
Contents lists available at ScienceDirect

INTEGRATION, the VLSI journal

journal homepage: www.elsevier.com/locate/vlsi

A high-accuracy approximate adder with correct sign calculation

Junjun Hu, Zhijing Li, Meng Yang, Zixin Huang, Weikang Qian⁎

University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China

A R T I C L E I N F O

Keywords:
Approximate adder
Approximate computing
Low relative error
Sign error correction
Low-power design

A B S T R A C T

Conventional precise adders take long delay and large power consumption to obtain accurate results. Exploiting
the error tolerance of some applications such as multimedia, image processing, and machine learning, a number
of recent works proposed to design approximate adders that generate inaccurate results occasionally in
exchange for reduction in delay and power consumption. However, most of the existing approximate adders
have a large relative error. Besides, when applied to 2's complement signed addition, they sometimes generate a
wrong sign bit. In this paper, we propose a novel approximate adder that exploits the generate signals for carry
speculation. Furthermore, we introduce a low-overhead module to reduce the relative error and a sign
correction module to fix the sign error. Compared to the conventional ripple carry adder and carry-lookahead
adder, our adder with block size of 4 reduces power-delay product by 66% and 32%, respectively, for a 32-bit
addition. Compared to the existing approximate adders, our adder significantly reduces the maximal relative
error and ensures correct sign calculation with comparable area, delay, and power consumption. We further
tested the performance of our adders with and without the sign error correction module in three real
applications, mean filter, edge detection, and k-means clustering. The experimental results demonstrated the
importance of reducing the relative error and ensuring the correct sign calculation for 2's complement signed
additions. The outputs produced using our adder with the sign error correction module are very close to those
produced using accurate adder.

1. Introduction

As CMOS devices are scaled into the sub-nanometer regime, power
consumption has become a major bottleneck in sustaining Moore's law.
Thus, energy efficiency has become a critical concern in designing VLSI
circuits. At the same time, with the prevalence of mobile computing,
there is an increasing demand for signal processing, multimedia,
machine learning, and pattern recognition applications [1]. These
applications are essentially error tolerant due to various reasons such
as limitation of human perception, redundancy in the input signal, and
lack of a unique golden answer [2]. As a result, an inaccurate
computation result may still lead to an output with acceptable quality.
The relaxation of the accuracy requirement for these applications
potentially enlarges the design space, which may contain some solu-
tions with smaller area, delay, and power consumption than those
targeted for accurate computation. This leads to a new design para-
digm, known as approximate computing, which deliberately sacrifices
a small amount of accuracy to achieve improvement in performance
and power consumption [3].

In this work, we focus on designing approximate adder. As adders

are key building blocks in many applications that are suitable for
approximate computing, many previous works propose various designs
of approximate adders [4–7] (A detailed review of several existing
representative approximate adders can be found in Section 2). These
adders have smaller areas, delays, and power consumption compared
to the accurate ones. Many of them also have small error rates.
However, most of them cannot guarantee a small relative error in
their outputs. As a result, they may degrade the output quality for some
applications. Furthermore, these approximate adders are subject to
sign calculation error when doing signed addition for 2's complement
numbers.

In this paper, to address the above problems of the existing
approximate adders, we propose a novel approximate adder design.
It exploits the generate signals to produce the speculated carry signals.
This approach leads to a simplified circuity to calculate carry, resulting
in a dramatic reduction in adder area and power consumption
compared to the accurate adders. To reduce the maximal relative
error, we introduce a low-overhead error reduction module.
Furthermore, to eliminate the potential sign error in 2's complement
signed addition, we introduce a lightweight sign error correction

http://dx.doi.org/10.1016/j.vlsi.2017.09.003
Received 5 May 2017

⁎ Corresponding author.
E-mail addresses: wujunjun_sh@hotmail.com (J. Hu), liuyuedtian@sjtu.edu.cn (Z. Li), yangm.meng@sjtu.edu.cn (M. Yang), zxhuang14@sjtu.edu.cn (Z. Huang),

qianwk@sjtu.edu.com (W. Qian).

INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

0167-9260/ © 2017 Elsevier B.V. All rights reserved.

Please cite this article as: Hu, J., INTEGRATION the VLSI journal (2017), http://dx.doi.org/10.1016/j.vlsi.2017.09.003

http://www.sciencedirect.com/science/journal/01679260
http://www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2017.09.003
http://dx.doi.org/10.1016/j.vlsi.2017.09.003
http://dx.doi.org/10.1016/j.vlsi.2017.09.003

module. We provide a rigorous analysis on two error measures, error
rate and maximal relative error, of the proposed adders with and
without the sign correction module. The analysis shows that both
adders have a low error rate and a low relative error.

Compared to the conventional ripple carry adder (RCA) and carry-
lookahead adders (CLA), our approximate adder with sign error
correction module reduces power-delay product by 66% and 32%,
respectively, for a 32-bit addition. Compared to the existing approx-
imate adders, our adder significantly reduces the maximal relative
error and ensures correct sign calculation with comparable area, delay,
and power consumption. To verify the performance of our adders with
and without the sign correction module in real situations, we also apply
them to three applications, mean filter, edge detection, and k-means
clustering, which have additions and/or subtractions as their major
computation. The output quality for those applications using the
proposed adder with the sign correction module is very close to that
using an accurate adder.

A preliminary version of this work was published in [8]. Compared
to that version, in this work, we further rigorously analyze the relative
error and error rate of the proposed sign-correct approximate adder.
Furthermore, we empirically study the performance of the proposed
adder in real applications and demonstrate its good performance.

The remainder of this paper is organized as follows. In Section 2, we
discuss the related works. In Section 3, we introduce some prelimin-
aries on conventional adders. In Section 4, we describe our proposed
approximate adder with low relative error and analyze its relative error
and error rate. In Section 5, we present an enhanced version with sign
correction. In Section 6, we experimentally studied the different
metrics of the proposed approximate adders and evaluate them in real
applications. The conclusion is drawn in Section 7.

2. Related works

The emerging paradigm of approximate computing has been
applied at various levels of modern computing systems. For example,
at the algorithm level, random sampling-based approaches can be
viewed as approximate algorithms that trade off accuracy for the
improvement in runtime. They have significant runtime advantage
over the deterministic counterparts for many compute-demanding
applications, such as high-dimensional integral [9] and large matrix
factorization [10]. At the compiler level, loop perforation was proposed
to skip a number of loops to accelerate the program at the cost of
introducing some amount of error [11]. At the architecture level,
Esmaeilzadeh et al. proposed to execute compute-intensive approxim-
able code on a neural network-based accelerator [12]. Imani et al.
proposed a resistive configurable associative memory that enables
approximate matching induced by voltage overscaling [13]. At the
circuit level, many approximate arithmetic circuits, such as adders [4–
7], multipliers [14,15], and dividers [16], were proposed. For some
applications, it is desirable to reconfigure the approximate circuits to
achieve different accuracy requirements at runtime. For this purpose,
several works also proposed additional error detection and correction
modules [17–19]. Also, techniques for analyzing specific approximate
circuits were developed. For example, Mazahir et al. proposed a
probabilistic error modeling method for a specific class of approximate
adders that comprise of sub-adder units [20]. They also proposed a
method for analyzing the error of approximate multipliers constructed
from approximate partial product modules [21]. Furthermore, several
other works designed approximate circuits for specific error-tolerant
applications, such as video encoding [22] and artificial neural network
[23]. For a detailed survey of approximate computing, the readers can
refer to the papers [24–26].

Since adder is a basic module in many error-tolerant applications,
researchers have proposed a number of approximate adders in the
previous works. One type of approximate adder uses an accurate adder
to calculate the sum bits at the most significant positions, while

applying a simple but inaccurate digital circuit to the remaining bits.
For example, the Low-part-OR Adder (LOA) [4] uses a simple OR gate
to obtain the sum at lower bit positions and Error-Tolerant Adder I
(ETAI) [27] uses a modified XOR gate for the same purpose. This kind
of design has a high error rate. Also, if the bit length of the accurate
part is long, the delay and power consumption of the adder are still very
large. Furthermore, its relative error will be large when doing addition
on small input values. In [28], the author proposed a k-bit lookahead
approximate adder to limit the carry chain for each bit in order to
reduce the critical path. However, the area of this adder is large due to
the fact that the computation of each bit needs an individual carry
generator. The Error-Tolerant Adder II (ETAII) [5], Error-Tolerant
Adder IV (ETAIV) [29], Speculative Carry Select Adder (SCSA) [18],
Accuracy-Configurable Adder (ACA) [30], Carry Skip Approximate
Adder (CSAA) [6], Carry Speculative Adder [31], and Generic
Accuracy Configurable Adder [7] use the block-based design to truncate
the carry propagation chain. The entire adder is divided into a number
of blocks. The sum of each block is computed based on a speculated
carry-in signal, which is obtained from the bits before the current
block. This method effectively reduces the critical path delay. However,
it could introduce large relative error for the computation results,
which may decrease the output quality for some applications.
Furthermore, all of the approximate adders are subject to sign
calculation error when doing signed addition for 2's complement
numbers. Although after introducing an error reduction module, the
relative error of CSAA can be reduced, it still fails to solve the problem
on sign calculation. In contrast, the adder proposed in this work
guarantees a small relative error. Furthermore, with the extra light-
weight sign error correction module, it can always ensure the correct
sign calculation.

A type of adder related to approximate adder is variable-latency
adder, such as Variable Latency Carry Selection Adder (VLCSA) [18]
and the adder proposed in [32]. However, it is still an accurate adder. It
consists of an underlying approximate adder and an error correction
module. When the output of the approximate adder is correct, the
computation is finished within one clock cycle. However, when an error
occurs, a second clock cycle is needed to fix the error. Its performance
highly depends on the applications. For situations where the prob-
ability of an error is large, a variable-latency adder has a higher chance
to need the second clock cycle, which increases the total delay
significantly. In contrast, our proposed adder is still an approximate
adder. Although not 100% accurate, it ensures high accuracy and the
correct sign calculation within one clock cycle. Furthermore, the
relaxation in the accuracy leads to smaller area and power consump-
tion than a variable-latency adder.

3. Preliminaries on conventional adder

We discuss the preliminaries on the conventional adder in this
section. Assume that the bit width of the adder is n. We use the
following notations in the paper:

• A a a a= (…)n n−1 −2 0 and B b b b= (…)n n−1 −2 0 represent the two inputs of
the adder, where ai and bi represent the i-th bits of A and B,
respectively.

• si and ci+1 i n(0 ≤ ≤ − 1) represent the sum bit and the carry-out bit
at the i-th bit position, respectively. This also means that ci

i n(1 ≤ ≤ − 1) is the carry-in bit at the i-th bit position. The carry-
in bit at the 0-th bit position, which is a primary input, is denoted as
c0. By the rule of addition, we have

s a b c i n= ⊕ ⊕ , for = 0, …, − 1.i i i i (1)

c a b a b c i n= · + (+)· , for = 0, …, − 1.i i i i i i+1 (2)

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

2

• pi, gi, and ki represent the propagate, generate, and kill signal at the
i-th bit position, respectively. They are defined as

p a b g a b k a b= ⊕ , = · , = · .i i i i i i i i i (3)

If g = 1i (k = 1i), then the i-th carry-out c = 1(0)i+1 regardless of the
value of the i-th carry-in. If p = 1i , then c c=i i+1 , which indicates the
propagation of the carry-out from the i(− 1)-th position to the i-th
position.

From Eq. (3), si and ci shown in Eqs. (1) and (2) can also be
calculated as

s p c i n= ⊕ , for = 0, …, − 1.i i i (4)

c g p c i n= + · , for = 0, …, − 1.i i i i+1 (5)

Applying Eq. (5) recursively, we can compute the carry-out signal
ci+1 as

∏ ∏c g g p g p c p= + · + ⋯ + · + · .i i i i
j

i

j
j

i

j+1 −1 0
=1

0
=0 (6)

There are a number of different ways to realize an adder, among
which the simplest form is the ripple carry adder (RCA). Fig. 1(a)
shows the block diagram of one variation of RCA, where the n-bit adder
is divided into a number of blocks, each with k bits. Each block is
composed of a k-bit propagate/generate (P G/) signal generator, a k-bit
carry generator, and a k-bit sub-adder. The number of blocks is
m = ⌈ ⌉n

k . In practice, we usually choose n as a multiple of k. Thus, in
what follows, we assume that n m k= · . The block indices increase from
the right to the left, with the index of the rightmost block being 0.

