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A B S T R A C T

Acoustic-resolution photoacoustic microscopy (AR-PAM) image resolution is determined by the point spread
function (PSF) of the imaging system. Previous algorithms, including Richardson–Lucy (R–L) deconvolution
and model-based (MB) deconvolution, improve spatial resolution by taking advantage of the PSF as prior
knowledge. However, these methods encounter the problems of inaccurate deconvolution, meaning the
deconvolved feature size and the original one are not consistent (e.g., the former can be smaller than the latter).
We present a novel deep convolution neural network (CNN)-based algorithm featuring high-fidelity recovery
of multiscale feature size to improve lateral resolution of AR-PAM. The CNN is trained with simulated image
pairs of line patterns, which is to mimic blood vessels. To investigate the suitable CNN model structure and
elaborate on the effectiveness of CNN methods compared with non-learning methods, we select five different
CNN models, while R–L and directional MB methods are also applied for comparison. Besides simulated
data, experimental data including tungsten wires, leaf veins, and in vivo blood vessels are also evaluated. A
custom-defined metric of relative size error (RSE) is used to quantify the multiscale feature recovery ability of
different methods. Compared to other methods, enhanced deep super resolution (EDSR) network and residual
in residual dense block network (RRDBNet) model show better recovery in terms of RSE for tungsten wires with
diameters ranging from 30 μm to 120 μm. Moreover, AR-PAM images of leaf veins are tested to demonstrate
the effectiveness of the optimized CNN methods (by EDSR and RRDBNet) for complex patterns. Finally, in
vivo images of mouse ear blood vessels and rat ear blood vessels are acquired and then deconvolved, and the
results show that the proposed CNN method (notably RRDBNet) enables accurate deconvolution of multiscale
feature size and thus good fidelity.
. Introduction

Photoacoustic (PA) imaging has the advantage in deep tissue imag-
ng compared with optical imaging and has been demonstrated for
ultiscale in vivo imaging [1]. PA imaging can be implemented for
icroscopy, termed PA microscopy (PAM), which can be further distin-

uished into optical-resolution PAM (OR-PAM) and acoustic-resolution
AM (AR-PAM). For OR-PAM, optical focusing is tighter than acoustic
ocusing, and the lateral resolution is determined by optical focusing
nd restricted by optical diffraction. On the other hand, for AR-PAM,
coustic focusing is tighter, and the lateral resolution is decided by
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acoustic focusing and limited by acoustic diffraction. As a result, AR-
PAM has an advantage over OR-PAM in deep tissue imaging by taking
advantage of the diffused light and deep acoustic penetration [2,3].
AR-PAM has been successfully applied to microvascular imaging [2,4,
5].

Lateral resolution of AR-PAM is determined by the center frequency
and numerical aperture (NA) of a focused acoustic transducer. A high-
frequency and high-NA transducer can be used in AR-PAM to achieve
high lateral resolution. However, in this case, it needs to detect high-
frequency acoustic waves, which are severely attenuated in biological
tissues, in turn hindering deep penetration. Besides, high NA leads to a
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Fig. 1. Workflow of the CNN method.
reduced depth of focus and working distance, which causes difficulties
in selected imaging applications. Alternatively, a deconvolution algo-
rithm can be applied to enhance lateral resolution of AR-PAM while
circumventing the above-mentioned issues. Enhanced lateral resolution
in AR-PAM would benefit applications such as PA velocimetry [6] and
disease characterization [7].

Deconvolution algorithms have been used in PA imaging, including
PA computed tomography (PACT) [8–10], OR-PAM [11–13], and AR-
PAM [4,5,14,15]. Different deconvolution algorithms have been tested
in AR-PAM, mainly using R–L deconvolution [4,5] and MB deconvolu-
tion [14,15]. When applying deconvolution, the point spread function
(PSF) is usually required as a prior, and the PSF of AR-PAM is deter-
mined by the focal zone of the acoustic transducer. Richardson–Lucy
(R–L) deconvolution has been widely used for astronomical imag-
ing [16,17] and has been applied to improve spatial resolution of
AR-PAM for both focal and out-of-focus regions [4,5]. However, R–L
deconvolution is an iterative method, and when too many iterations
are performed, the deconvolved feature size could be smaller than
the original object size, which is not accurate. In addition to R–L
deconvolution, the model-based (MB) method is another deconvolution
method. MB deconvolution reconstructs the original image based on
an optimization approach. The MB method has been used in PACT
and AR-PAM to improve spatial resolution [9,10,14,15]. Since both the
R–L and MB methods assume that the original image is composed of
point-like objects, the processed results suffer from line discontinuities.
Previously, we proposed a directional MB (D-MB) algorithm to solve
the issue of discontinuity based on one-dimensional (1D) deconvolution
along various directions [15], yet neither MB nor D-MB can realize
high-fidelity recovery of the multiscale feature size. In summary, the
existing deconvolution algorithms have several challenges. First, the
reconstructed size can be smaller than the original object size, as
mentioned previously. Secondly, for different original object size, the
deconvolution algorithms cannot accurately recover multiscale object
size. Therefore, an approach needs to be developed to overcome these
issues.

