimax problem can be

transformed into an equivalent form as

min
p

γ

subject to J1(p) ≤ γ , . . . , JK (p) ≤ γ . (20)

Suppose that at the jth step in the iteration, the current es-
timation of the expansion coefficients p is pj. We want to
determine a small correction term �pj such that pj+1 =
pj + �pj will reduce the maximum error. By first-order ap-
proximation, we have that

Jk(p
j+1) ≈ Jk(p

j ) + ∇T
pj Jk(p

j )�pj. (21)

Here, ∇T
pj
Jk(pj ) is the gradient of Jk(pj ) with respect to pj,

and it can be calculated as

∇T
pj Jk(p

j ) = (ŷ(k) − y(k))c̃
dx̃k
dpj

. (22)

The analytical procedure to compute dx̃k
dpj

is presented as fol-
lows.
Denote the nth element of p as pn and we calculate the nth

element of dx̃k
dp , i.e.,

dx̃k
dpn

. Taking derivatives of both sides of
(16) yields

dx̃k+1

dpn
= deÃk�t

dpn
x̃k + eÃk�t

dx̃k
dpn

+
∫ �t

0

deÃkτ

dpn
dτ b̃k +

∫ �t

0
eÃkτdτ

db̃k
dpn

(23)

and the initial condition is dx̃0
dpn

= 0. It is clear that the gradi-
ent at time instant tk depends only on gradient at the previous
time instant tk−1.
In this iterative calculation, we need to determine three

terms, namely,

deÃk�t

dpn
,

∫ �t

0

deÃkτ

dpn
dτ, and

db̃k
dpn

.

Note that Ã(t ) and b̃(t ) are submatrices of A(t ) and b(t ), re-
spectively. For the simplified case of r(k) under investigation,
we can write

Ãk = Q̃0 + r(k)R̃0

b̃k = r(k)b̃0. (24)

Rewrite (14) as r(k) = pT dk, where

dk = [
1 cos k . . . cosMk sin k . . . sinMk

]T
.

Denote the nth element of dk as dkn. Now, we can rewrite
(24) as

Ãk = Q̃0 + pT dkR̃0 = Q̃0 +
2M+1∑
n=1

pnd
k
nR̃0

b̃k = pT dkb̃0 =
2M+1∑
n=1

pnd
k
nb̃0. (25)

To evaluate the derivative of a matrix exponential function
with respect to a vector, we need the following formula [40]:

d

dx
e(A+xB)t

∣∣∣∣
x=0

=
∫ t

0
eAvBe−AveAtdv. (26)

Now, the first term deÃk�t

dpn
can be obtained as

deÃk�t

dpn
= dkn

∫ �t

0
eÃkvR̃0e

−Ãkvdv · eÃk�t . (27)

The second term
∫ �t
0

deÃkτ

dpn
dτ is

∫ �t

0

deÃkτ

dpn
dτ = dkn

∫ �t

0

∫ τ

0
eÃkvR̃0e

−Ãkvdv · eÃkτdτ.
(28)

And the third term db̃k
dpn

is straightforward

db̃k
dpn

= dknb̃0. (29)

We then apply a sequential linear programming algorithm
as follows.

1) Choose an initial guess of the Fourier coefficient vector
p0.

2) At the jth iteration, compute Jk(pj ) and ∇T
pj
Jk(pj );

3) Determine the increment �pj from the following lin-
ear programming problem:

min
�pj

γ (30)

subject to

∇pj J1(p
j )�pj + J1(p

j ) ≤ γ

...

∇pj JK (p
j )�pj + JK (p

j ) ≤ γ .

4) Let pj+1 = pj + �pj.
5) Repeat 2–4 until a desired convergence is reached.

The main advantage for this algorithm is that in each iter-
ation, we only need to solve a linear programming problem,
which accelerates the convergence. Then, we give the algo-
rithm complexity analysis for our estimation algorithm. The
main algorithm complexity is to solve the linear program-
ming problem (30). The work in [41]–[43] has discussed the
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algorithm complexity for the linear programming problem

min dT x

s.t. Dx ≥ q (31)

whereD ∈ Rm×n, q ∈ Rm, and d ∈ Rn. An algorithm requires
O((m+ n)1.5nL) [43] in the worst case, where m is the num-
ber of constraints and n is the number of variables. The
parameter L is defined as