For this block-based RCA, we use the following notations:

• Ak
i
−1:0 and Bk

i
−1:0 represent the two k-bit inputs of the i-th block.

• Pk
i
−1:0 andGk

i
−1:0 represent the k propagate signals and the k generate

signals of the i-th block, respectively.

• Sk
i
−1:0 represents the k-bit partial sum of the i-th block.

• Co
i represents the carry-out of the i-th block.

• aj
i, bj

i, pj
i, gj

i, sj
i and cj

i
+1 j k(0 ≤ ≤ − 1) represent the input bit of the

first addend, the input bit of the second addend, the propagate
signal, the generate signal, the sum bit, and the carry-out bit,
respectively, at the j-th position in the i-th block. Note that cj

i

j k(1 ≤ ≤ − 1) is also the carry-in bit at the j-th bit position in the i-
th block and c C=k

i
o
i. The carry-in bit at the 0-th bit position in the i-

th block is denoted as c i
0.

For the adder shown in Fig. 1(a), Pk
i
−1:0 and Gk

i
−1:0 are produced by

the P/G generator i. The carry generator i takes the propagate and
generate signals of the block i and a carry-in as inputs, and produce the
carry-out signal Co

i. For i m1 ≤ ≤ − 1, the carry-in is the carry-out from
the previous block, i.e.,Co

i−1. For i = 0, the carry-in is the primary carry-
in c0. For consistency, we define C c=o

−1
0. For any i m0 ≤ ≤ − 1, Co

i is
obtained as

∏ ∏C g g p g p C p= + + ⋯ + + .o
i

k
i

k
i

k
i i

j

k

j
i

o
i

j

k

j
i

−1 −2 −1 0
=1

−1
−1

=0

−1

(7)

Co
i feeds into the carry generator and the sub-adder in the (i+1)-th

block as their carry-in signal.
The function of the i-th sub-adder is to generate the lowest k bits Sk

i
−1:0

of the sum of the k-bit input Ak
i
−1:0, the k-bit input Bk

i
−1:0, and the carry-in

bit to the sub-adder c i
0. Note that this sum could have k(+ 1) bits due to the

generation of the carry-out. However, the sub-adder does not compute the
carry-out. For example, if A = (0000)k

i
−1:0 2, B = (1111)k

i
−1:0 2, and c = 1i

0 ,
the sub-adder will produce S = (0000)k

i
−1:0 2. For the RCA, c i

0 equals Co
i−1,

the carry-out bit of the previous block.
To realize its function, the sub-adder takes the propagate and

generate signals of the current block and the carry-out from the

previous block, Co
i−1, as inputs. The logic to get the sum bit sj

i

j k(0 ≤ ≤ − 1) is as follows

s p c j k= ⊕ , for = 0, …, − 1,j
i

j
i

j
i

(8)

where c C=i
o
i

0
−1 and cj

i
+1 j k(0 ≤ ≤ − 2) is generated in the sub-adder

internally as follows

c g p c= + · .j
i

j
i

j
i

j
i

+1 (9)

An important signal we will use later is the block propagate signal
ppi, which is defined as

Fig. 1. Block diagram of adders.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

3

∏pp p= .i

j

k

j
i

=0

−1

(10)

Co
i depends on Co

i−1 if and only if p p p= = ⋯ = = 1k
i

k
i i

−1 −2 0 , or ppi = 1.

When ppi = 0, Co
i is independent of Co

i−1.

4. Proposed approximate adder with low relative error

4.1. Approximate adder architecture

The longest critical path for the adder shown in Fig. 1(a) occurs
when the propagate signals at all the bit positions equal 1, which makes
c c=n 0. Thus, to reduce the critical path delay, one effective method is
to reduce the length of the carry propagation chain.

Fig. 1(b) shows the block diagram of the proposed approximate
adder. It is based on the RCA shown in Fig. 1(a). To reduce the long
carry chain, we introduce a carry speculation strategy to truncate the
carry chain: for any i m1 ≤ ≤ − 2, the carry-in signal of the carry
generator in block i is set as the generate signal of the most significant
bit in the previous block, i.e., gk

i
−1
−1. The carry generator 0 has its carry-in

signal remain as c0. For consistency, we define g c=k−1
−1

0. For any
i m0 ≤ ≤ − 2, the output of the carry generator in block i is now an

approximation to the correct carry-out, which is denoted asCapx o
i

, . It can

be obtained by replacing Co
i−1 in Eq. (7) with gk

i
−1
−1:

∏ ∏C g g p g p= + ⋯ + + .apx o
i

k
i i

j

k

j
i

k
i

j

k

j
i

, −1 0
=1

−1

−1
−1

=0

−1

(11)

For the speculated carry-out, it has the following two properties
specified by Lemmas 1 and 2, respectively.

Lemma 1. If the speculated carry - out Capx o
i

, produced by the i - th

carry generator is 1, then the correct carry - out of the i - th block, Co
i,

must be 1. □

Proof. By the definition of the signals and Eq. (9), we have

C c g p c= = + .o
i

k
i

k
i

k
i

k
i−1 −1

−1
−1

−1
−1

−1
−1

Replacing Co
i−1 in Eq. (7) with the above equation, we get

∏ ∏

∏

C g g p g p c p

C p c p

= + ⋯ + + (+)

= + = 1

o
i

k
i i

j

k

j
i

k
i

k
i

k
i

j

k

j
i

apx o
i

k
i

k
i

j

k

j
i

−1 0
=1

−1

−1
−1

−1
−1

−1
−1

=0

−1

, −1
−1

−1
−1

=0

−1

□

Lemma 2. If pp = 0i , then the speculated carry - out Capx o
i

, produced
by the i - th carry generator equals the correct carry - out of the i - th
block, Co

i. □

Proof. pp = 0i means that there is no carry propagation chain from the
carry-in of the i-th carry generator to its carry-out. Thus, the carry-out
does not depend on the carry-in. Therefore, the speculated carry-out
equals the correct carry-out. □

Given Lemma 1, we immediately get the following corollary.

Corollary 1. If the correct carry - out of the i - th block, Co
i, is 0, then

the speculated carry - out Capx o
i

, produced by the i - th carry generator
must be 0. □

As shown in Fig. 1(b), for any i m1 ≤ ≤ − 1, the sub-adder i takes
the speculated carry-out Capx o

i
,

−1 as its carry-in signal. The sub-adder 0
has its carry-in signal remain as c0. For consistency, we define
C c=apx o,

−1
0. The output of the sub-adder will be a partial approximate

sum, which is denoted as Sapx k
i

, −1:0. We use sapx j
i

, j k(0 ≤ ≤ − 1) to
represent the j-th approximate sum bit in the i-th block.

Note that in the proposed design, we omit the m(− 1)-th carry
generator in order to reduce the area. The carry-out of the entire
approximate adder, denoted as Capx add, , is produced by the m(− 1)-th

sub-adder.
The length of the critical path is thus reduced from the span of the

entire m blocks to the span of 2 blocks (i.e., a sub-adder followed by a
carry generator), which significantly reduces the circuit delay.

However,Capx o
i

, is just a speculated carry-out signal of the i-th block,
which could be wrong. This may lead to a large relative error.

Example 1. Consider an example shown in Fig. 2(a), in which pp = 1i ,
g = 0k

i
−1
−1 , and C = 1apx o

i
,

−1 . We further assume that all the input bits of the
blocks on the left of the i-th block and on the right of the i(− 1)-th
block are all 0's. On the one hand, since there is a carry propagation
chain from the carry-in bit of the i-th carry generator to its carry-out,
we have C g= = 0apx o

i
k
i

, −1
−1 . Since the carry-in to the i-th sub-adder is

C = 1apx o
i

,
−1 and the propagate signals p p p= = ⋯ = = 1k

i
k
i i

−1 −2 0 , we have

s = 0apx j
i

, , for all j k= 0, …, − 1. On the other hand, since C = 1apx o
i

,
−1 ,

based on Lemma 1, the correct carry-in to the i-th block C = 1o
i−1 . Thus,

the correct carry-out of the i-th block is C = 1o
i and the sum bits are

s = 0j
i , for all j k= 0, …, − 1. Since all the input bits of the blocks on
the left of the i-th block and on the right of the i(− 1)-th block are all
0's, the approximate sum is (00…0)2. The corresponding accurate sum
is (00…0100…0)2, where the only 1 is at the 0-th bit of the i(+ 1)-th

Fig. 2. An example of addition error due to wrong carry speculation.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

4

block. This leads to a relative error of 100%. □
To reduce the large relative error, we further introduce an error

reduction module into the approximate adder in Fig. 1(b). The
modified approximate adder is shown in Fig. 1(c), where we only
insert a 2-to-1 multiplexer between block i and block i(− 1), for all
i m= 1, 2, …, − 2. The two data inputs of the multiplexer are the
generate signal gk

i
−1
−1 in the previous block and the speculated carry-out

signal produced by the carry generator in the previous block, Capx o
i

,
−1 . The

selection signal is the block propagate signal ppi. Since ppi has already
been generated in the carry generator of block i (as shown in Eq. (11)),
we do not need to include additional circuits to produce it. If pp = 1i ,
the output of the multiplexer is chosen as gk

i
−1
−1; otherwise, it is chosen as

Capx o
i

,
−1 . The output signal of the multiplexer is used as the carry-in signal

of the sub-adder of the current block, which is denoted as Capx in
i

, . Note
that since the m(− 1)-th sub-adder produces both the approximate
sum and the carry out, it can be viewed as a sub-adder of length k(+ 1)
with two k(+ 1)-bit inputs a a a…n n n k−1 − and b b b…n n n k−1 − where
a b= = 0n n . Under this model, since the propagate signal of bit n is
p a b= ⊕ = 0n n n , the block propagate signal of block m(− 1) is

∏pp p= = 0.m

j

k

n j
−1

=0
−

(12)

As a result, the multiplexer between block m(− 1) and block m(− 2)
always chooses Capx o

m
,

−2 as the carry-in signal to the m(− 1)-th sub-adder.
Therefore, that multiplexer is omitted.

As can be seen, this modification causes nearly no overhead to the
original approximate adder. In the following subsections, we will first
demonstrate that the proposed adder has a very small relative error.
Then, we will show that another error metric, error rate, is also small.
Finally, we will analyze its delay.

4.2. Relative error analysis

In this section, we will analyze the relative error of the approximate
adder with the error reduction module. The relative error is defined as

E
S S

S
=

−
,re

apx

(13)

where S and Sapx are the correct and approximate sums for the given
inputs, respectively.

First, consider the case we introduced in Example 1, which results
in a large relative error for the original approximate adder.

Example 2. For the case we introduced in Example 1, the
computation result of the modified adder is shown in Fig. 2(b). Given
pp = 1i , the carry-in to the i-th sub-adder is chosen as g = 0k

i
−1
−1 . Thus,

the approximate sum bit s = 1apx j
i

, , for all j k= 0, …, − 1. Given

pp = 0i+1 , the carry-in to the i(+ 1)-th sub-adder is selected as
C = 0apx o

i
, . Since the input bits to the blocks on the left of block i and

on the right of block i(− 1) are all 0's, the approximate sum is
(00…011…100…0)2 (k 1's at block i). This is very close to the correct
sum (00…0100…0)2 (the only 1 is at the 0-th bit of the i(+ 1)-th block).
The relative error is significantly reduced, i.e., from 100% to 1

2k . □

Indeed, for all possible input combinations, the relative error of our
design is bounded by 1

2k . We prove this claim in the rest of this

subsection.
For the purpose of proving, we add back the multiplexer in between

block m(− 1) and block m(− 2), which selects either gk
m
−1

−2 or Capx o
m

,
−2 as

the speculated carry-in Capx in
m

,
−1 to the m(− 1)-th sub-adder. The selecting

input of the multiplexer is ppm−1, which, as shown by Eq. (12), is 0.
Consequently, Capx in

m
,

−1 is always chosen as Capx o
m

,
−2.

Now, we consider an arbitrarily fixed input combination. We first
partition all m blocks of the input into groups. Each group consists of
two sequences of blocks, where all the blocks in the left sequence have

their block propagate signals as 0 and all the blocks in the right
sequence have their block propagate signals as 1. Fig. 3 gives an
example of 8 blocks divided into 3 groups. Note that for the rightmost
group, it is possible that all of its blocks have their block propagate
signals as 0.

First, we have the following claim.