Compared with the above non-learning method, the learning-based
method uses a data-driven approach to learn image restoration knowl-
edge. Among them, the deep learning method has attracted wide
attention in recent years. Deep learning models (aka deep neural net-
works) consist of multiple processing layers that learn the complex
implicit rule between the input and output with a large amount of
data for training [18]. Convolutional neural networks (CNNs), one of
implementations of the deep learning, have shown great performance
in both natural and biomedical image processing [18–20]. CNNs have
also been applied to PA image processing, such as PACT reconstruction,
sparse OR-PAM recovery, and AR-PAM defocusing [21–24]. To the
best of our knowledge, AR-PAM deconvolution by deep learning has
2

not been studied yet. To address the above challenges of existing AR-
PAM deconvolution algorithms by deep learning, it is crucial to prepare
training data and identify the suitable CNN model structure.

In this work, we investigate CNN-based deconvolution to improve
lateral resolution of AR-PAM as well as identify the suitable CNN mod-
els to optimize the performance. Five existing CNN models are trained
with 1218 simulated AR-PAM image pairs for comparison [24–28].
These five CNN models are fully dense UNet (FDUNet) [24], residual
channel attention network (RCAN) [25], enhance deep super resolu-
tion (EDSR) network [26], residual in residual dense block network
(RRDBNet) [27], and feature fusion attention network (FFANet) [28].
CNN-based deconvolution to recover the original object size is first
confirmed by AR-PAM images of different diameters of tungsten wires.
The tungsten wire with a diameter down to ∼30 μm can be accurately
recovered, which is less than half of the lateral resolution of 65 μm of
the AR-PAM system. Then, AR-PAM images of leaf veins, in vivo mouse
ear blood vessels, and in vivo rat ear blood vessels, all of which display
multiscale line branches, are deconvolved by CNN models, and the re-
sults show not only high-fidelity recovery of multiscale feature size but
also good continuity. Among the five CNN models, EDSR and RRDBNet
show advantages over other models in resolution enhancement with
high-fidelity recovery of multiscale AR-PAM images.

2. Methods

2.1. Overall workflow

As shown in Fig. 1, a CNN model is used as a learner to learn a
function from the input image to the output image. Here, the input
image is a low-resolution PA image and is sent to the deep CNN
model. After the CNN processing, the resolution-enhanced PA image
is predicted. To learn such knowledge, a ground truth image (i.e., the
high-resolution image) is used as guidance to measure the difference
between the ground truth PA image and the CNN-predicted PA image.
By minimizing the difference, the model weights will be updated and
the model will perform better. After the CNN model is well optimized,
it is used for resolution enhancement of experimentally-acquired AR-
PAM images (including tungsten wires, leaf veins, and blood vessels in
vivo). As mentioned previously, the training data and the CNN model
structure, which are detailed as follows, are important for the overall
workflow and deconvolution performance.

2.2. Training data generation and evaluation

The training data can be obtained either experimentally or numeri-
cally (i.e., synthetic or simulated data). For the experimental method, a
high-resolution AR-PAM system is needed to acquire the ground truth
PA image. Building the AR-PAM system with high lateral resolution
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Fig. 2. Examples of training data. (a, b) The high-resolution (b) and corresponding low-resolution (a) image pair of a single line. (c, d) The high-resolution (d) and corresponding
low-resolution (c) image pair of two closely-located lines. Diameters of the lines are 76 μm in (a), 33 μm in (b), and 25 μm (top) and 33 μm (bottom) in (d). Note that due to the
added noise, diameters in (c) are no longer resolvable. SNR is 28.49 dB in (a) and 23.27 dB in (c). No noise is added to (b) and (d). Scale bar: 200 μm.
(less than half of the lateral resolution of 65 μm) could be challenging.
Therefore, a synthetic method is adopted to generate the training data.
In principle, the AR-PAM system can be assumed as a linear spatial
shift-invariant system around the focal region and expressed as:

𝑜′ = 𝑝 ⊗ 𝑜 + 𝑛, (1)

where 𝑜′ represents the acquired PA image, 𝑝 represents the PSF, 𝑜
represents the ground truth PA image (i.e., the original object), 𝑛
represents noise, and ⊗ denotes convolution operation. Since the focal
zone of a focused acoustic transducer used in AR-PAM is usually a
Gaussian profile, the PSF is assumed to be a Gaussian profile. The
Gaussian profile (or Gaussian distribution) can be characterized by
parameters of mean and standard deviation, which are denoted as 𝜇𝑝
and 𝜎𝑝, respectively. If we assume that the ground truth PA image is
also a Gaussian profile, which has a mean 𝜇𝑜 and a standard deviation
𝜎𝑜, the convolution result of them is still is a Gaussian profile, whose
mean and standard deviation are denoted as 𝜇𝑐 and 𝜎𝑐 , respectively.
Besides, 𝜎𝑝 and 𝜎𝑜, and 𝜎𝑐 are related as follows:

𝜎2𝑐 = 𝜎2𝑝 + 𝜎2𝑜 . (2)

Since the standard deviation of a Gaussian profile is linearly pro-
portional to its full width at half maximum (FWHM), we can further
obtain the FWHM relation:

𝑑c =
√

𝑑2𝑝 + 𝑑2𝑜 , (3)

where 𝑑𝑐 is the FWHM of the acquired PA image, 𝑑𝑝 is the FWHM of
the PSF, and 𝑑𝑜 is the FWHM of the ground truth PA image. Then,
the training data are generated numerically according to Eq. (1). As
microvascular imaging is one of the most common applications of AR-
PAM, line patterns are used. As the line pattern has 1D sparsity, the
training data is generated by 1D convolution. Two types of line pat-
terns, a single line and two closely-located lines, are used for training,
as shown in Fig. 2. The training data consists of high-resolution and
corresponding low-resolution image pairs. The low-resolution image
is generated by 1D convolution of the high-resolution image (ground
truth) along the direction perpendicular to the line. The FWHM of the
ground truth ranges from 20 μm to 200 μm. Ideally, if the AR-PAM
image is free of noise, the FWHM of the ground truth PA image can
be easily extracted using Eq. (3). However, as noise always exists in
real PA images, it deteriorates the image quality. Moreover, existing
deconvolution methods may begin to fail in high noise environments.
To account for noise in our CNN model, some speckle noise and
Gaussian noise (𝑛 in Eq. (1)) are added to the low-resolution image.
The noise is added with imnoise in MATLAB. To take a wide range of
noise level into consideration, the low-resolution images after adding
noise have a SNR distribution of 30.20 ± 16.48 dB (mean ± standard
deviation).

With simulated data, the CNN model is trained in a supervised
manner. We use L1 loss function for model training, which can be
3

expressed as:

𝐿𝑜𝑠𝑠 = 1
𝑀𝑁

𝑀,𝑁
∑

𝑚,𝑛

|

|

𝑜𝑚𝑛 − 𝑜′𝑚𝑛|| , (4)

where 𝑜𝑚𝑛 and 𝑜′𝑚𝑛 are the pixel values of the ground truth PA image
and predicted PA image on the 𝑚𝑡ℎ row and 𝑛𝑡ℎ column, respectively.
To evaluate the deconvolution performance, two metrics, peak signal
to noise ratio (PSNR) and structural similarity (SSIM) index, are used.
Besides, signal to noise ratio (SNR) and contrast to noise ratio (CNR)
are used to evaluate noise level and image contrast, respectively. More
details about PSNR, SSIM, SNR, and CNR are described in Section 1 of
Supplement 1. To evaluate the multiscale feature recovery ability, the
relative size error (RSE) is defined in the following equation:

𝑅𝑆𝐸 =
|

|

𝑑𝑜′ − 𝑑𝑜||
𝑑𝑜

, (5)

where 𝑑𝑜′ is the FWHM of the predicted PA image.

2.3. CNN models and training settings

To investigate the effectiveness of different CNN methods, five
different model structures are compared, which include FDUNet [24],
RCAN [25], EDSR [26], RRDBNet [27], and FFANet [28]. FDUNet
is used because it showed good performance in image reconstruction
of defocused AR-PAM data [24]. EDSR and RRDBNet are selected
since they achieved good performance in super resolution of natural
images [26,27]. Besides, feature dependencies were mined with the
design of channel attention in RCAN [25]. Compared with RCAN, non-
local attention was exploited with the design of pixel attention in
FFANet [28]. By comparing the deconvolution performance of the five
representative CNN methods, a more suitable model for AR-PAM image
deconvolution can be obtained. More details about these CNNs and
training details are described in Section 2 of Supplement 1.

2.4. Experiments

The experiments were conducted with both simulated data and
experimental data. The AR-PAM system using a focused transducer
with a center frequency of 50 MHz, NA of 0.4, and focal length of
6.7 mm was employed. The experimentally-measured PSF was 65 μm
(FWHM). Therefore, a 1D Gaussian curve with FWHM of 65 μm was
used as the PSF for training data generation. Then, 1218 and 383
image pairs using images of line patterns were generated according
to Eq. (1) for model training and testing, respectively. As mentioned
above, five CNN models were used. Besides, two traditional methods,
R–L deconvolution and D-MB deconvolution, were used for comparison.
We first trained different CNN models using the training set of the
simulated data and then compared different methods (trained CNN
models and traditional methods) using the testing set of the simulated
data. Then, the trained CNN models and traditional methods were
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Fig. 3. AR-PAM images of tungsten wires: (a) raw PA images, (b) by R-L-10, (c) by R-L-15, (d) by R-L-30, (e) by D-MB, (f) by FDUNet, (g) by RCAN, (h) by EDSR, (i) by
RRDBNet, (j) by FFANet, and (k) the ground truth images (simulated using Gaussian profiles with the FWHM equal to the original diameters of tungsten wires). Top to bottom
rows correspond to the original diameter of 20 μm, 30 μm, 50 μm, 80 μm, and 120 μm of tungsten wires, respectively. Scale bar: 200 μm.
Table 1
Image recovery performance of different methods on the testing
set of the simulated data.

Case PSNR (dB) SSIM # of parameters (M)

Raw data 22.01 0.1116 –
R-L-10 29.73 0.2104 –
R-L-15 31.03 0.2866 –
R-L-30 32.94 0.4337 –
D-MB 35.29 0.7396 –
FDUNet 33.40 0.9424 17.90
RCAN 34.80 0.9541 3.05
EDSR 34.88 0.9636 1.52
RRDBNet 36.13 0.9713 1.59
FFANet 36.96 0.9762 1.51

tested using the experimental data including the phantom and in vivo
images.