L = log2 (1 + detmax) + log2 ξ + log2(m+ n) (32)

where detmax denotes the largest absolute value of the deter-

minant of any square submatrix of [
dT 0
D q

] and ξ denotes the

least common multiple of the denominators of all the num-
bers in the input [43]. We define Y = [J1(pj ), . . . , JK (pj )]T ,
�k j = ∇T

pj
Jk(pj ), d = [0, . . . , 0, 1]T . Then, (30) can be

transformed as standard form like (31)

min dT
[

�pj

γ

]

s.t.
[−� 1

] [�pj

γ

]
≥ Y. (33)

Therefore, in each iteration, our algorithm complexity is
O((2M + K + 2)1.5(2M + 2)L), where K = T

�t is the num-
ber of time intervals and M is the Fourier expansion order.
Now, some fast algorithms to solve sparsity linear program-
ming problem have also been given in [44] and [45]. If the
number of iterations is N, the total algorithm complexity is
O((2M + K + 2)1.5(2M + 2)LN) in the worst case for our
algorithm.
Note that our algorithm searches optimal solutions accord-

ing to the gradient, and we might find local minimum and
cannot obtain accurate estimate. Thus, we need to choose dif-
ferent initial guesses of the Fourier coefficient p0 and repeat
our algorithm to find the optimal local minimum.

V. NUMERICAL EXAMPLES
In this section, we investigate the estimation of one time-
varying decoherence rate by applying the algorithm derived
in the preceding section.
Consider a system in which two qubits are coupled with

XY interaction, and the system per se is surrounded by a
reservoir consisting of harmonic oscillators in the vacuum
state. This two-qubit example can be used to describe the
system of two two-level atoms interacting with an optical
cavity, which is an important example to demonstrate the
time-varying decoherence rate and non-Markovianity [46].
The corresponding time-local master equation can then be
given as [46]

ρ̇(t )= − i[H, ρ(t )]+ r(t )

2

2∑
l=1

(
[σ l

−ρ(t ), σ l
+]+[σ l

−, ρ(t )σ l
+]
)
.

(34)

In (34), the Hamiltonian H can be written as

H =
2∑
l=1

ωl

2
σ l
z + g

2
(σ 1
x σ 2

x + σ 1
y σ 2

y ) (35)

where σx, σy, and σz are Pauli matrices

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
, σz =

[
1 0
0 −1

]
(36)

and σ 1
ασ 2

β is the tensor product of σα on the first qubit and

σβ on the second qubit. The ladder operators σ l− and σ l+ are
defined as

σ l
− = 1

2
(σ l
x − iσ l

y )

σ l
+ = 1

2
(σ l
x + iσ l

y ).

For a particular system, let g= 1 GHz be the coupling
strength between two qubits, and ω1 = ω2 = 0.5 GHz be the
angular frequencies for these two qubits because in experi-
mental conditions, these frequencies are usually in gigahertz.
The decoherence rate r(t ) can be obtained from a damped
Jaynes–Cummings model with detuning by using the time-
convolutionless projection operator technique [46], and it can
be written as

r(t ) = r0λ2

λ2 + f 2

[
1 − e−λt

(
cos f t − f

λ
sin f t

)]

+ r20λ
5e−λt

2
(
λ2 + f 2

)3
{(

1 − 3
f 2

λ2

) (
eλt − e−λt cos 2 f t

)

− 2

(
1 − f 4

λ4

)
λt cos f t + 4

(
1 + h2

λ2

)
f t sin f t

+ f

λ

(
3 − f 2

λ2

)
e−λt sin 2 f t

}
(37)

where the parameter λ defines the spectral width of the atom–
cavity coupling, and we choose r0 = 5 GHz, λ = 0.3 r0, and
f = 8 λ [46]. In the ensuing numerical study, this analytic
expression can be used to generate measurement data for
identification.
Assume that we measure the observable σz for the first

qubit, we can obtain the reduced coherence vector as

x̃ =
[〈

σ 1
z

〉
,
〈
σ 2
z

〉
,
〈
σ 1
x σ 2

x

〉
,
〈
σ 1
x σ 2

y

〉
,
〈
σ 1
y σ 2

x

〉
,
〈
σ 1
y σ 2

y

〉]T
(38)
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where each element in x̃ is the expectation of an observable,
e.g.,