Theorem 1. For any groupsuppose its correct sum and approximate
sum are SG and SGapx, respectively. Then, we have

SG SG SG0 ≤ − ≤apx
1
2k . □

Proof. See Appendix A. □
We use the following example to demonstrate the correctness of

Theorem 1.

Example 3. Consider the case shown in Example 2. Given the input,
we have pp pp= ⋯ = = 0m i−1 +1 , pp = 1i , and pp = 0i−1 . Therefore, the
blocks m i− 1, …, form a group. By the discussion in Example 2, the
approximate sum and the correct sum for this group are
SG = (00…011…1)apx 2 (k 1's in total) and SG = (00…0100…0)2 (k 0's
on the right of 1), respectively. Therefore, we have
SG SG− = (00…01)apx 2. We conclude that SG SG SG0 ≤ − ≤apx

1
2k . □

Now, suppose the m blocks are partitioned into l groups and the
group i i l(0 ≤ ≤ − 1) ends at block di. For group i, denote its correct
sum as SGi and its approximate sum as SGapx i, . Then, the correct sum of

the entire adder is S SG= ∑ 2 .i
l

i
d k

=0
−1 i The approximate sum is

S SG= ∑ 2 .apx i
l

apx i
d k

=0
−1

,
i By Theorem 1, we have SG SG SG0 ≤ − ≤i apx i i,

1
2k ,

for all i l0 ≤ ≤ − 1. Thus, the relative error for the approximate adder
is

E
S S

S
SG SG

SG

SG

SG

=
−

=
∑ (−)2

∑ 2

≤
∑ 1

2
2

∑ 2
= 1

2
.

re
apx i

l
i apx i

d k

i
l

i
d k

i
l

k i
d k

i
l

i
d k k

=0
−1

,

=0
−1

=0
−1

=0
−1

i

i

i

i

Thus, the relative error of our proposed design is bounded by 1
2k , which

is small for a moderate block size k.

4.3. Error rate analysis

Besides relative error, another commonly-used error metric is error
rate, which is the ratio of the number of input vectors that produce
incorrect outputs to the total number of input vectors [3]. For some
applications, error rate may be also important. For example, peak signal-to-
noise ratio (PSNR), which is a commonly used quality metric in image and
video processing applications, is affected by both error rate and relative
error [33]. We analyze the error rate of our proposed adder in this section.
We assume that the inputs are uniformly distributed.

Instead of directly calculating the error rate Pr E(), we calculate the
probability of getting a correct result, Pr C(), from which we can obtain
Pr E Pr C() = 1 − (). First, we define the following three events:

1. Ui: the approximate carry-out of block i, Capx o
i

, , is equal to the correct

carry-out Co
i, and for all j i0 ≤ ≤ , the approximate sum of block j,

Sapx k
j

, −1:0, is correct.

2. Vi: g = 0k
i
−1 , the correct carry-out C = 0o

i , and for all j i0 ≤ ≤ , the
approximate sum of block j is correct.

Fig. 3. Partition the blocks in the approximate adder into groups.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

5

3. Wi : g = 1k
i
−1 , the correct carry-out C = 1o

i , and for all j i0 ≤ ≤ , the
approximate sum of block j is correct.

Denote Pr U()i , Pr V()i , and Pr W()i as ui, vi, and wi, respectively. The
result of the approximate adder is correct if and only if for all

j m0 ≤ ≤ − 1, the approximate sum of block j is correct. Moreover,
since the carry-in to the m(− 1)-th sub-adder is Capx o

m
,

−2, the approximate

sum of block m(− 1) is correct if and only if Capx o
m

,
−2 is correct. Therefore,

the result of the approximate adder is correct if and only if the event
Um−2 happens. Thus, Pr C u() = m−2.

First, consider when the eventUi happens. We divide the event into
two cases, based on whether pp = 0i or 1, since this determines the
speculated carry-in to the i-th sub-adder.

1. pp = 0i . Then, Capx o
i

, equals the correct carry-out Co
i by Lemma 2.

Moreover, because pp = 0i , the carry-in to the i-th sub-adder is
chosen as Capx o

i
,

−1 . Thus, the correctness of the partial sum at block i

requires that C C=apx o
i

o
i

,
−1 −1. Thus, under the condition that pp = 0i ,

the eventUi occurs if and only ifC C=apx o
i

o
i

,
−1 −1 and for all j i0 ≤ ≤ − 1,

the approximate sum of block j is correct. In other words, the event
Ui occurs if and only if the event Ui−1 occurs.

2. pp = 1i . Then, C g=apx o
i

k
i

, −1
−1, due to carry propagation. At the same

time, the correct carry-out satisfies that C C=o
i

o
i−1. Thus, C C=apx o

i
o
i

,

requires that g C=k
i

o
i

−1
−1 −1. Note that when pp = 1i , the carry-in to the

i-th sub-adder is gk
i
−1
−1. Thus, g C=k

i
o
i

−1
−1 −1 will also make the approx-

imate sum at block i correct. Therefore, under the condition that
pp = 1i , the event Ui occurs if and only if g C=k

i
o
i

−1
−1 −1 and for all

j i0 ≤ ≤ − 1, the approximate sum of block j is correct. In other
words, the event Ui occurs if and only if either the event Vi−1 or the
event Wi−1 occurs.

From the above two cases, we have

u Pr pp u Pr pp v w= (= 0)· + (= 1)·(+).i
i

i
i

i i−1 −1 −1 (14)

Now, consider when the event Vi happens. We still divide the event
into two cases, based on whether pp = 0i or 1.

1. pp = 0i . Then,Capx o
i

,
−1 is chosen to be the carry-in to the i-th sub-adder. To

ensure the correctness of the partial sum at block i, we require
C C=apx o

i
o
i

,
−1 −1. Furthermore, we require that for all j i0 ≤ ≤ − 1, the

approximate sum of block j is correct. Thus, the event Ui−1 must occur.
Moreover, since C = 0o

i and pp = 0i , there must exist a kill signal in
block i which propagates all the way to the most significant bit position
of block i. Thus, we require one of the following events to occur:
k p k p p k= 1, = = 1, …, or = ⋯ = = = 1k

i
k
i

k
i

k
i i i

−1 −1 −2 −1 1 0 . Note that

one of the above events occurring also guarantees that g = 0k
i
−1 .

2. pp = 1i . This ensures that g = 0k
i
−1 . Since pp = 1i , we have C C=o

i
o
i−1.

Thus, C = 0o
i requires that C = 0o

i−1 . Moreover, since the carry-in to
the i-th sub-adder is gk

i
−1
−1 and the approximate sum at block i is

correct, we require that gk
i
−1
−1 is equal to the correct carry-in Co

i−1.

Thus, g C= = 0k
i

o
i

−1
−1 −1 . Thus, under the condition that pp = 1i , the

event Vi occurs if and only if g C= = 0k
i

o
i

−1
−1 −1 and for all j i0 ≤ ≤ − 1,

the approximate sum of block j is correct. In other words, the event
Vi occurs if and only if the event Vi−1 occurs.

From the above two cases, we have

v Pr k Pr p p k u

Pr pp v

= [(= 1) + ⋯ + (= ⋯ = = = 1)]·

+ (= 1)· .
i k

i
k
i i i

i
i

i

−1 −1 1 0 −1

−1 (15)

Finally, we consider when the event Wi occurs. One requirement is
g = 1k

i
−1 . If g = 1k

i
−1 , then we guarantee that C = 1o

i . Moreover, when

g = 1k
i
−1 , ppi must be 0. Thus, the carry-in to the i-th sub-adder is

chosen to beCapx o
i

,
−1 . To ensure the correctness of the partial sum at block

i, we require thatC C=apx o
i

o
i

,
−1 −1. Also, we require that for all j i0 ≤ ≤ − 1,

the approximate sum of block j is correct. In summary, the event Wi
occurs if and only if g = 1k

i
−1 and the event Ui−1 occurs. Thus, we have

w Pr g u= (= 1)· .i k
i

i−1 −1 (16)

Eqs. (14), (15) and (16) give us a recursive way to obtain ui, vi and
wi. To eventually obtain these values, we only need to get the values u0,
v0 and w0, corresponding to the base case.

To get the base case values, we analyze block 0. The carry-ins to
both the carry generator and the sub-adder in block 0 are the primary
carry-in c0, so the speculated carry-out Capx o,

0 and the partial approx-

imate sum Sapx k, −1:0
0 are always correct. It means that the event U0

always happens. Thus, u = 10 . The event V0 happens if and only if
g C= = 0k o−1

0 0 . Since C = 0o
0 indicates that g = 0k−1

0 , we have

v Pr C= (= 0)o0
0 . Since the inputs are uniformly distributed, we have

v Pr C= (= 0) =o0
0 1

2 . The event W0 happens if and only if g C= = 1k o−1
0 0 .

Since g = 1k−1
0 indicates that C = 1o

0 , we have w Pr g= (= 1) =k0 −1
0 1

4 .
Under the assumption that the inputs are uniformly distributed, the

full set of recursive equations is:

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

u v w

u u v w i m

v u v i m

w u i m

= 1, = 1
2

, = 1
4

;

= 1 − 1
2

+ 1
2

(+), 0 < < ;

= 1
2

1 − 1
2

+ 1
2

, 0 < < ;

= 1
4

, 0 < < .

i k i k i i

i k i k i

i i

0 0 0

−1 −1 −1

−1 −1

−1

Finally, we can get the error rate as

Pr E Pr C u() = 1 − () = 1 − .m−2

The error rates of the proposed approximate adders with different n
and k will be shown in Section 6.2.

4.4. Delay analysis

We analyze the delay of the proposed approximate adder in this
section. As shown in Fig. 1(c), the propagate signals and generate
signals are first produced by the P/G generators and delivered to the
carry generators and the sub-adders. Next, all the carry generators
simultaneously produce the speculated carry-out signals Capx o

i
, with the

speculated carry-in signal as gk
i
−1
−1. Then, the speculated carry-in signals

to the sub-adders, Capx in
i

, , are chosen from the two sets of signals Capx o
i

,
−1

and gk
i
−1
−1 by the multiplexers based on block propagate signals ppi.

Finally, the sub-adders take the speculated carry-in signals Capx in
i

, to

compute the approximate sums Sapx k
i

, −1:0. Thus, the critical path delay of
our proposed approximate adder is

t t t t t= + + + ,apx PG CG MUX SA

where tPG, tCG, tMUX , and tSA are the delays of the P/G generator, carry
generator, multiplexer, and sub-adder, respectively. Note that the sub-
adder can be implemented by any kind of conventional adders like RCA
or carry-lookahead adder (CLA). If RCA is chosen, then the approx-
imate adder has small area and power consumption. The asymptotic
upper bounds for the delay values are

t O t O k t O t O k
t O k

= (1), = (log), = (1), = (),
= ().

PG CG MUX SA

apx

On the other hand, if CLA is used as the sub-adders, then both tSA
and tapx will be reduced to O k(log), but the area cost and power
consumption will increase.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

6

5. Proposed sign-correct approximate adder

The approximate adder introduced in the previous section is
targeted for unsigned addition. However, there exist some applications
where 2's complement signed additions are required. Most existing
approximate adders are not targeted for signed addition, and hence
could generate incorrect sign bit when applied for signed additions,
leading to catastrophic consequences. In our work, based on the
proposed low-relative-error approximate adder, we further introduce
a lightweight sign correction module to solve the potential sign error in
the approximate addition. Our basic idea of fixing the sign error is to
detect the situation when the error occurs and then correct the leading
bits that are wrong.

5.1. Sign correction module

In 2's complement signed addition, the input A (B) has an extra bit
an (bn) at the beginning, which denotes the sign. The inputs to the
leftmost block (i.e., block m(− 1)) have k(+ 1) bits, which are a a…n n k−
and b b…n n k−

1. The carry-in to the sign bit is produced by the leftmost
sub-adder based on the inputs a a…n n k−1 − , b b…n n k−1 − , and the specu-
lated carry-in to that sub-adder, i.e., Capx o

m
,

−2. We denote the carry-in to
the sign bit as Capx sign, . The correct carry-in to the sign bit is denoted as
Csign. The sign bit is correct if and only if C C=apx sign sign, .

First, we show an example where a sign error occurs when we
perform a 2's complement signed addition using the approximate
adder shown in Fig. 1(c).

Example 4. Consider the example shown in Fig. 4, in which m = 3.
The two signed inputs, represented as decimal numbers, are 85 and
−84. The correct sum should be 1. However, the result of our
approximate adder is −15, which is quite different from the correct
one.□The above example shows that developing an additional module
to correct the sign error is necessary.