The experimental data were prepared as follows. As for phantom
samples, both tungsten wires and Banyan leaves were prepared for
imaging. Specifically, tungsten wires with different diameters of 20 μm
to 120 μm were prepared. Note that the difference between using the
diameter and the FWHM as the original object size for convolution
is discussed later. On the other hand, Banyan leaves were immersed
in carbon ink for 24 h and dried in an oven for 10 min, and then,
the leaves were placed on a glass slide and sealed by silicone. As
for the in vivo data, blood vessels of both mouse and rat ears were
imaged, which is to demonstrate the effectiveness of our method for in
vivo applications. Specifically, a 6-week-old nude mouse was used. The
mouse was anesthetized by a gas anesthetic machine (R500IP, RWD Life
Science) with a gas mixture of 1% isoflurane and oxygen. The hairs on
the mouse ear were removed with the help of a cleaning cream. During
image acquisition, the mouse was fixed on a homemade platform. The
optical fluence deposited on the biological tissue was ∼15 mJ∕cm2,
which is below the American National Standards Institute safety limit
(20 mJ∕cm2). The sample preparation and image acquisition of the rat
experiment were similar to that of the mouse experiment except a gas
mixture of 3.5% isoflurane and oxygen used to anesthetize the rat. All
experimental animal procedures were implemented in conformity with
the laboratory animal protocol approved by the Laboratory Animal
Care Committee of Shanghai Jiao Tong University.

3. Results

Table 1 shows the image recovery performance of different methods
on the testing set of the simulated data. As R-L deconvolution is an
4

iterative method, three iteration numbers of 10, 15, and 30 are tested,
which are denoted as R-L-10, R-L-15, and R-L-30. Table 1 shows that
all methods have higher PSNR and SSIM than the raw image. For the
R-L method, both PSNR and SSIM increase with the iteration numbers.
Further, D-MB achieves higher PSNR and SSIM than R-L methods. More
importantly, these five CNN methods realize distinctly higher SSIM
compared with R-L and D-MB methods. Besides, the PSNR of these
five CNN methods is comparable to that of the D-MB method. Among
these five CNN methods, RRBDNet and FFANet result in the highest
PSNR and SSIM than the other CNN methods, while FDUNet leads
to the lowest values. In Table 1, the last column ‘‘# of parameters’’
refers to the number of parameters in millions (M) used in the CNN
models. The model with fewer parameters corresponds to a lightweight
model. As can be seen in Table 1, a lightweight model (e.g., RRDBNet
(1.59 M) and FFANet (1.51 M)) can perform better than the model
with more parameters (e.g., FDUNet (17.50 M)) in terms of PSNR and
SSIM, which shows that the CNN model with more parameters does
not guarantee better performance. Besides, the models with similar
parameters (EDSR (1.52 M), RRDBNet (1.59 M), and FFANet (1.51 M))
result in different performance, and thus, it is important to identify the
suitable CNN model based on the performance requirements and the
number of parameters required. These five CNN models were further
compared using experimental data.

Fig. 3 shows the results using experimentally-acquired AR-PAM
images of tungsten wires. Qualitatively, the results by CNN methods
(Figs. 3(f)–3(j)) are smoother than the results by traditional methods
(Figs. 3(b)–3(e)). Besides, the former shows less noise or artifacts than
the latter. Quantitatively, FWHM is extracted from Fig. 3 (FWHM
shown in Section 3 of Supplement 1), and RSE is compared in Fig. 4(a).

For the original diameters of 20 μm, 30 μm, 50 μm, 80 μm, and
120 μm, they are denoted as the cases 1–5, respectively. For case 1, all
methods have RSE ≥ 50%, which indicates the limitation of resolution
enhancement by these deconvolution methods. Therefore, we compare
cases 2–5 among these methods in the following. First, for R-L-10, the
most accurate deconvolution is realized in case 3 (the original diameter
of 50 μm vs. recovered FWHM of 45 μm; RSE of 10%). However, for R-
L-15 and R-L-30, the most accurate deconvolution is achieved in case 5
(the original diameter of 120 μm vs. recovered FWHM of 106 μm; RSE of
12%) and case 2 (the original diameter of 30 μm vs. recovered FWHM of
34 μm; RSE of 13%), respectively. This suggests that it is challenging to
use R–L deconvolution to recover multiscale object size simultaneously
within a certain iteration time. Secondly, for D-MB deconvolution, the
most accurate deconvolution is case 2 (the original diameter of 30 μm
vs. recovered FWHM of 34 μm; RSE of 13%), while RSE for cases 3–5
is larger (notably cases 4 and 5). Therefore, D-MB deconvolution also
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Fig. 4. Quantitative analysis for tungsten wire imaging experiment. (a) RSE by different methods. The ‘‘Average’’ bars are the average RSE defined as the average of RSE of cases
2–5 (the original diameters of 30, 50, 80, and 120 μm). (b) SNR by different methods. (c) CNR by different methods.
fails to simultaneously recover multiscale object size. Thirdly, among
the five CNN methods, EDSR and RRDBNet show overall smaller RSE
in cases 2–5 (RSE of 2%–17% for EDSR; RSE of 2%–15% for RRDBNet)
compared with R–L and D-MB methods, suggesting that the two CNN
methods perform well in simultaneously recovering multiscale object
size. To quantify the capability of recovering multiscale object size, the
average RSE is defined as the average of RSE of cases 2–5, as shown in
Fig. 4(a). It can be seen that EDSR and RRDBNet have distinctly smaller
average RSE (<10%), while the other methods suffer large average
RSE (>18%). In Figs. 4(b) and 4(c), the three CNN methods, RCAN,
RRDBNet, and FFANet, achieve better SNR and CNR than the other
methods. D-MB, FDUNet, and EDSR have moderate performance in SNR
and CNR.