〈
σ 1
z

〉 = Trσ 1
z ρ. The detailed procedure to derive the ac-

cessible set is given in Appendix A. Furthermore, we have

Ã(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−r(t ) 0 0 −g g 0
0 −r(t ) 0 g −g 0
0 0 −r(t ) −ω2 −ω1 0
g −g ω2 −r(t ) 0 −ω1

−g g ω1 0 −r(t ) −ω2
0 0 0 ω1 ω2 −r(t )

⎤
⎥⎥⎥⎥⎥⎥⎦

b̃(t ) = [−r(t ) −r(t ) 0 0 0 0
]T

c̃ = [
1 0 0 0 0 0

]
. (39)

As discussed earlier, the truncation order M can be deter-
mined by the energy spectrum of the decoherence rate. Here,
we choose M = 20 as a tradeoff between numerical accu-
racy and convergence rate. The initial values of the Fourier
coefficients are set as a0 = 0.01 and all the other elements
as 0, and the terminal time is γ0T = 2.5, and the step size
�t is 2 × 10−12 s. In this example, the frequency f in r(t ) is
12 GHz; then, we have 2π

f /�t ≈ 1049 steps in one oscilla-
tion period. In general, the larger the frequency f , the smaller
the step size �t. Moreover, the gradient computation can be
further simplified.
From (39), we can write Ãk = Q̃0 + r(k)R̃0, where

Q̃0 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 −g g 0
0 0 0 g −g 0
0 0 0 −ω2 −ω1 0
g −g ω2 0 0 −ω1

−g g ω1 0 0 −ω2
0 0 0 ω1 ω2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

R̃0 = −I. (40)

Equation (27) can then be simplified to

deÃk�t

dpn
= −dkneÃk�t�t = −dkne−r(k)�t eQ̃0�t�t (41)

and (28) is now
∫ �t

0

deÃkτ

dpn
dτ = −dnk

∫ �t

0
eÃkτ τdτ

= −dnk
(
�teÃk�t Ã−1

k −
(
eÃk�t − I

)
Ã−2
k

)
.

(42)
The numerical results are shown in Fig. 2. The real time-

varying decoherence rate r(t ) is plotted in blue solid, the
initial guess r0(t ) in black solid, and the estimated r̃(t ) in red
dashed. This result demonstrates that the proposed algorithm
can estimate the unknown decoherence rate to a satisfactory
level.
In Fig. 3, we show how the cost function is reduced as the

iteration proceeds, where γ quantifies the upper bound of the
errors between the measurements and the outputs from the
estimated decoherence rate at all the time instants. It is clear
that the minimax algorithm brings down the cost function

FIGURE 2. Estimation results of the decoherence rate, where r(t )
denotes the real time-varying decoherence rate, r0(t ) is the initial guess,
and r̃(t ) is the estimated decoherence rate.

FIGURE 3. Cost function decreases as the iteration proceeds. Here, γ is
the maximum difference over all time instants and J

K is the average
mean squared error.

quickly. We also plot average mean squared error J
K to show

the gap between (12) and (18).
To ensure that the identified decoherence rate generates a

real physical system, we need to check the complete posi-
tivity. Denote the flow of (34) as �t , i.e., ρ(t ) = �t (ρ(0)).
From [47, Th. 2], the linear map �t is completely positive if
and only if

(�t (Eik ))1�i,k�n =

⎡
⎢⎣

�t (E11) · · · �t (E1n)
...

...
�t (En1) · · · �t (Enn)

⎤
⎥⎦ (43)

is positive semidefinite, whereEik is an n× nmatrix with 1 at
the ikth entry and 0 elsewhere.We then compute all the eigen-
values of (�t (Eik ))1�i,k�n with the identified decoherence
rate over the entire time duration. The results are shown as in
Fig. 4. It is clear that all these eigenvalues are nonnegative,
and thus, the complete positivity is maintained.
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FIGURE 4. Eigenvalues of (�t (Eik ))1�i,k�n with the identified r̃(t ).