Next, we study the general situation under which a sign error occurs
for the proposed approximate adder. We define the block propagate
signal of the leftmost block (i.e., block m(− 1)) as pp p= ∏m

j
k

n j
−1

=1 − ,
which does not include the propagate signal at the sign bit. The block
propagate signals of the remaining blocks are defined as before.

The following theorem gives a necessary condition for a sign
error to occur.

Theorem 2. If a given input causes a sign errorthen there must exist
an i m1 ≤ ≤ − 1 such that pp pp= ⋯ = = 1m i−1 and C = 1apx o

i
,

−1 . □

Proof. See Appendix B. □
We use the following example to illustrate Theorem 2.

Example 5. Consider the case shown in Example 4, which has a sign
error. By the inputs shown in Fig. 4, it satisfies that pp pp= = 1m m−1 −2

and C = 1apx o
m

,
−3 , where m = 3. □

Now, consider an input for which there exists an i m1 ≤ ≤ − 1 such
that pp pp= ⋯ = = 1m i−1 and C = 1apx o

i
,

−1 . Because Theorem 2 only gives
a necessary condition for the existence of a sign error, this input may or
may not cause a sign error. However, no matter whether there is a sign
error or not, the correct sign value can be determined for this input.
Because C = 1apx o

i
,

−1 , by Lemma 1, the correct carry-out C = 1o
i−1 . Given

that pp pp= ⋯ = = 1m i−1 , the correct carry-in to the sign bit is C = 1sign

and the correct partial sums S S, …,k
m

k
i

−1:0
−1

−1:0 are all (00…0)2 (k 0's in
total). This indicates a way to correct sign error.

First, we define the following signal for any i m1 ≤ ≤ − 1:

sp pp pp C= ·⋯· · ,i m i
apx o
i−1

,
−1

(17)

which can be realized by an (m i− + 1)-input AND gate, as shown in

Fig. 5(a). sp = 1i indicates that the input satisfying that
pp pp= ⋯ = = 1m i−1 and C = 1apx o

i
,

−1 . We further define

CS sp sp i m= + ⋯ + , 1 ≤ ≤ − 1,i i1 (18)

which can be realized by an i-input OR gate, as shown in Fig. 5(b).
If CS = 1m−1 , then there exists an i m1 ≤ ≤ − 1 such that

pp pp= ⋯ = = 1m i−1 and C = 1apx o
i

,
−1 . Thus, we should set the speculated

carry-in to the sign bit to 1. Otherwise, the original speculated carry-in
is correct and we just keep it. Therefore, we modify the speculated
carry-in to the sign bit as follows:

C CS C= + ,sapx sign
m

apx sign,
−1

,

where Csapx sign, denotes the modified carry-in to the sign bit, which can
be obtained by an OR gate as shown in Fig. 5(c).

Furthermore, to reduce the error magnitude, if sp = 1i , we also set
the partial approximate sums at blocks m m i− 1, − 2, …, to (00…0)2
(k 0's in total). Correspondingly, the partial approximate sum at block i

i m(1 ≤ ≤ − 1) is set to (00…0)2 if any of sp sp, …, i1 is 1, which is
equivalent to CS = 1i . If CS = 0i , we just keep the original partial
approximate sum at block i. Thus, we modify the approximate sum bit
as follows:

s s CS j k i m= · , 0 ≤ ≤ − 1, 1 ≤ ≤ − 1,sapx j
i

apx j
i i

, , (19)

where ssapx j
i

, denotes the modified sum bit at the j-th position in block i,
which can be obtained by an AND gate as shown in Fig. 5(c). Note that
the partial approximate sum at block 0 is not changed, i.e., s s=sapx j apx j,

0
,

0

for all j k0 ≤ ≤ − 1.
By the above construction, the sign correction module ensures the

result of the approximate addition has no sign error. Next, we will
discuss the relative error and error rate of this modified adder.

Fig. 4. Example that the proposed approximate adder produces an incorrect sign bit.

Fig. 5. Circuits of the sign error correction module.

1 Different from unsigned addition, in signed addition, the carry-out of the entire
adder is ignored.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

7

5.2. Relative error analysis

We first ignore the sign bit and focus on the sum composed of all
the remaining output bits of the approximate adder. Given an
arbitrarily fixed input combination, based on the block propagate
signals ppi, we partition all the blocks into groups as defined in
Section 4.2. Suppose the m blocks are partitioned into l groups and
the group i (i l0 ≤ ≤ − 1) ends at block di. Since the sign-correct
approximate adder is modified from the proposed approximate adder
without sign correction, our analysis idea is to connect the former to
the latter. For group i, we denote its correct sum as SGi, its approximate
sum produced by the proposed approximate adder without sign
correction as SGapx i, , and its approximate sum produced by the sign-
correct approximate adder as SGsapx i, .

First, for groups other than the leftmost one, we have the following
claim.

Lemma 3. For any i l0 ≤ ≤ − 2, SG SG=sapx i apx i, , . □

Proof. See Appendix C. □
For the leftmost group, we have the following claim.

Lemma 4. If pp = 0m−1 , then SG SG=sapx l apx l, −1 , −1. If pp = 1m−1 , then
SG SG=sapx l l, −1 −1. □

Proof. See Appendix D. □
Based on Lemmas 3 and 4 and Theorem 1, we have the following

claim.

Theorem 3. For any group i l0 ≤ ≤ − 1, SG SG SG0 ≤ − ≤i sapx i i,
1
2k . □

If the sign bit is 0, then the final sum S SG= ∑ 2 .spax i
l

sapx i
d k

=0
−1

,
i Given

Theorem 3, by the same argument as we used in Section 4.2, the
relative error of the approximate sum is bounded by 1

2k .

Now, consider the case where the sign bit is 1. The correct sum is
S SG= ∑ 2 − 2i

l
i

d k n
=0
−1 i , and the approximate sum is

S SG= ∑ 2 − 2sapx i
l

sapx i
d k n

=0
−1

,
i . The absolute error is

∑S S SG SG| − | = (−)2 .sapx
i

l

i sapx i
d k

=0

−1

,
i

(20)

Define d m=l . For i l0 ≤ ≤ − 1, define SG SG′ = 2 − 1 −i
d d k

i
(−)i i+1 .

Note that SG′i is equivalent to the bit-wise negation of SGi. For the
magnitude of S, we have

∑

∑

∑

S SG

SG

SG

| | = 2 − 2

= (2 − 2 − 2) + 2

= ′ 2 + 1.

n

i

l

i
d k

i

l
d k d k

i
d k d k

i

l

i
d k

=0

−1

=0

−1

=0

−1

i

i i i

i

+1 0

(21)

To further derive the relative error, we will use the following claim,
which bounds SG SG(−)i sapx i, using SG′.

Lemma 5. For any i l0 ≤ ≤ − 1, SG SG SG− ≤ ′i sapx i i,
1

2 − 1k . □

Proof. See Appendix E. □
When the sign bit is 1, based on Eqs. (20), (21), and Lemma 5, the

relative error of the approximate sum is

∑

∑

∑

∑

E
S S

S

SG SG

SG

SG

SG

=
| − |

| |
=

(−)2

′ 2 + 1

<

1
2 − 1

′ 2

′ 2
= 1

2 − 1

re
sapx i

l

i sapx i
d k

i

l

i
d k

i

l

k i
d k

i

l

i
d k

k

=0

−1

,

=0

−1

=0

−1

=0

−1

i

i

i

i

By the above analysis, the relative error of the sign-correct
approximate adder is bounded by 1

2 − 1k , which is close to that of the

proposed approximate adder without sign correction.

5.3. Error rate analysis

In this section, we analyze the error rate of the sign-correct
approximate adder. We assume the inputs are uniformly distributed.
First, we have the following claim.

Theorem 4. The error rate of the sign - correct approximate adder is
smaller than that of the approximate adder without sign correction.□

Proof. See Appendix F. □
Next, we will calculate the exact error rate for the sign-correct

approximate adder. We consider when the inputs produce the
correct sum. We distinguish all the inputs into the following three
cases.

1. pp = 0m−1 . In this case, by Lemmas 3 and 4, we have SG SG=sapx i apx i, ,
for all i l0 ≤ ≤ − 1. Therefore, the sum of the sign-correct approx-
imate adder is correct if and only if that of the approximate adder
without sign correction is correct, which happens when the event
Um−2 occurs by our discussion in Section 4.3.

2. pp pp= ⋯ = = 1m t−1 and pp = 0t−1 , where t m2 ≤ ≤ − 1. In this
case, by Lemmas 3 and 4, we have SG SG=sapx l l, −1 −1 and for all

i l0 ≤ ≤ − 2, SG SG=sapx i apx i, , . Therefore, the sum of the sign-correct
approximate adder is correct if and only if for the approximate adder
without sign correction, SG SG=apx i i, for all i l0 ≤ ≤ − 2. In this
case, the group l − 2 begins at block t − 1. Thus, we require that for
all j t0 ≤ ≤ − 1, the sum of block j of the approximate adder without
sign correction is correct. Since pp = 0t−1 , we have C C=apx in

t
apx o
t

,
−1

,
−2 .

Therefore, an equivalent condition is thatCapx o
t

,
−2 is equal to the correct

carry-out Co
t−2 and for all j t0 ≤ ≤ − 2, the sum of block j of the

approximate adder without sign correction is correct. In other
words, the event Ut−2 defined in Section 4.3 must occur.

3. pp pp= ⋯ = = 1m−1 1 . In this case, blocks m m− 1, − 2, …, 1 belong
to group l(− 1). By Lemma 4, SG SG=sapx l l, −1 −1. As a result, the sum
from block m − 1 to block 1 of the sign-correct approximate adder is
correct. Furthermore, by our design, the sum at block 0 is always
correct. Therefore, in this case, the sum of the sign-correct approx-
imate adder is always correct.

By the above discussion, we conclude that the probability of the
sign-correct approximate adder to produce a correct output is

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

∑ ∏

∏

∑

Pr C Pr pp u

Pr pp Pr pp u

Pr pp

u

() = (= 0)

+ (= 1) (= 0)

+ (= 1).

= 1
2

1 − 1
2

+ 1
2

,

m
m

i

m

k i

m
k i

i

k

m
k

i

m

k

m i

k i k

m

−1
−2

=2

−1

=

−1
−1

−2

=1

−1

=2

−

−2

−1

where ui's are obtained in Section 4.3. The error rate is

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

8

Pr E Pr C() = 1 − (). The error rates of the sign-correct approximate
adders with different n and k will be shown in Section 6.2.

6. Experimental results

We evaluate our proposed approximate adders with and without
sign correction in this section. They were designed in Verilog HDL,
synthesized with a NANGATE 45 nm cell library [34] using Synopsys
Design Compiler [35].

6.1. Comparison of the proposed adders with other adders

In this section, we compared our proposed adders with other
adders, including two conventional adders (RCA and Kogge-Stone-
based CLA) and six other approximate adders (LOA [4], ETAII [5],
SCSA [18], ACA [30], LUA [28], and CSAA [6]) for a 32-bit addition.
We conducted two sets of experiments. In the first set of experiments,
we chose the block size k = 4 for our proposed approximate adders,
while in the second set, we chose k = 8. For each set of experiments, the
block sizes for ETAII, SCSA, and CSAA were also chosen as k, the block
size of the proposed approximate adders. For LOA, we set its accurate
and inaccurate segments to both have 16 bits. For ACA, we used k2 -bit
sub-adders, to make it have an equivalent block size of k. For LUA, we
set the look-ahead as k bits. The same designs of the k-bit carry-
lookahead module were used as the carry generators in the ETAII,
SCSA, LUA, CSAA, and our proposed adders. For SCSA, ACA, LUA, and
CSAA, their sub-adders were implemented as RCAs. For LOA, we
implemented two versions, one with its accurate part as RCA and the
other as Kogge-Stone-based CLA. We also implemented two versions
for ETAII and our proposed adders with and without sign correction
module. The first version of each adder has the sub-adders as RCAs and
the second version as Kogge-Stone-based CLAs. For ACA, it has its own
error detection and correction modules, but such modules incur
additional area overhead and require an additional clock cycle to
correct the error. Thus, we did not include such modules in our
implementation of ACA. We compared seven metrics of our proposed
adders to those of the other adders, which are area, delay, power
consumption, power-delay product, error rate, maximal relative error,
and the capability to ensure the correct sign calculation.