Fig. 5 shows the resolution enhancement for phantom imaging of
leaf veins by the deconvolution methods. Fig. 5(a) shows the raw PA
image, which presents multiscale line branches. Then, R-L-10 decon-
volution, R-L-15 deconvolution, D-MB deconvolution, FDUNet, EDSR,
RRDBNet, and FFANet were applied to the raw PA image, and the
results are shown in Figs. 5(b)–5(h), respectively. In part due to the
relatively poor performance of R-L-30 and RCAN in Figs. 3 and 4,
they are excluded in the comparison in Fig. 5. An image of the leaf
phantom observed by an optical microscope is shown in Fig. 5(i),
which can be regarded as the ground truth. For better comparison,
three representative regions are chosen, as indicated by the three lines
#1-#3 in Fig. 5(a), to compare leaf vein branch FWHM in Figs. 5(a)–
5(h), and the 1D profiles are shown in Figs. 5(j)–5(l), respectively. The
branch size in order is: #2 (large) > #1 (middle) > #3 (small). By
comparing Figs. 5(a) and 5(i), large branches (e.g., #2) have similar
size, while small branches (e.g., #3) are blurred, which confirms the
nonlinear relation between 𝑑𝑜 (Fig. 5(i)) and 𝑑𝑐 (Fig. 5(a)) in Eq. (3).
At first glance, R-L-15 (Fig. 5(c)) leads to smaller feature size than R-L-
10 (Fig. 5(b)), which is not surprising. D-MB (Fig. 5(d)) also produces
reduced feature size comparable to Fig. 5(c) but suffers severe discon-
tinuities and separation for the large branches (e.g., #2; the branch is
divided into two.). By contrast, the results by CNN methods (Figs. 5(e)–
5(h)) show better image quality in terms of pattern continuity and
smoothness.

Further, the 1D profiles along the three lines #1-#3 are compared. In
Fig. 5(j) for the line #1, the FWHM is 117μm, 107 μm, 107 μm, 87 μm,
5

107 μm, 105 μm, 105 μm, and 78 μm for Figs. 5(a)–5(h), respectively,
and the corresponding ground truth is 95 μm (from Fig. 5(i)). The
results show that for the representative middle branch size, the CNN
(except FFANet), R–L, and D-MB methods can enhance resolution to
some degree (RSE < 13%), although D-MB over-processed the raw PA
image (i.e., the deconvolved size < the ground truth). In Fig. 5(k) for
the line #2, the FWHM is 157 μm, 154 μm, 138 μm, 117 μm, 144 μm,
149 μm, 146 μm, and 127 μm for Figs. 5(a)–5(h), respectively, and
the corresponding ground truth is 148 μm (from Fig. 5(i)). The results
indicate that for the representative large branch size, the CNN (except
FFANet) and R–L methods (RSE < 7%) perform better than D-MB for
accurate deconvolution. Finally, in Fig. 5(l) for the line #3, the FWHM
is 64 μm, 47 μm, 45 μm, 33 μm, 52 μm, 31 μm, 33 μm, and 88 μm
for Figs. 5(a)–5(h), respectively, and the corresponding ground truth
is 33 μm (from Fig. 5(i)). The results suggest that for the representative
small branch size, the CNN (except FDUNet and FFANet) and D-MB
methods (RSE <6%) achieve better results than R–L for deconvolution.
Therefore, considering the high-fidelity deconvolution of multiscale
line branches, the best performance is achieved by the CNN methods
of EDSR and RRDBNet.

To consider more regions besides the lines #1-#3, seven other re-
gions are further selected to compare their 1D profiles (results not
shown). The original diameters (from Fig. 5(i)) of the chosen ten
regions are, in order, 33 μm (the line #3), 33 μm, 39 μm, 45 μm, 51 μm,
95 μm (the line #1), 105 μm, 143 μm, 148 μm (the line #2), and 155
μm. The selected original feature size varies to some extent (including
the size larger and smaller than the PSF), so it can be used to validate
accurate deconvolution of multiscale object size. Similarly, the average
RSE is defined as the average of RSE of the ten regions. The average
RSE by different methods is shown in Fig. 6(a). RSE distribution is
also shown in Fig. 6(b). As can be seen, EDSR and RRDBNet perform
distinctly better than the other methods, which is consistent with the
results in Fig. 5. Interestingly, FFANet performs even worse than raw
PA images in terms of average RSE, which is attributed that FFANet
fails to recover either the large or small object size.

Fig. 7 shows the resolution enhancement enabled by different de-
convolution methods for the in vivo image of mouse ear blood vessels.
Fig. 7(a) shows the raw PA image. As can be seen, arteries and veins
are closely located (e.g., indicated by the white arrow in Fig. 7(a))
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Fig. 5. Resolution enhancement enabled by R–L deconvolution, D-MB deconvolution, and the CNN methods for phantom imaging of leaf veins. AR-PAM images: (a) raw PA image,
(b) by R-L-10, (c) by R-L-15, (d) by D-MB, (e) by FDUNet, (f) by EDSR, (g) by RRDBNet, and (h) by FFANet. (i) optical microscopy image. (j–l) 1D profiles along the lines #1-#3,
respectively, in (a)–(h). Scale bar: 500 μm.