TABLE I Results of the Current Algorithm Versus Those in [21]

Xue et al. [21] studied the same model by engaging a
direct gradient algorithm in the time domain. Setting the
initial conditions and the termination conditions as the same,
we can obtain the number of iterations and time consumed
of these two algorithms, as shown in Table I. It is evident
that the current algorithm uses fewer iterations and less time
to achieve the same accuracy. Another least squares iden-
tification scheme was proposed in [48], and it can only be
applied to one-qubit systems. Our algorithm can be applied
to multiqubit systems.
The advantage of the current minimax algorithm is man-

ifold. First, the direct gradient computation in [21] depends
on all the past gradients and thus needs to keep track of all
the information and consumes considerable computer time
and storage. The minimax algorithm presented here uses an
iterative procedure and, thus, has much smaller computa-
tional load and converges faster. Second, the size of opti-
mization in [21] is the number of discretization steps in the
evolved time duration. This is much larger than that in the
minimax algorithm, which is the truncation order of Fourier
expansion. Third, it is cumbersome to ensure smoothness of
the signals in the time discretization setting, whereas in the
Fourier expansion, it is naturally guaranteed.

VI. CONCLUSION
In this article, we have developed an efficient algorithm
to identify time-varying decoherence rates with local ob-
servable measurements and known time-independent sub-
system’s Hamiltonian, which can help us measure non-
Markovianity of open quantum systems and understand
system–environment correlations. By expanding the time-
varying decoherence rates into Fourier series, we converted

the identification task into a minimax optimization problem.
The sequential linear programming technique was then ap-
plied to solve it quickly. Numerical study of a two-qubit
model with one decoherence rate demonstrated the effective-
ness of our algorithm. Comparing to existing algorithms, our
algorithm converges fast and can be applied to multiqubit
systems. In the future, we plan to apply the algorithm to
more complicated models and further improve the conver-
gence rate. We will also investigate the identifiablity of time-
varying decoherence rates and the robustness of the proposed
algorithm against noise.

APPENDIX A
ACCESSIBLE SET FOR OUR NUMERICAL EXAMPLE
To better explain the detailed procedure to derive the acces-
sible set, we work out the accessible set for the numerical
example as follows.
First, we measure the observable σ 1

z and the initial acces-
sible set is thus G0 = {σ 1

z }. Derive the dynamics for
〈
σ 1
z

〉
as

d
〈
σ 1
z

〉
dt

= Tr
(
σ 1
z ρ̇
)

= Tr
(
σ 1
z (−i[H, ρ])

)

+ r(t )

2
Tr
(
σ 1
z

[
σ 1

−ρ, σ 1
+
]

+ σ 1
z

[
σ 1

−, ρσ 1
+
])

+ r(t )

2
Tr
(
σ 1
z

[
σ 2

−ρ, σ 2
+
]

+ σ 1
z

[
σ 2

−, ρσ 2
+
])

.

(44)
The first term in the right-hand side of (44) can be derived as

Tr
(
σ 1
z (−i[H, ρ])

)
= −iTr

(
σ 1
z

[ω1

2
σ 1
z + ω2

2
σ 2
z

+g

2

(
σ 1
x σ 2

x + σ 1
y σ 2

y

)
, ρ
])

= − ig

2
Tr
(
σ 1
z σ 1

x σ 2
x ρ − σ 1

z ρσ 1
x σ 2

x

)

− ig

2
Tr
(
σ 1
z σ 1

y σ 2
y ρ − σ 1

z ρσ 1
y σ 2

y

)

= − ig

2
Tr
(
σ 1
z σ 1

x σ 2
x ρ − σ 1

x σ 2
x σ 1

z ρ
)

− ig

2
Tr
(
σ 1
z σ 1

y σ 2
y ρ − σ 1

y σ 2
y σ 1

z ρ
)

= g
〈
σ 1
y σ 2

x

〉
− g

〈
σ 1
x σ 2

y

〉
.

The second term is obtained

Tr
(
σ 1
z

[
σ 1

−ρ, σ 1
+
]

+ σ 1
z

[
σ 1

−, ρσ 1
+
])

= Tr
((

2σ 1
+σ 1

z σ 1
− − σ 1

z σ 1
+σ 1

− − σ 1
+σ 1

−σ 1
z

)
ρ
)

= 0

and the third term is also calculated as

Tr
(
σ 1
z

[
σ 2

−ρ, σ 2
+
]

+ σ 1
z

[
σ 2

−, ρσ 2
+
])

= Tr
((

2σ 2
+σ 1

z σ 2
− − σ 1

z σ 2
+σ 2

− − σ 2
+σ 2

−σ 1
z

)
ρ
)

= −Tr
((

2σ 1
z + 2I

)
ρ
)

= −2〈σ 1
z 〉 − 2.
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Therefore, (44) becomes

d
〈
σ 1
z

〉
dt

= g
〈
σ 1
y σ 2

x

〉
− g

〈
σ 1
x σ 2

y

〉
− r(t ) − r(t )

〈
σ 1
z

〉
. (45)

Now, we need to find out the dynamics for
〈
σ 1
y σ 2

x

〉
and〈

σ 1
x σ 2

y

〉
, and the accessible set can be expanded to

G1 =
{
σ 1
z , σ 1

x σ 2
y , σ 1

y σ 2
x

}
.