The results for k = 4 are listed in Table 1. For the proposed adder with
or without sign correction module, the implementation with RCAs as the
sub-adders has smaller area and power consumption but larger delay than
the implementation with CLAs as the sub-adders, which is expected.
However, due to the small size of the sub-adder (i.e., of only 4 bits), their
differences in area, delay, and power consumption are not large. As a result,

these two implementations have close power-delay product (PDP).
Compared to RCA, the proposed RCA-based approximate adder

without sign correction module has smaller area, delay, and power
consumption, while the proposed one with sign correction module has
larger area, but smaller delay and power consumption. In terms of
PDP, the proposed RCA-based approximate adders without and with
sign correction are smaller than RCA by 76% and 66%, respectively.
Compared to CLA, the proposed RCA-based approximate adders with
and without sign correction module have slightly larger delay, but
much smaller area and power consumption. In terms of PDP, the
proposed RCA-based adders without and with sign correction are
smaller than CLA by 51% and 32%, respectively. Similar conclusions
can be drawn for the CLA-based implementation of the proposed
adders.

Compared with the other approximate adders, our adders also show
advantages. In terms of area, our proposed RCA-based approximate
adder without sign correction is only inferior to LOA and ETAII; it is
superior to SCSA, ACA, LUA, and CSAA. In terms of PDP, it is better
than RCA-based LOA, SCSA, and ACA. The PDP of our proposed RCA-
based adder with sign correction is larger than all the other existing
approximate adders except ACA, due to the extra hardware for
correcting sign bit error. However, it can ensure the correct sign
calculation for 2's complement signed addition, while the other
approximate adders cannot. The error rates of our adders are only
larger than CSAA among all the other approximate adders. It is because
CSAA looks ahead two blocks for carry speculation, while ours look
ahead only one block. All the other approximate adders have large
maximal relative error. In contrast, the maximal relative errors of our
designs are limited to a small value. According to our analysis, with
k = 4, the maximal relative error is = 6.25%1

2k for the proposed

approximate adder without sign correction and = 6.67%1
2 − 1k for the

proposed sign-correct approximate adder.
To give a clearer comparison, we also plot the power-delay product

(PDP) versus error rate and the PDP versus maximum relative error for
each adder in Table 1 in Fig. 6(a) and Fig. 6(b), respectively. A Pareto
optimal curve is identified in each figure.

From Fig. 6(a), we can see that the proposed approximate adder
without sign correction module (either RCA-based or CLA-based) is
close to the Pareto optimal PDP-versus-error-rate curve, while the one
with sign correction module (either RCA-based or CLA-based) deviates
farther from the curve. Since the main purpose of our proposed adders
is to reduce the relative error and to ensure the correct sign calculation,
their relative positions to the Pareto optimal curve are satisfying.

From Fig. 6(b), we can see that our CLA-based approximate adder
without sign correction module is on the Pareto optimal PDP-versus-

Table 1
Comparison of the proposed adders with other 32-bit adders (k = 4).

Adders Area (μm2) Delay (ns) Power (μW) Power- delay product (fJ) Error rate (%) Max relative error (%) Sign always correct

RCA 254.03 4.04 176 711.04 0 0 Yes
CLA 700.11 1.54 229 352.66 0 0 Yes
LOA(RCA) 127.95 2.37 87 206.90 99 50 No
LOA(CLA) 192.32 1.80 92 165.60 99 50 No
ETAII(RCA) 214.12 1.48 91.5 135.42 16.94 100 No
ETAII(CLA) 225.23 1.47 93 136.71 16.94 100 No
SCSA 405.64 1.58 125 197.50 20.51 100 No
ACA 335.16 1.57 153 240.21 16.34 100 No
LUA 323.72 1.37 114 156.18 34.64 100 No
CSAAa 251.37 1.74 84.3 146.68 0.91 100 No
Proposed(RCA)b 244.72 1.69 102 172.38 8.67 6.25 No
Proposed(CLA)b 251.68 1.61 106 170.66 8.67 6.25 No
Proposed(RCA)c 350.22 1.68 142 238.56 8.58 6.67 Yes
Proposed(CLA)c 402.01 1.55 155 240.25 8.58 6.67 Yes

a Without error reduction module.
b Without sign correction module.
c With sign correction module.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

9

maximal-relative-error curve. The RCA-based implementation is very
close to the optimal curve. After adding the sign correction module, the
PDP of our adder (either RCA-based or CLA-based) increases, but it
does not deviate much from the optimal curve. Considering its feature
of always ensuring the correct sign calculation, one may find this trade-
off worthy in some applications.

To further study the overhead of the various components in our
proposed approximate adder with sign correction module, we present
the power breakdown of the major components in Table 2. Both RCA
and CLA-based implementations are considered. Each adder can be
decomposed into two major parts, the approximate adder without sign
correction and the sign correction module. The adder without sign
correction can be further decomposed into the main part (which

includes the P/G signal generators, the carry generators, and the
sub-adders) and the set of multiplexers (which are introduced to
reduce the relative error). From Table 2, we can see that for both the
RCA and CLA-based implementations, the sign correction module
takes less than 1/3 of the total power of the proposed adder. The power
consumption of the multiplexers is very small, accounting for less than
2.5% of the total value.

Table 3 shows the results of all the adders for k = 8. The proposed
approximate adder without sign correction module (either RCA-based
or CLA-based) has a much smaller PDP than RCA and CLA. With the
additional sign correction module, the proposed adder has an increased
PDP, but it is still smaller than those of RCA and CLA. Compared with
the other approximate adders, our proposed adders with and without
sign correction (either RCA-based or CLA-based) have smaller PDP
than SCSA and ACA. Again, the main advantages of the proposed
approximate adders over the existing approximate adders lie in the
small relative error and the capability to ensure the correct sign
calculation in the signed addition. Furthermore, we can see that the
increase of the block size significantly reduces the error rate and
maximal relative error of the proposed adders.

We also plot the PDP versus error rate and the PDP versus maximal
relative error for all the adders in Table 3 in Fig. 7(a) and Fig. 7(b),
respectively. A Pareto optimal curve is identified in each figure.

From Fig. 7(a), we can see that the proposed approximate adder
without sign correction module (either RCA-based or CLA-based) is
very close to the Pareto optimal PDP-versus-error-rate curve. The
proposed adder with sign correction module (either RCA-based or
CLA-based) does not deviate much from the curve. This demonstrates
that the proposed adders achieve a good trade-off between PDP and
error rate.

From Fig. 7(b), which focuses on the maximal relative error, we find
that our proposed CLA-based approximate adder without sign correc-
tion module lies on the Pareto optimal curve. The RCA-based im-
plementation is very close to the optimal curve. The approximate adder
with sign correction module (either RCA-based or CLA-based) has a
larger PDP and hence, is off the optimal curve. However, it has the
unique feature of the always correct sign calculation, which is desirable
for some applications, as we will demonstrate in Section 6.4.

For the case where the block size k = 8, we also present the power
breakdown of the proposed adder with sign correction in Table 4. Both
RCA and CLA-based implementations are considered. For both im-
plementations, the power consumptions of the sign correction module
and the multiplexers account for less than 27% and 1.1% of the total
power, respectively. Compared to the previous results for k = 4, their
percentages reduce, since the number of the blocks of the adder
reduces.

6.2. Error rates of the proposed adders with different sizes

In this section, we evaluated the error rates of the proposed
approximate adders with different bit lengths n and block sizes k.
The error rates were obtained by the methods discussed in Sections 4.3
and 5.3. Fig. 8 shows the error rates of the proposed adder without sign
correction for different bit lengths n and block sizes k. For a fixed bit
length n, the error rate decreases exponentially with the block size k.
For a fixed block size k, the error rate increases with the bit length n,
because the block number m n k= / increases, causing a large error rate.
For the adders with n ≤ 64 and k = 8, the error rates are less than 10−2.
For the adders with n ≤ 256 and k = 16, the error rates are less than
10−4.

The error rates of the proposed approximate adder with sign
correction are very close to that of the approximate adder without sign
correction and hence, are of the similar trend as shown in Fig. 8.
Table 5 shows the detailed comparison of the error rates of the
proposed approximate adders with and without sign correction for a
number of combinations of n and k. For all combinations of n and k,

Fig. 6. Plots of power-delay product (PDP) versus (a) error rate and (b) maximal relative
error for all the adders in Table 1.

Table 2
Power breakdown of the proposed approximate adder with sign correction module (32-
bit and k = 4).

RCA-based CLA-based

Component Power
(μW)

% Power
(μW)

%

Approximate adder w/o sign
correction

Main part 93.06 65.5 100.7 65.0
MUX 3.54 2.5 3.6 2.3

Sign correction 45.4 32 50.7 32.7
Total 142 100 155 100

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

10

the error rate of the adder with sign correction is smaller than that of
the adder without sign correction, which is indicated by Theorem 4.
The last column of the table shows the reduction ratio of the error rate
of the former over the latter. It can be seen that only when n = 8 and
k = 2, the difference is larger than10%. For a fixed k, as n increases, the
reduction ratio drops. When n ≥ 64, the reduction ratios for different

block sizes k are all very close to zero.

6.3. Areas, delays, and power consumptions of the proposed adders
with different sizes

In this section, we studied the effects of different bit lengths n and block
sizes k on the area, delay, and power consumption of our proposed adders.
We focused on the RCA-based implementations. We chose n = 16, 32, 64.
For n = 16, we chose k = 2, 4. For n = 32, we chose k = 2, 4, 8. For
n = 64, we chose k = 4, 8, 16. The plots of area, power consumption, and
delay are shown in Fig. 9(a), (b), and (c), respectively.

Table 3
Comparison of the proposed adders with other 32-bit adders (k = 8).

Adders Area (μm2) Delay (ns) Power (μW) Power- delay product (fJ) Error rate (%) Max relative error (%) Sign always correct

RCA 254.03 4.04 176 711.04 0 0 Yes
CLA 700.11 1.54 229 352.66 0 0 Yes
LOA(RCA) 127.95 2.37 87 206.90 99 50 No
LOA(CLA) 192.32 1.80 92 165.60 99 50 No
ETAII(RCA) 247.65 1.82 118 214.76 0.4 100 No
ETAII(CLA) 297.65 1.71 126 215.46 0.4 100 No
SCSA 463.37 1.71 196 335.16 0.58 100 No
ACA 332.23 2.46 182 447.72 0.39 100 No
LUA 516.83 1.50 158 237.00 2.22 100 No
CSAAa 302.70 1.84 135 248.40 < 0.1 100 No
Proposed(RCA)b 296.86 1.84 135 248.40 0.19 0.39 No
Proposed(CLA)b 335.96 1.76 140 246.4 0.19 0.39 No
Proposed(RCA)c 379.58 1.92 172 330.24 0.19 0.39 Yes
Proposed(CLA)c 426.93 1.85 178 329.30 0.19 0.39 Yes

a Without error reduction module.
b Without sign correction module.
c With sign correction module.

Fig. 7. Plots of power-delay product (PDP) versus (a) error rate and (b) maximal relative
error for all the adders in Table 3.

Table 4
Power breakdown of the proposed approximate adder with sign correction module (32-
bit and k = 8).

RCA-based CLA-based

Component Power
(μW)

% Power
(μW)

%

Approximate adder w/o sign
correction

Main part 124.6 72.5 128.0 72.2
MUX 1.87 1.1 1.88 1.1

Sign correction 45.5 26.4 47.5 26.7
Total 172 100 178 100

Fig. 8. Error rates of the proposed approximate adders without sign correction for
different bit lengths n and block sizes k.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

11

From Fig. 9(a), we can see that the area is mainly affected by the bit
length n: it increases with n. Each proposed approximate adder without
sign correction lies below its counterpart with sign correction, since the
sign correction module takes additional area. We can also observe that
when n is fixed, the area difference between the approximate adder
with sign correction and its counterpart without sign correction
decreases with the block size k . This is because the difference is due
to the area of the sign correction module, which, as shown in Fig. 5,
increases with the number of blocks. As the block size k increases, the
number of blocks decreases. This leads to a smaller sign correction
module and reduces the area difference between the two adders.

From Fig. 9(b), we can see that the power consumption is still
mainly affected by the bit length n. Furthermore, the power consump-
tions of the proposed approximate adders have a similar trend as their
areas. This is because the power consumption of a circuit is usually
proportional to its area.