Fig. 6. RSE results of the ten regions by different methods. (a) average RSE with the error bars as standard deviations. (b) RSE distribution in boxplots.
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Fig. 7. Resolution enhancement results for in vivo imaging of mouse ear blood vessels. AR-PAM images: (a) raw PA image, (b) by R-L-10, (c) by FDUNet, (d) by EDSR, (e) by
RRDBNet, and (f) by FFANet. (g,h) 1D profiles along the lines #4 (g) and #5 (h), respectively, in (a)–(f). The white arrow indicates the representative area with closely-located
arteries and veins. The blue arrow indicates the representative area with small vessels. Scale bar: 1 mm.
and cannot be well distinguished. Then, R-L-10 deconvolution and the
CNN methods were applied to the raw PA image, and the results are
shown in Figs. 7(b)–7(f). Similarly, in part due to the poor performance
of D-MB and similar performance of R-L-15 (to R-L-10) in Fig. 6, D-
MB and R-L-15 are excluded in the comparison in Fig. 7. As shown in
Fig. 7(b), although arteries and veins can be more easily distinguished
(e.g., indicated by the white arrow in Fig. 7(b)), the discontinuity
cannot be completely avoided. By contrast, in Figs. 7(c)–7(f), arteries
and veins can not only be easily identified compared with Fig. 7(a), but
the pattern continuity is also preserved.

It is also essential to evaluate the high-fidelity recovery of multiscale
object size by these methods. Unlike the previous phantom experi-
ments, the actual vessel size (ground truth) cannot be easily obtained
by optical microscopy. Alternatively, Fig. 7(a) and Eq. (3) are used
to compute the possible original vessel size (i.e., an estimated value).
Two representative regions are chosen, as indicated by the two lines
#4 and #5 in Fig. 7(a), to compare vessel FWHM in Figs. 7(a)–7(f),
and the 1D profiles are shown in Figs. 7(g) and 7(h), respectively. The
estimated vessel diameters of the lines #4 and #5 are 145 μm and 51
μm respectively. In Fig. 7(g) for the line #4, the FWHM is 159 μm,
156 μm, 136 μm, 153 μm, 124 μm, and 129 μm for Figs. 7(a)–7(f),
respectively. The results show that for relatively large vessels, R-L-10
deconvolution and the CNN method by EDSR achieve similar fidelity
in recovering the original vessel size (RSE < 8%). Besides, the RSE
by RRDBNet is ∼14%, indicating that RRDBNet still performs well.
In Fig. 7(h) for the line #5, the FWHM is 83 μm, 31 μm, 31 μm, 72
μm, 55 μm, and 65 μm for Figs. 7(a)–7(f), respectively. The results
suggest that for small vessels that have similar FWHM to the PSF, the
CNN method by RRDBNet can accurately recover their original vessel
size (RSE < 8%), but R-L-10 and FDUNet over-processed the raw PA
image. Note that the RSE by EDSR is ∼41%, indicating EDSR does not
perform that well. As for noise level comparison among Figs. 7(b)–
7(f), Fig. 7(c) (FDUNet) shows less noise, yet some small vessels are
also suppressed. Except FDUNet, when comparing the image contrast
of small vessels (e.g., the same vessels in Figs. 7(a)–7(f) indicated by
the blue arrow in Fig. 7(a)), Figs. 7(d) (EDSR) and 7(e) (RRDBNet)
enable better contrast, while Fig. 7(f) (FFANet) shows relatively low
contrast. For quantitative comparison, the SNR and CNR of the same
small vessels indicated by the blue arrow in Fig. 7(a) are calculated.
The SNR of the vessels is 18.79, 18.56, 37.41, 18.95, 21.56, and 19.32
in Figs. 7(a)–7(f), respectively. For the same vessels, the CNR is 3.52,
2.93, 12.83, 6.45, 6.49, and 3.66 in Figs. 7(a)–7(f), respectively. All
7

CNN methods show better SNR and CNR compared to R-L. Among
CNN models, FDUNet obtains the highest SNR and CNR but suffers
severe discontinuities (the corresponding area in Fig. 7(c) indicated
by the blue arrow in Fig. 7(a)). RRDBNet obtains the second highest
SNR and CNR, showing satisfactory recovery of RRDBNet in terms of
quantitative metrics. Therefore, based on the above analysis, RRDBNet
in Fig. 7(e) realizes the best results in terms of high-fidelity recovery
of multiscale vessel size, good continuity, and high contrast for small
vessels.

For further demonstration, resolution enhancement by different
deconvolution methods for the in vivo image of rat ear blood vessels was
investigated in Fig. 8. Compared with Fig. 7(a), Fig. 8(a) has a higher
vessel density. Similarly, among Figs. 8(b)–8(f), Fig. 8(c) (FDUNet) has
the darkest background, yet some small vessels disappear. For small
vessels (e.g., indicated by the blue arrow in Fig. 8(a)), Figs. 8(d) (EDSR)
and 8(e) (RRDBNet) preserve more small features.