Proceeding further, we have

d
〈
σ 1
x σ 2

y

〉
dt

= Tr
(
σ 1
x σ 2

y ρ̇
)

= Tr
(
σ 1
x σ 2

y (−i[H, ρ])
)

+ r(t )

2
Tr
(
σ 1
x σ 2

y

[
σ 1

−ρ, σ 1
+
]

+σ 1
x σ 2

y

[
σ 1

−, ρσ 1
+
])

+ r(t )

2
Tr
(
σ 1
x σ 2

y

[
σ 2

−ρ, σ 2
+
]

+σ 1
x σ 2

y

[
σ 2

−, ρσ 2
+
])

. (46)

By calculating, we obtain

Tr
(
σ 1
x σ 2

y (−i[H, ρ])
)

= −ω1

〈
σ 1
y σ 2

y

〉
+ ω2

〈
σ 1
x σ 2

x

〉

− g
〈
σ 2
z

〉
+ g

〈
σ 1
z

〉

Tr
(
σ 1
x σ 2

y

[
σ 1

−ρ, σ 1
+
]

+ σ 1
x σ 2

y

[
σ 1

−, ρσ 1
+
])

= −
〈
σ 1
x σ 2

y

〉

Tr
(
σ 1
x σ 2

y

[
σ 2

−ρ, σ 2
+
]

+ σ 1
x σ 2

y

[
σ 2

−, ρσ 2
+
])

= −
〈
σ 1
x σ 2

y

〉
.

Equation (46) can be simplified to

d
〈
σ 1
x σ 2

y

〉
dt

= − ω1

〈
σ 1
y σ 2

y

〉
+ ω2

〈
σ 1
x σ 2

x

〉

− g
〈
σ 2
z

〉
+ g

〈
σ 1
z

〉
− r(t )

〈
σ 1
x σ 2

y

〉
. (47)

Similarly, we can obtain the dynamics for
〈
σ 1
y σ 2

x

〉
as

d
〈
σ 1
y σ 2

x

〉
dt

= ω1

〈
σ 1
x σ 2

x

〉
− ω2

〈
σ 1
y σ 2

y

〉

− g
〈
σ 1
z

〉
+ g

〈
σ 2
z

〉
− r(t )

〈
σ 1
y σ 2

x

〉
. (48)

Then, we need to find out dynamics for
〈
σ 2
z

〉
,
〈
σ 1
x σ 2

x

〉
, and〈

σ 1
y σ 2

y

〉
, and the accessible set becomes

G2 =
{
σ 1
z , σ 2

z , σ 1
x σ 2

x , σ 1
x σ 2

y , σ 1
y σ 2

x , σ 1
y σ 2

y

}
.

The dynamics for these three terms can be derived as

d
〈
σ 2
z

〉
dt

= − g
〈
σ 1
y σ 2

x

〉
+ g

〈
σ 1
x σ 2

y

〉
− r(t ) − r(t )

〈
σ 2
z

〉
(49)

d
〈
σ 1
x σ 2

x

〉
dt

= − ω1

〈
σ 1
y σ 2

x

〉
− ω2

〈
σ 1
x σ 2

y

〉
− r(t )

〈
σ 1
x σ 2

x

〉
(50)

d
〈
σ 1
y σ 2

y

〉
dt

= ω1

〈
σ 1
x σ 2

y

〉
+ ω2

〈
σ 1
y σ 2

x

〉
− r(t )

〈
σ 1
y σ 2

y

〉
. (51)

In (49)–(51), all the observables are in G2. Therefore, the
iteration saturates at G2.
Combining these equations of (45)–(51), we obtain the

reduced dynamical equation

˙̃x(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−r(t ) 0 0 −g g 0
0 −r(t ) 0 g −g 0
0 0 −r(t ) −ω2 −ω1 0
g −g ω2 −r(t ) 0 −ω1

−g g ω1 0 −r(t ) −ω2
0 0 0 ω1 ω2 −r(t )

⎤
⎥⎥⎥⎥⎥⎥⎦
x̃(t )

+

⎡
⎢⎢⎢⎢⎢⎢⎣

−r(t )
−r(t )
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦
y =

〈
σ 1
z

〉
(52)

where the reduced coherence vector is

x̃ =
[〈

σ 1
z

〉
,
〈
σ 2
z

〉
,
〈
σ 1
x σ 2

x

〉
,
〈
σ 1
x σ 2

y

〉
,
〈
σ 1
y σ 2

x

〉
,
〈
σ 1
y σ 2

y

〉]T
.