Fig. 9(c) shows the delays of the proposed adders with different bit
lengths and block sizes. We can see that for the approximate adders
without sign correction, their delays are independent of the bit length.
For example, the point for n = 16 and k = 2 overlaps that for n = 32
and k = 2. This is because their delays are only affected by the block
size k, as we discussed in Section 4.4. As k increases, the delay of the
approximate adder without sign correction increases. The delay of a
proposed approximate adder with sign correction is usually larger than
its counterpart without sign correction. This is due to the existence of
the additional AND gates added to the outputs of the sub-adders, as
shown in Fig. 5(c). As k increases, the delay of the approximate adder
with sign correction also increases.

6.4. Performance of the proposed adders on real applications

In this section, we applied our proposed approximate adders with
and without sign correction module to three different applications to
study their performance on real applications. These three applications
are 1) mean filter for digital images, 2) Roberts cross-based edge
detection, and 3) k-means clustering. For all these applications, we
used the proposed approximate adders to do the additions and
subtractions. For comparison purpose, we also applied other approx-
imate adders to the same applications.

6.4.1. Mean filter for digital images
Mean filter algorithm is commonly applied to reduce noise in an

image. It replaces the value for each pixel in the image by the average
value of pixels in an n n× window centered at that pixel [36].

In this section, we consider implementing a mean filter of a 3 × 3
window size. It does the following calculation

z x x x x

x x x x x

= (+ + +

+ + + + +)/9,
i j i j i j i j i j

i j i j i j i j i j

, −1, −1 −1, −1, +1 , −1

, , +1 +1, −1 +1, +1, +1 (22)

where zi j, and xi j, denote the input and output pixel values, respectively,
at row i and column j of the image. Notice that the calculation involves
only addition; there is no subtraction.

Fig. 10 shows the output images of applying various adders to
perform the additions involved in Eq. (22). The adders tested include
an accurate adder, the proposed approximate adders with and without
sign correction, and four other approximate adders, which are CSAA,
LOA, LUA, and ETAII. The bit lengths of all the adders were set as 15.
The block size for the approximate adders other than the LUA and the
LOA was set as 3. The bit length of the carry-lookahead in LUA was set
as 3. The bit length of the inaccurate part of LOA was set as 7. The
input image is shown in Fig. 10(a) and the output images by applying
various adders are shown in Fig. 10(b-h). Compared with the result of
the accurate one, the output images produced by applying LOA, LUA,
and ETAII are not good, while that by CSAA is acceptable. The
proposed approximate adders with and without sign correction module
give results very close to the accurate one. Indeed, since there is no
subtraction involved, the two proposed adders produce the same result.
It is interesting to note that CSAA, although with low error rate, could
occasionally produce relative error close to 100% and hence, introduce
some visible noise rather than eliminate it. This application demon-
strates the importance of reducing the maximal relative error and the
advantage of our proposed adders.

To numerically evaluate the qualities of different adders, we also
calculated the peak signal-to-noise ratio (PSNR) for each output image.
It is defined as:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟PSNR

MAX
MSE

= 10·log I
10

2

(23)

Table 5
Comparison of the error rates of the proposed approximate adders with and without sign
correction.

n k ER without sign
correction e()1

ER with sign
correction e()2

Reduction ratio
⎛
⎝⎜

⎞
⎠⎟·100%e e

e
1 − 2

1

8 2 0.109 0.094 14.3
16 2 0.275 0.262 4.72

4 3.03E-2 2.93E-2 3.23
32 2 0.520 0.512 1.65

4 8.67E-2 8.58E-2 1.06
8 1.95E-3 1.95E-3 0.195

64 2 0.790 0.786 0.478
4 0.190 0.189 0.430
8 5.83E-3 5.83E-3 6.52E-2
16 7.63E-6 7.63E-6 7.86E-4

128 2 0.960 0.959 7.56E-2
4 0.363 0.362 0.177
8 1.35E-2 1.35E-2 2.80E-2
16 2.29E-5 2.29E-5 0
32 1.16E-10 1.16E-10 0

Fig. 9. The areas, power consumptions, and delays of the proposed adders with different bit lengths and block sizes.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

12

where MAXI is the maximum possible pixel value in an image, which is
255 in our experiment. MSE is the mean squared error, defined as:

∑ ∑MSE
W H

z z= 1
×

[− ′]
i

W

j

H

i j i j
=0

−1

=0

−1

, ,
2

where W and H represent the width and height of the image,
respectively, and zi j, and z′i j, represent the accurate value and the value
obtained by an approximate adder, respectively, at location i j(,) in the
output image. The larger the PSNR is, the higher the quality of the
output image is. The PSNR for each approximate adder is shown in the
caption below the image produced by that adder. We can see that the
PSNR of the image produced by the proposed approximate adder,
whether with sign correction module or not, is higher than that by any
other approximate adder.

6.4.2. Roberts cross-based edge detection
Roberts cross algorithm [37] is a simple method to detect edges in a

given image. In this section, we consider implementing the following
variation of the Roberts cross algorithm:

z x x x x= | − | + | − |,i j i j i j i j i j, , +1, +1 +1, , +1 (24)

where zi j, and xi j, denote the input and output pixel values, respectively,
at row i and column j of the image. Note the calculation involves one
addition and two subtractions, which are realized through 2's comple-
ment signed addition.

Fig. 11 shows the output images of applying various adders to
perform the addition and subtractions involved in Eq. (24). The adders
tested include an accurate adder, the proposed approximate adders
with and without sign correction, and four other approximate adders,
which are CSAA, LOA, LUA, and ETAII. The bit lengths of all the
adders were set as 10. The block sizes for the proposed approximate
adders, CSAA, and ETAII were all set as 2. The bit length of the carry-
lookahead in LUA was set as 2. The bit length of the inaccurate part of
LOA was set as 5, which is half of the total bit length. The input image
is shown in Fig. 11(a) and the output images by applying various
adders are shown in Fig. 11(b-h). Compared with the result of the

accurate adder, the output images produced by using CSAA, LUA and
ETAII are not good, while that by LOA is acceptable. However, there
are still a number of noisy points in the image produced by LOA. In
contrast, the result of the proposed sign-correct approximate adder is
almost the same as that of the accurate adder. This shows the proposed
approximate adder performs much better than those previously
proposed adders. It should be noted that the proposed approximate
adder without sign correction does not perform well neither. This
demonstrates the importance of the correct sign bit calculation in this
application.

To numerically evaluate the qualities of different adders, we also
calculated the peak signal-to-noise ratio (PSNR) for each output image
using Eq. (23). The PSNR for each approximate adder is shown in the
caption below the image produced by that adder. We can see that the
PSNR of the image produced by the proposed sign-correct approximate
adder is much higher than that by any other approximate adder.

To further demonstrate the low error rate and low relative error of
the proposed sign-correct approximate adder, we collected the first
subtraction results in a Roberts cross calculation over all pixels,
calculated their relative errors, and plotted the distribution of the
relative errors in Fig. 12(a). The x-axis is the value of relative error and
the y-axis is the number of pixels with the corresponding relative error.

The size of the figure used in our experiment is 640 × 480, so there
are 307,200 samples in total. As we show in Section 5.2, the relative
error of our proposed sign-correct approximate adder is bounded by

1
2 − 1k . With the choice of block size k = 2 in our experiment, the relative

error is bounded by = 33.33%1
2 − 12 . This is consistent with Fig. 12(a),

which shows that the maximal relative error is about 27%. Besides low
relative error, we can also see that majority of the computation results
are correct (i.e., the relative error is zero). Indeed, the error rate of the
proposed approximate adder is only 1.12%.

For comparison purpose, we plotted the same relative error
distributions for other four approximate adders, CSAA, LOA, LUA,
and ETAII, in Fig. 12(b-e), respectively. Since these approximate
adders cannot guarantee the correct sign bit calculation, there exist
some inputs from the sample image for which the accurate results

Fig. 10. Mean filter for a digital image using different adders.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

13

should be 0, but the approximate results are not. The corresponding
relative error is infinity. We indicate this situation by setting the
relative error as 1000 in the histograms. Note that this situation will
never happen by using our proposed sign-correct approximate adder.
Comparing the five error distributions shown in Fig. 12, we can see that
our proposed adder has significant advantages. Due to the inaccurate
sign calculation, some results given by the other adders could be
hundreds of times different from the accurate ones, while the results
given by our adder have at most 27% difference. Furthermore, although
some of the other approximate adders, such as CSAA, could have a low
error rate for unsigned additions, their error rates are all very large for
2's complement signed additions. From our experiment, the error rates

of CSAA, LOA, LUA, and ETAII are 32.09%, 77.74%, 56.14%, and
51.31%, respectively, which are much larger than that of our adder.

6.4.3. k-means clustering
In this section, we studied the performance of our approximate

adders in the k-means clustering algorithm, which is widely-used in
data mining and unsupervised learning [38]. The target of the
algorithm is to partition a set of n data points into k clusters so that
the sum of the distances from each point to the centroid of its
belonging cluster is minimized. In other words, the following objective
function, known as within-cluster distance (WCD), is minimized:

Fig. 11. Roberts cross-based edge detection using different adders.

Fig. 12. The distributions of the relative errors on the subtraction step in the edge detection application for five approximate adders.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

14

∑ ∑F x μ= − ,
i

k

x C
j
i

i
=1 ∈

() 2

j
i

i
() (25)

where Ci is the i-th cluster, μi is the centroid of the cluster Ci, and xj
i() is

the j-th point in the cluster Ci.
The basic idea of the algorithm is to iteratively update each cluster

by assigning each point to its closest cluster until there is no more
change to the clusters. The major computation of the algorithm is to
calculate the distance between a point and the centroid of a cluster,
which involves a number of subtractions and additions. We applied our
proposed approximate adders and various other approximate adders to
do these operations. All the adders are of bit length 12. The block
lengths of the approximate adders are 2.

A synthetic 2-D data set shown in Fig. 13(a) was used to test the
performance of the k-means clustering algorithm using various adders.
The data set contains 800 points in total. The number of clusters is set
as 4. The termination condition is either the centers of all the clusters
do not change between two successive iterations or the number of
iterations is over 100. Fig. 13(b-h) show the clustering results given by
using the accurate adder, our proposed approximate adder without sign
correction, our proposed sign-correct approximate adder, CSAA, LOA,
LUA, and ETAII, respectively. The final four clusters are indicated by
four different types of points. For each adder, we also show the total
number of iterations of the algorithm and within-cluster distance
(WCD) calculated by Eq. (25) in the caption below the corresponding
figure.

Comparing our proposed approximate adders with the accurate
adder, we can see that the sign-correct one can give a result very close
to that of the accurate adder, while the one without sign correction
could not. This observation is similar to what we had for the Roberts
cross-based edge detection. Again, it shows the importance of correct
sign calculation for applications involving subtractions. We can see that
using the approximate adder without sign correction, the result could
not converge in 100 iterations and the WCD of the final clustering
result is much larger than that of the accurate adder. In contrast, if we

use the sign-correct approximate adder, although it needs one more
iteration than the accurate adder to converge, it only takes 12
iterations, which is still very fast. The WCD of the final result is only
0.017% larger than that of the accurate adder.

Furthermore, we can see that among the other four previous
approximate adders, only the clustering using LOA converges, taking
only 8 iterations, which is even fewer than that of the accurate adder.
However, its final clustering result is still quite different from the
correct one. Its final WCD is about 140% larger than that of the
accurate adder. The k-means clusterings by the other three approx-
imate adders all fail to converge after 100 iterations. In summary, our
proposed sign-correct approximate adder has much better performance
than the other approximate adders in k-means clustering.

7. Conclusion

In this paper, we proposed a novel approximate adder which
significantly reduces the power-delay product over the conventional
accurate adders. The efficient carry speculation and error reduction
technique proposed in this work can make our adder have a low error
rate and, more importantly, a low maximal relative error. Furthermore,
a lightweight error correction module was proposed that ensures the
correct sign calculation in 2's complement signed addition. By applying
our adders in three real applications, we found that our proposed
approximate adders with and without sign correction can produce
high-quality results in applications that require small relative error.
Furthermore, our proposed sign-correct approximate adder can per-
form very well when doing 2's complement signed additions. The final
result of the adder is very close to that given by the accurate one.

Acknowledgments

This work is supported by National Natural Science Foundation of
China (NSFC) under Grant No. 61574089.