Quantitatively, two representative regions are chosen, as indicated
by the two lines #6 and #7 in Fig. 8(a), to compare vessel FWHM
in Figs. 8(a)–8(d), and the 1D profiles are shown in Figs. 8(g) and
8(h), respectively. Similar to Fig. 7, by Fig. 8(a) and Eq. (3), the
estimated vessel diameters of the lines #6 and #7 is 85 μm and 214
μm, respectively. In Fig. 8(g) for the line #6, the FWHM is 107 μm, 68
μm, 64 μm, 65 μm, 75 μm, and 90 μm in Figs. 8(a)–8(f), respectively.
The results show that for relatively small vessels, RRDBNet and FFANet
perform better in high-fidelity size recovery (RSE < 12%). In Fig. 8(h)
for the line #7, the FWHM is 224 μm, 206 μm, 177 μm, 204 μm, 207 μm,
and 164 μm in Figs. 8(a)–8(d), respectively. The results show that for
relatively large vessels, R-L-10, EDSR, and RRDBNet realize better size
recovery (RSE < 5%). Therefore, similar to Figs. 7, RRDBNet achieves
the most accurate deconvolution of multiscale vessel size. Similarly,
the SNR and CNR of the same small vessels indicated by the blue
arrow in Fig. 8(a) are calculated. The SNR for the vessels is 21.84,
21.24, 27.97, 38.83, 35.08, and 50.85 in Figs. 8(a)–8(f), respectively.
For the same vessels, the CNR is 12.24, 7.77, 17.03, 30.47, 23.44, and
39.22 in Figs. 8(a)–8(f), respectively. Similar to Fig. 7, all CNN methods
show better results compared to R-L. Both the SNR and CNR in order
are: FFANet > EDSR > RRDBNet > FDUNet > R-L-10. Although not
the highest, RRDBNet shows decent results in terms of SNR and CNR.
Therefore, considering the overall performance including multiscale re-
covery, pattern continuity, and SNR and CNR of small vessels, RRDBNet
would still be a better choice.
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Fig. 8. Resolution enhancement results for in vivo imaging of rat ear blood vessels. AR-PAM images: (a) raw PA image, (b) by R-L-10, (c) by FDUNet, (d) by EDSR, (e) by RRDBNet,
and (f) by FFANet. (g,h) 1D profiles along the lines #6 (g) and #7 (h), respectively, in (a)–(f). The blue arrow indicates the representative area with small vessels. Scale bar: 1 mm.
4. Discussion

In this work, the CNN-based deconvolution technique was investi-
gated for resolution enhancement in AR-PAM images. The novelty of
this work lies in three aspects. First, the CNN method was applied to
improve the AR-PAM image resolution in the focal region for the first
time. Secondly, a strategy for generating training data using simulated
data is proposed, which circumvents the difficulty of obtaining real
high-resolution AR-PAM images considering that it would be challeng-
ing to build an AR-PAM system with lateral resolution less than half
of 65 μm. Thirdly, five different CNN models were evaluated, and
two CNN models demonstrated better recovery of multiscale feature
size compared with the traditional methods and the other three CNN
methods.

The accurate deconvolution of multiscale object size enabled by the
CNN method can be explained as follows. First, each single convolution
layer deals with local features in fixed size of a region of interest
(ROI), and different convolution layers can handle the features in
different size of ROIs. The stacked convolution layers with nonlinear
activation ensure the CNN can distinguish the characteristics among
different feature size in AR-PAM images and learn the nonlinearity of
Eq. (3). Secondly, training with a large amount of data ensures that
the parameters of CNN can be learned successfully without overfitting.
Besides, the great performance by the CNN method may be partly
attributed to the fact that the CNN method can learn to be robust
to noise, which is inevitable in in vivo AR-PAM images. By contrast,
the R-L method is less robust to the noise, which simply degrades the
performance. As can be seen in Fig. 3, the CNN results (Figs. 3(f)–3(j))
present less noise compared with R-L results (Figs. 3(b)–3(d)).

Further, the deconvolution performance was compared among the
five CNN methods. Overall, EDSR and RRDBNet outperformed the other
CNN models in terms of high-fidelity recovery of multiscale feature
size. Although EDSR, RRDBNet, and FFANet are lightweight models
compared with FDUNet and RCAN, the former (EDSR, RRDBNet, and
FFANet) produced higher PSNR and SSIM (Table 1) in the testing
set of simulated data. As for FDUNet, it features an encoder–decoder
model structure, which is different from the other CNN models. As
can be seen in Figs. 7(c) and 8(c), FDUNet suffers discontinuity for
small features (e.g., the blue arrows in Figs. 7(c) and 8(c)), and the
results seem to be less reliable due to distinct PA amplitude between
the signal and background regions. This may be explained by the use of
downsampling layers, leading to the information loss of small features
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with limited pixels. For the remaining four models, they were built
using the global residual learning approach without downsampling
layers. They obtained better performance than FDUNet (e.g., Fig. 4(a)),
which suggests the effectiveness of the approach. When further com-
paring the four models (i.e., excluding FDUNet), EDSR and RRDBNet
only used residual connections or residual dense connections, which
proved to be more effective (e.g., Figs. 4(a) and 6). By contrast, RCAN
used the design of channel attention, and FFANet used the design of
both channel attention and pixel attention. The poor performance on
the experimental data by RCAN and FFANet suggests that the design
of channel attention can cause the overfitting to the training set of
the simulated data and therefore exhibits poor generalization for the
experimental data (e.g., poor performance of FFANet in the average
RSE in Figs. 4(a) and 6 compared with EDSR and RRDBNet). Finally,
for the comparison between EDSR and RRDBNet, EDSR performed
slightly better than RRDBNet in phantom images of tungsten wires
(e.g., Fig. 4(a)), while RRDBNet performed better than EDSR in in
vivo images in terms of high-fidelity recovery of multiscale vessel size
(Figs. 7 and 8), as detailed previously. This may be because RRDBNet is
more robust to noise than EDSR. Therefore, RRDBNet would be a better
choice for in vivo images that typically have limited SNR.