(53)
If we measure the observable σ 1

x , we can obtain the coher-
ence vector in a similar filtration procedure as

x̃ =
[〈

σ 1
x

〉
,
〈
σ 1
y

〉
,
〈
σ 2
x

〉
,
〈
σ 2
y

〉
,
〈
σ 1
x σ 2

z

〉
,

〈
σ 1
y σ 2

z

〉 〈
σ 1
z σ 2

x

〉
,
〈
σ 1
z σ 2

y

〉]T
(54)

˙̃x(t ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−r(t )/2 −ω1 0 0 0 0 0 g
ω1 −r(t )/2 0 0 0 0 −g 0
0 0 −r(t )/2 −ω2 0 g 0 0
0 0 ω2 −r(t )/2 −g 0 0 0

−r(t ) 0 0 g −3r(t )/2 −ω1 0 0
0 −r(t ) −g 0 ω1 −3r(t )/2 0 0
0 g −r(t ) 0 0 0 −3r(t )/2 −ω2

−g 0 0 −r(t ) 0 0 ω2 −3r(t )/2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x̃(t ) (55)
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d jlm = 1/
√
2 −1/

√
2 1/

√
6 1/

√
3 −1/

√
3 −2/

√
6 −2

√
3

1, 9, 11 2, 9, 12 8, 9, 9 1, 1, 15 9, 9, 15 8, 13, 13 15, 15, 15

1, 10, 12 3, 11, 11 8, 10, 10 2, 2, 15 10, 10, 15 8, 14, 14

2, 10, 11 3, 12, 12 8, 11, 11 3, 3, 15 11, 11, 15

3, 9, 9 5, 9, 14 8, 12, 12 4, 4, 15 12, 12, 15

3, 10, 10 7, 11, 14 5, 5, 15 13, 13, 15

j, l,m 4, 9, 13 6, 6, 15 14, 14, 15

4, 10, 14 7, 7, 15

5, 10, 13 8, 8, 15

6, 11, 13

6, 12, 14

7, 12, 13

(60)

and its dynamical equation is described in (55), shown at
bottom of the previous page.
For the last operator σ 1

z σ 2
z , its dynamics is

d
〈
σ 1
z σ 2

z

〉
dt

= −r(t )
〈
σ 1
z

〉
− r(t )

〈
σ 2
z

〉
− 2r(t )

〈
σ 1
z σ 2

z

〉
.

(56)
Therefore, the total dynamics for

x =
[〈

σ 1
x

〉
,
〈
σ 2
x

〉
, · · · ,

〈
σ 1
z σ 2

z

〉]T
can be obtained from (52), (55), and (56).

APPENDIX B
EXPLICIT FORM FOR STRUCTURE CONSTANTS
Here, we give the structure constantsCjlm and d jlm for su(4).
The structure constants for index combinations with 1 ≤
j, l,m ≤ 8 in (57) and (59) for su(4) are the same as su(3)
[32]. The additional values for su(4) are given in (58) and
(60).

Cjlm = √
2 1/

√
2 −1/

√
2

√
6/2

123 147 156 458

246 367 678

jlm 257

345

(57)

Cjlm = 1/
√
2 −1/

√
2 1/

√
6 −2/

√
6 2/

√
3

1, 9, 12 1, 10, 11 8, 9, 10 8, 13, 14 9, 10, 15
2, 9, 11 3, 11, 12 8, 11, 12 11, 12, 15
2, 10, 12 4, 10, 13 13, 14, 15
3, 9, 10 6, 12, 13

j, l,m 4, 9, 14
5, 9, 13
5, 10, 14
6, 11, 14
7, 11, 13
7, 12, 14

(58)

d jlm = 2/
√
6 1/

√
2 −1/

√
2 −1/

√
6 −2

√
6

118 146 247 448 888

228 157 366 558

jlm 338 256 377 668

344 778

355

(59)
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