Fig. 13. k-means clustering using different adders.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

15

Appendix A. Proof of Theorem 1

We first consider any group except the rightmost one. Suppose it starts at block r and ends at block d, where r d> . By the definition of a group,
there exists an integer d t r≤ ≤ − 1 such that pp pp= ⋯ = = 0r t+1 and pp pp= ⋯ = = 1t d . Also, we have pp = 0d−1 . We distinguish the following
two cases.

1. The case where t d> . Given the block propagate signals, the speculated carry-ins to the sub-adders in the group are

⎪
⎪⎧⎨
⎩

C
C t i r

g d i t
=

, + 1 ≤ ≤

, ≤ ≤
apx in
i apx o

i

k
i,

,
−1

−1
−1

(A.1)

For t i r+ 2 ≤ ≤ , since pp = 0i−1 , by Lemma 2, we have C C=apx o
i

o
i

,
−1 −1. Since pp = 1t , Capx o

t
, is propagated from the generate signal gk

t
−1
−1 and hence,

C g=apx o
t

k
t

, −1
−1. Because pp = 1t−1 , we must have g = 0k

t
−1
−1 . Therefore, C = 0apx o

t
, . Because pp pp= ⋯ = = 1t d−2 , we also have g g= ⋯ = = 0k

t
k
d

−1
−2

−1 .
Given the above values, Eq. (A.1) changes to

⎧
⎨⎪

⎩⎪
C

C t i r
d i t

g i d
=

, + 2 ≤ ≤
0, + 1 ≤ ≤ + 1

, =
apx in
i

o
i

k
d

,

−1

−1
−1

(A.2)

Since pp pp= ⋯ = = 1t d , for the accurate adder, we have

C C= ⋯ = .o
t

o
d−1 (A.3)

Next, we discuss based on the following three different combinations of gk
d
−1
−1 and Co

d−1.

(a) The case where g C= = 0k
d

o
d

−1
−1 −1 . For this case, by Eqs. (a) and (b), we can conclude that for all d i r≤ ≤ , C C=apx in

i
o
i

,
−1. Therefore, SG SG= apx.

(b) The case where g C= = 1k
d

o
d

−1
−1 −1 . Fig. A.14 shows the speculated carry-in to the sub-adder, the correct carry-in to the sub-adder, the

approximate sum, and the correct sum for each block in the group for this situation. The speculated carry-ins and the correct carry-ins are
obtained by Eqs. (A.2) and (A.3). For any t i r+ 2 ≤ ≤ , given thatC C=apx in

i
o
i

,
−1, the approximate sum at block i is equal to the correct one. Given

that pp = 0t+1 , C = 0apx in
t

,
+1 , and C = 1o

t , the correct sum at block t(+ 1) is larger than the approximate sum at that block by 1. For any

d i t+ 1 ≤ ≤ , given that pp = 1i , the approximate sum at block i is (11…1)2 (k 1's in total), while the correct sum at block i is (00…0)2 (k 0's in
total). Both the approximate sum and the correct sum at block d are (00…0)2 (k 0's in total). Therefore, we have SG SG− = 2apx

k. Since t d> , we

have SG ≥ 2 k2 . Therefore, we conclude that SG SG SG0 ≤ − ≤apx
1
2k .

(c) The case where g C≠k
d

o
d

−1
−1 −1. In this case, we must have g = 0k

d
−1
−1 and C = 1o

d−1 , because g = 1k
d
−1
−1 implies that C = 1o

d−1 . The correct sum is same
as that shown in Fig. A.14. The approximate sum is same as that shown in Fig. A.14 except that the sum at block d is 11⋯1 (k 1's in total).
Therefore, we have SG SG− = 1apx . Since SG ≥ 2 k2 , we conclude that SG SG SG0 ≤ − ≤apx

1
2k .

2. The case where t d= . Given the block propagate signals, it can be shown that the speculated carry-ins to the sub-adders within the group are

⎪

⎪⎧⎨
⎩

C
C d i r
g d i d

=
, + 2 ≤ ≤
, ≤ ≤ + 1apx in

i o
i

k
d,

−1

−1
−1

(A.4)

Since pp = 1d , for the accurate adder, we have

C C= .o
d

o
d−1 (A.5)

Next, we discuss based on whether g C=k
d

o
d

−1
−1 −1.

(a) The case where g C=k
d

o
d

−1
−1 −1. In this case, by Eqs. (A.4) and (A.5), we have that for all d i r≤ ≤ , C C=apx in

i
o
i

,
−1. Therefore, SG SG= apx.

(b) The case where g C≠k
d

o
d

−1
−1 −1. In this case, as we discussed before, we must have g = 0k

d
−1
−1 and C = 1o

d−1 . Give this, we have

C C g= = = 0apx in
d

apx in
d

k
d

,
+1

, −1
−1 , while C C= = 1o

d
o
d−1 . Fig. A.15 shows the speculated carry-in to the sub-adder, the correct carry-in to the sub-

adder, the approximate sum, and the correct sum for each block in the group for this situation. Given that pp = 1d , the approximate sum and

Fig. A.14. The addition in a group when t d> and g C= = 1k
d

o
d

−1
−1 −1 . We assume the block size k = 4.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

16

the correct sum at block d are (11…1)2 (k 1's in total) and (00…0)2 (k 0's in total), respectively. Given that pp = 0d+1 , C = 0apx in
d

,
+1 , and C = 1o

d , the
correct sum at block d(+ 1) is larger than the approximate sum at that block by 1. For any d i r+ 2 ≤ ≤ , since the speculated carry-in to the
sub-adder i is correct, the approximate sum at block i is equal to the correct one. From Fig. A.15, we can see that SG SG− = 1apx and SG ≥ 2k.

Therefore, we have SG SG SG0 ≤ − ≤apx
1
2k .

In summary, for both cases, we have SG SG SG0 ≤ − ≤apx
1
2k . Thus, we have shown that the claim in the theorem holds for any group except the

rightmost one.
Now, consider the rightmost group. A difference of it from the other groups is that all of its blocks may have the block propagate signals as 0. If it

is like the other groups, then the claim in the theorem also holds for the rightmost group. If all the block propagate signals in the group are 0, it can
be easily shown that the sum of the rightmost group is correct. Therefore, the claim in the theorem also holds for the rightmost group.

Appendix B. Proof of Theorem 2

First, we have the following lemma.

Lemma 6. If pp = 1m−1 , then there exists an i m1 ≤ ≤ − 1 such that pp pp= ⋯ = = 1m i−1 and C C=apx o
i

o
i

,
−1 −1.□

Proof. For any input combination such that pp = 1m−1 , it belongs to one of the following two cases:

a. There exists an i m2 ≤ ≤ − 1 such that pp pp= ⋯ = = 1m i−1 and pp = 0i−1 .
b. pp pp= ⋯ = = 1m−1 1 .

For Case 1, since pp = 0i−1 , by Lemma 2, we have C C=apx o
i

o
i

,
−1 −1. For Case 2, since the carry-in signal to the carry generator 0 is the correct value c0,

the output Capx o,
0 of the carry generator 0 is equal to the correct value Co

0. For both cases, the claim in the lemma holds.□
Now, consider an input that causes a sign error. If pp = 0m−1 , then by Lemma 2, Capx sign, is equal to the correct carry-in to the sign bit Csign and

hence, the sign bit is correct. Therefore, we must have pp = 1m−1 . By Lemma 6, there must exist an i m1 ≤ ≤ − 1 such that pp pp= ⋯ = = 1m i−1 and
C C=apx o

i
o
i

,
−1 −1.

We argue that if there is a sign error, Capx o
i

,
−1 must be 1. We prove this by contradiction. Assume C = 0apx o

i
,

−1 . Then, C C= = 0o
i

apx o
i−1

,
−1 . Since

pp pp= ⋯ = = 1m i−1 , the correct carry-in to the sign bit is C = 0sign . On the other hand, since pp pp= ⋯ = = 1m i−2 and C = 0o
i−1 , we have C = 0o

m−2 .

By Corollary 1, we have C = 0apx o
m

,
−2 . Since pp = 1m−1 , we have C C=apx sign apx o

m
, ,

−2 due to carry propagation. Therefore, we have C C C= = 0 =apx sign apx o
m

sign, ,
−2 ,

which contradicts with the fact that the input produces a wrong sign bit. Therefore, we have C = 1apx o
i

,
−1 and the claim in the theorem holds.

Appendix C. Proof of Lemma 3

First, consider any i l1 ≤ ≤ − 2. The group i includes the blocks d d d− 1, − 2, …,i i i+1 +1 . Since the group i is not the leftmost one, we must have
pp = 0d −1i+1 . Since i ≥ 1, we have d d d− 1 ≥ ≥ ≥ 1i i+1 1 . Thus, by Eq. (17), sp = 0j for all j d1 ≤ ≤ − 1i+1 . In turn, by Eq. (18), CS = 0j for all

j d1 ≤ ≤ − 1i+1 . Specifically, CS = 0j for all d j d≤ ≤ − 1i i+1 . Finally, by Eq. (19), we have SG SG=sapx i apx i, , .

Now, consider the group 0, which includes the blocks d d− 1, …,1 0. By the same argument above, we haveCS = 0j for all j d1 ≤ ≤ − 11 . Thus, by
Eq. (19), the approximate sums at the blocks d − 1, …, 11 are the same as those in the approximate adder without sign correction. Furthermore, by
our design, the approximate sum at the block 0 is the same as that in the approximate adder without sign correction. In summary, we have
SG SG=sapx apx,0 ,0.

Appendix D. Proof of Lemma 4

If pp = 0m−1 , by the same argument used in the proof of Lemma 3, we can show SG SG=sapx l apx l, −1 , −1.

Now, consider the case where pp = 1m−1 . For simplicity, denote t d= l−1. First, we consider the case where t ≥ 1. Since the group l − 1 ends at
block t, we have pp pp= ⋯ = = 1m t−1 and pp = 0t−1 . Since pp = 0t−1 , by Lemma 2, we have C C=apx o

t
o
t

,
−1 −1. We further distinguish between C = 1o

t−1

and C = 0o
t−1 .

1. C = 1o
t−1 . Then, we have C C= = 1apx o

t
o
t

,
−1 −1 . By Eq. (17), we have sp = 1t . By Eq. (18), we further have CS = 1j for all t j m≤ ≤ − 1. Finally, by Eq.

(19), we have s = 0sapx j
i

, for all t i m≤ ≤ − 1 and j k0 ≤ ≤ − 1. Because C = 1o
t−1 and pp pp= ⋯ = = 1m t−1 , the accurate sum bit s = 0j

i for all

Fig. A.15. The addition in a group when t d= and g C≠k
d

o
d

−1
−1 −1. We assume the block size k = 4.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

17

t i m≤ ≤ − 1 and j k0 ≤ ≤ − 1. Thus, SG SG=sapx l l, −1 −1.

2. C = 0o
t−1 . It can be easily shown that CS = 0i , for all t i m≤ ≤ − 1. Therefore, SG SG=sapx l apx l, −1 , −1. Now, we analyze SGapx l, −1, the approximate sum

at group l(− 1) produced by the approximate adder without sign correction. Since pp pp= ⋯ = = 1m t−2 and C = 0o
t−1 , the speculated carry-ins to

the sub-adders at blocks m t− 2, …, are C g C g= = 0, …, = = 0apx in
m

k
m

apx in
t

k
t

,
−2

−1
−3

, −1
−1 . Furthermore, the carry-in to the m(− 1)-th sub-adder is

C = 0apx o
m

,
−2 . Given that pp pp= ⋯ = = 1m t−1 , the sum bit of the approximate adder without sign correction s = 1apx j

i
, for all t i m≤ ≤ − 1 and

j k0 ≤ ≤ − 1. Since C = 0o
t−1 , the accurate sum bit s = 1j

i for all t i m≤ ≤ − 1 and j k0 ≤ ≤ − 1. Thus, SG SG=apx l l, −1 −1. Given that
SG SG=sapx l apx l, −1 , −1, we conclude that SG SG=sapx l l, −1 −1.

Therefore, when t ≥ 1, we have SG SG=sapx l l, −1 −1.

Finally, we consider the remaining case where t = 0. For this situation, we have pp pp= ⋯ = = 1m−1 0 . By the same argument used above, we can
show that the approximate sums at blocks m − 1, …, 1 are the same as those in the correct adder. Furthermore, by our design, the approximate sum
at block 0 is the same as that in the correct adder. In summary, we have SG SG=sapx l l, −1 −1.