In this study, speckle noise was added to the low-resolution image
for the simulated data. Although it was reported that PA imaging has
the speckle-free nature [29], another study mentioned that speckle
noise exists and comes from acoustically inhomogeneous tissue in PA
imaging [30]. In our demonstrations, phantom images may have little
speckle noise, but in vivo images are expected to have speckle noise to
some degree due to acoustically inhomogeneous tissue. Besides, adding
speckle noise for the simulated data would improve the generalization
ability of the CNN models, which can be used for the cases of little and
high speckle noise.

In our demonstration of phantom imaging, the original diameter of
cylindrical objects was used to approximate 𝑑𝑜, which is defined as the
FWHM of the ground truth PA image in Eq. (3). That is, the original
diameter of cylindrical objects and the FWHM of the ground truth PA
image are not exactly the same. The approximation is reasonable, as
explained as follows. First, because both tungsten wires and leaf veins
are strong light absorbers, the light absorption mainly occurs at the top
surface of these cylindrical objects, and thus, the absorption profile can
be modeled as rectangular profiles. Secondly, as shown in Section 4 of
Supplement 1, the difference between the convolved FWHM (𝑑𝑐) from
a Gaussian PSF (with FWHM of 𝑑 and a Gaussian profile (with FWHM
𝑝
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of 𝑑𝑜) and that from the same Gaussian PSF and a rectangular profile
(with a diameter of 𝑑𝑜) is small compared with most RSE values in this
tudy (see Figs. 4(a) and 6).

Currently, the simulated data are used as the training data, which
ere generated using the PSF with FWHM of 65 μm. The current train-

ing data cannot be directly used as the training data for other AR-PAM
systems with different size of PSF. Fortunately, new training data can be
easily generated simply by changing the corresponding PSF of the AR-
PAM system, which demonstrates the advantage of our methodology
in easy adaptation to different AR-PAM systems. Besides, acquiring
experimental data for training is also meaningful to explore. However,
there are a few challenges. First, as mentioned previously, building
an AR-PAM system with higher lateral resolution is not easy, and the
performance can be sacrificed (e.g., using a high-frequency acoustic
transducer at the expense of the penetration depth). Secondly, it is
time-consuming to collect enough image pairs (paired low-resolution
and high-resolution (i.e., ground truth) AR-PAM images) for training.
In the future, it is worth trying to use experimentally-acquired data for
training though. Alternatively, a cycle generative adversarial network
approach may be used [31], which circumvents the experimental ac-
quisition of high-resolution AR-PAM images. Briefly, simulated ground
truth and simulated low-resolution image pairs (paired data) in con-
junction with experimental low-resolution images (i.e., unpaired data)
can be generated and experimentally acquired, and finally, exper-
imental high-resolution images (corresponding to the experimental
low-resolution images) could be generated to obtain paired data for
training.

In our demonstrations, the CNN method was applied to AR-PAM
images acquired around the focal plane. For AR-PAM images acquired
in the out-of-focus region, a synthetic aperture focusing technique
(SAFT) to restore the lateral resolution can be applied followed by the
CNN method to further improve the resolution, which is a two-step
processing approach for resolution enhancement [5,15]. Besides, it
would be possible that the CNN method could learn to process focal
and out-of-focus data as well, reducing the number of processing steps.
In this regard, for out-of-focus data, the CNN model may be developed
to incorporate the processing similar to combined SAFT (e.g., [24]) and
deconvolution. Currently, the proposed method cannot improve axial
resolution as only two-dimensional (2D) lateral images are processed.
It would be possible that the CNN method can be used to improve axial
resolution. One approach is to process three-dimensional (3D) images
with a 3D CNN model. In this case, a 3D PSF incorporating axial resolu-
tion should also be adopted. Another approach is to conduct a two-step
processing based on the independence between lateral resolution and
axial resolution [5,15]), one CNN model for 2D lateral deconvolution
and the other CNN model for 1D axial deconvolution. That is, the two
CNN models are used sequentially, and they are trained separately.

The performance of the CNN method may be further improved by
optimizing the model structure and the training data. As shown in this
study, different CNN methods present different recovery performance,
so the model structure can be tailored according to specific features.

5. Conclusions

In this work, we investigated multiscale deconvolution in AR-PAM.
A data-driven CNN method to learn the prior knowledge of the AR-
PAM system was developed and tested. Five different CNN models
were implemented, and conventional deconvolution (R-L and D-MB)
and CNN deconvolution methods were compared through both phan-
tom and in vivo experiments. Among all deconvolution methods, two
CNN models (EDSR and RRDBNet) achieved excellent performance.
Notably, when using RRDBNet for in vivo images of blood vessels,
igh-fidelity recovery of multiscale vessel size, good continuity, and
igh contrast for small vessels were realized. Our work is promising to
nhance resolution for multiscale microvascular AR-PAM images. The
ethodology may be extended and applied to other imaging modalities
ith resolution limited by the PSF, such as OR-PAM and fluorescence
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maging, for high-fidelity deconvolution.
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