Appendix E. Proof of Lemma 5

For any i l0 ≤ ≤ − 1, group i starts at block d − 1i+1 and ends at block di. In normal case, there exists an integer d t d≤ ≤ − 2i i+1 such that blocks
d t− 1, …, + 1i+1 have their block propagate signals as 0 and blocks t d, …, i have their block propagate signals as 1. However, there are two
exceptions. The first is that for the leftmost group, all of its blocks could have their block propagate signals as 1. For this case, we have pp = 1m−1 . By
Lemma 4, we have SG SG=sapx l l, −1 −1. Thus, the claim in the lemma holds. The second is that for the rightmost group, all of its blocks could have their
block propagate signals as 0. For this case, it can be shown that SG SG=sapx,0 0 and hence, the claim also holds.

Now, consider any normal case. If i l= − 1, then since it is a normal case, we must have pp = 0m−1 . Therefore, by Lemma 4, we have
SG SG=sapx l apx l, −1 , −1. If i l0 ≤ ≤ − 2, by Lemma 3, we also have SG SG=sapx i apx i, , . In summary, for any normal case, we must have SG SG=sapx i apx i, , .
Thus, we only need to focus on the approximate adder without sign correction and prove that

SG SG SG− ≤ 1
2 − 1

′ .i apx i k i, (E.1)

Eq. (E.1) obviously holds when SG SG=i apx i, . Next, we consider the situation in which SG SG≠i apx i, .
From the proof of Theorem 1, we can see that only the following three cases can cause SG SG≠i apx i, :

1. The case where t d> i and g C= = 1k
d

o
d

−1
−1 −1i i .

2. The case where t d> i and g C≠k
d

o
d

−1
−1 −1i i .

3. The case where t d= i and g C≠k
d

o
d

−1
−1 −1i i .

For Case 1, as shown in the proof of Theorem 1, SG SG− = 2i apx i
k

, . Since SG′i is the bit-wise negation of SGi and the last t d k(− + 1)i bits of SGi
are 0 (as shown in Fig. A.14), we have

SG′ ≥ 2 − 1 ≥ 2 − 1 > 2 − 2 .i
t d k k k k(− +1) 2 2i

Therefore, SG SG SG′ > 2 = −i
k

i apx i
1

2 − 1 ,k , which proves Eq. (E.1).

For Case 2, we have SG SG− = 1i apx i, and SG′ ≥ 2 − 1 > 2 − 2i
t d k k k(− +1) 2i . Thus, Eq. (E.1) also holds.

For Case 3, as shown in the proof of Theorem 1, SG SG− = 1i apx i, . Furthermore, we have SG′ ≥ 2 − 1i
k . Therefore, SG SG SG′ ≥ 1 = −i i apx i

1
2 − 1 ,k ,

which proves Eq. (E.1).
In summary, for any normal case, the claim in the lemma holds.

Appendix F. Proof of Theorem 4

Consider any input that produces a correct output for the approximate adder without sign correction. Suppose for that input the m blocks are
partitioned into l groups. Since the output is correct, we have SG SG=apx i i, , for i l0 ≤ ≤ − 1. By Lemma 3, we have SG SG SG= =sapx i apx i i, , for all

i l0 ≤ ≤ − 2. Now, consider the l(− 1)-th group. If pp = 1m−1 , by Lemma 4, we directly have SG SG=sapx l l, −1 −1. If pp = 0m−1 , by Lemma 4, we also
have SG SG SG= =sapx l apx l l, −1 , −1 −1. Therefore, we conclude that for all i l0 ≤ ≤ − 1, SG SG=sapx i i, . Given that the sign bit is correct, the input also
produces the correct output for the sign-correct approximate adder.

Furthermore, there exist inputs such that pp = 1m−1 , SG SG≠apx l l, −1 −1, and for all i l0 ≤ ≤ − 2, SG SG=apx i i, . For these inputs, since

SG SG≠apx l l, −1 −1, the output of the approximate adder without sign correction is not correct. On the other hand, since pp = 1m−1 , by Lemma 4,
we have SG SG=sapx l l, −1 −1. Furthermore, by Lemma 3, we have SG SG SG= =sapx i apx i i, , for all i l0 ≤ ≤ − 2. Therefore, the output of the sign-correct
approximate adder is correct. Thus, the error rate of the sign-correct approximate adder is smaller than that of the approximate adder without sign
correction.

References

[1] Y.-K. Chen, et al., Convergence of recognition, mining, and synthesis workloads and
its implications, Proc. IEEE 96 (5) (2008) 790–807.

[2] V. Chippa, S. Chakradhar, K. Roy, A. Raghunathan, Analysis and characterization of
inherent application resilience for approximate computing, in: Design Automation
Conference, 2013, pp. 113:1–113:9.

[3] J. Han, M. Orshansky, Approximate computing: An emerging paradigm for energy-
efficient design, in: European Test Symposium, 2013, pp. 1–6.

[4] H.R. Mahdiani, A. Ahmadi, S.M. Fakhraie, C. Lucas, Bio-inspired imprecise
computational blocks for efficient VLSI implementation of soft-computing appli-
cations, IEEE Trans. Circuits Syst. I: Regul. Pap. 57 (4) (2010) 850–862.

[5] N. Zhu, W.L. Goh, K.S. Yeo, An enhanced low-power high-speed adder for error-
tolerant application, in: International Symposium on Integrated Circuits, 2009, pp.
69–72.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

18

http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref1
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref1
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref2
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref2
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref2

[6] Y. Kim, Y. Zhang, P. Li, An energy efficient approximate adder with carry skip for
error resilient neuromorphic VLSI systems, in: International Conference on
Computer-Aided Design, 2013, pp. 130–137.

[7] M. Shafique, W. Ahmad, R. Hafiz, J. Henkel, A low latency generic accuracy
configurable adder, in: Design Automation Conference, 2015, pp. 86:1–86:6.

[8] J. Hu, W. Qian, A new approximate adder with low relative error and correct sign
calculation, in: Design, Automation and Test in Europe, 2015, pp. 1449–1454.

[9] W. Yu, Applications of Monte Carlo method to 3-D capacitance calculation and
large matrix decomposition, in: International Conference on Solid-State and
Integrated Circuit Technology, 2016, pp. 227–230.

[10] N. Halko, P.G. Martinsson, J.A. Tropp, Finding structure with randomness:
probabilistic algorithms for constructing approximate matrix decompositions,
SIAM Rev. 53 (2) (2011) 217–288.

[11] S. Misailovic, S. Sidiroglou, H. Hoffmann, M. Rinard, Quality of service profiling,
in: International Conference on Software Engineering, 2010, pp. 25–34.

[12] H. Esmaeilzadeh, A. Sampson, L. Ceze, D. Burger, Neural acceleration for general-
purpose approximate programs, in: International Symposium on
Microarchitecture, 2012, pp. 449–460.

[13] M. Imani, A. Rahimi, T.S. Rosing, Resistive configurable associative memory for
approximate computing, in: Design, Automation and Test in Europe, 2016, pp.
1327–1332.

[14] P. Kulkarni, P. Gupta, M. Ercegovac, Trading accuracy for power with an under-
designed multiplier architecture, in: International Conference on VLSI Design,
2011, pp. 346–351.

[15] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, J. Henkel, Architectural-space
exploration of approximate multipliers, in: International Conference on Computer-
Aided Design, 2016, pp. 80:1–80:8.

[16] S. Hashemi, R.I. Bahar, S. Reda, A low-power dynamic divider for approximate
applications, in: Design Automation Conference, ACM, 2016, pp. 105:1–105:6.

[17] A.K. Verma, P. Brisk, P. Ienne, Variable latency speculative addition: A new
paradigm for arithmetic circuit design, in: Design, Automation and Test in Europe,
2008, pp. 1250–1255.

[18] K. Du, P. Varman, K. Mohanram, High performance reliable variable latency carry
select addition, in: Design, Automation and Test in Europe, 2012, pp. 1257–1262.

[19] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, J. Henkel, An area-efficient
consolidated configurable error correction for approximate hardware accelerators,
in: Design Automation Conference, 2016, pp. 96:1–96:6.

[20] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, J. Henkel, Probabilistic error modeling
for approximate adders, IEEE Trans. Comput. 66 (3) (2017) 515–530.

[21] S. Mazahir, O. Hasan, R. Hafiz, M. Shafique, Probabilistic error analysis of
approximate recursive multipliers, IEEE Trans. Comput. (2017) 1.

[22] W. El-Harouni, et al., Embracing approximate computing for energy-efficient
motion estimation in high efficiency video coding, in: Design, Automation and Test
in Europe, 2017, pp. 1384–1389.

[23] Q. Zhang, T. Wang, Y. Tian, F. Yuan, Q. Xu, ApproxANN: an approximate
computing framework for artificial neural network, in: Design, Automation and
Test in Europe, 2015, pp. 701–706.

[24] S. Mittal, A survey of techniques for approximate computing, ACM Comput. Surv.
48 (4) (2016) 62:1–62:33.

[25] Q. Xu, T. Mytkowicz, N.S. Kim, Approximate computing: A survey, IEEE Des. Test.
33 (1) (2016) 8–22.

[26] M. Shafique, R. Hafiz, S. Rehman, W. El-Harouni, J. Henkel, Cross-layer
approximate computing: From logic to architectures, in: Design Automation
Conference, 2016, pp. 99:1–99:6.

[27] N. Zhu, W.L. Goh, W. Zhang, K.S. Yeo, Z.H. Kong, Design of low-power high-speed
truncation-error-tolerant adder and its application in digital signal processing,
IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 18 (8) (2010) 1225–1229.

[28] S.-L. Lu, Speeding up processing with approximation circuits, Computer 37 (3)
(2004) 67–73.

[29] N. Zhu, W.L. Goh, G. Wang, K.S. Yeo, Enhanced low-power high-speed adder for
error-tolerant application, in: International SoC Design Conference, 2010, pp. 323–
327.

[30] A.B. Kahng, S. Kang, Accuracy-configurable adder for approximate arithmetic
designs, in: Design Automation Conference, 2012, pp. 820–825.

[31] I.-C. Lin, Y.-M. Yang, C.-C. Lin, High-performance low-power carry speculative
addition with variable latency, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23
(9) (2015) 1591–1603.

[32] A. Cilardo, A new speculative addition architecture suitable for two’s complement
operations, in: Design, Automation and Test in Europe, 2009, pp. 664–669.

[33] J. Miao, A. Gerstlauer, M. Orshansky, Multi-level approximate logic synthesis
under general error constraints, in: International Conference on Computer-Aided
Design, 2014, pp. 504–510.

[34] NANgate, 〈http://www.nangate.com/〉.
[35] Synopsys, 〈http://www.synopsys.com/〉.
[36] C.-S. Lee, Y.-H. Kuo, P.-T. Yu, Weighted fuzzy mean filters for image processing,

Fuzzy Sets Syst. 89 (2) (1997) 157–180.
[37] L.G. Roberts, Machine perception of three-dimensional solids, Ph.D. thesis,

Massachusetts Institute of Technology, 1963.
[38] J. MacQueen, et al., Some methods for classification and analysis of multivariate

observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical
Statistics and Probability, 1967, pp. 281–297.

J. Hu et al. INTEGRATION the VLSI journal xxx (xxxx) xxx–xxx

19

http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref3
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref3
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref3
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref4
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref4
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref5
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref5
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref6
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref6
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref7
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref7
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref8
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref8
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref8
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref9
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref9
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref10
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref10
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref10
http://www.nangate.com/
http://www.synopsys.com/
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref11
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref11
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref12
http://refhub.elsevier.com/S0167-9260(17)30274-2/sbref12

	A high-accuracy approximate adder with correct sign calculation
	Introduction
	Related works
	Preliminaries on conventional adder
	Proposed approximate adder with low relative error
	Approximate adder architecture
	Relative error analysis
	Error rate analysis
	Delay analysis

	Proposed sign-correct approximate adder
	Sign correction module
	Relative error analysis
	Error rate analysis

	Experimental results
	Comparison of the proposed adders with other adders
	Error rates of the proposed adders with different sizes
	Areas, delays, and power consumptions of the proposed adders with different sizes
	Performance of the proposed adders on real applications
	Mean filter for digital images
	Roberts cross-based edge detection
	k-means clustering

	Conclusion
	Acknowledgments
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Lemma 3
	Proof of Lemma 4
	Proof of Lemma 5
	Proof of Theorem 4
	References

