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Abstract—Approximate computing is an emerging design technique for
error-resilient applications. It improves circuit area, power, and delay
at the cost of introducing some errors. Approximate logic synthesis
(ALS) is an automatic process to produce approximate circuits. This
paper proposes approximate resubstitution with approximate care set and
uses it to build a simulation-based ALS flow. The experimental results
demonstrate that the proposed method saves 7%-18% area compared to
state-of-the-art methods. The code of ALSRAC is made open-source.

Index Terms—Approximate Logic Synthesis, Approximate Computing,
Resubstitution, Approximate Care Set

I. INTRODUCTION

As power consumption in digital systems grows rapidly, energy
efficiency has become a crucial concern [1]. Fortunately, many
applications that are widely used today, such as image processing,
data mining, and machine learning, exhibit error resilience. This
feature leads to a new paradigm for designing energy-efficient digital
systems, known as approximate computing. The key idea is to
modify the function implemented by the system, which can be
equivalently viewed as introducing some errors into the system. If
carefully managed errors are introduced, the application-level quality
is almost unaffected, while the hardware cost and power consumption
of the system can be reduced dramatically.

Many approaches have been developed to generate approximate
circuits. They can be divided into two categories: manual design
and approximate logic synthesis (ALS). Manual design is popular
for arithmetic circuits such as adders [2] and multipliers [3], while
ALS targets general circuits. Given an original circuit and some error
constraints, an ALS method automatically synthesizes an approximate
circuit of high quality satisfying these constraints. Typical error
constraints include error rate and error distance constraints, while
typical quality measures include circuit area, delay, and power.

This paper focuses on the ALS for multi-level combinational
circuits. Most ALS approaches can be classified into two categories:
stochastic methods and deterministic methods.

A stochastic ALS method is characterized by uncertainties when
simplifying the circuit. For example, Vasicek et al. apply the
Cartesian genetic programming to randomly change local circuit
structure [4]. Liu et al. utilize the Markov chain Monte Carlo method
to probabilistically perform circuit modifications [5]. The stochastic
approaches often lead to quite different results in each run.

A deterministic ALS method is featured with deterministic modifi-
cations to the circuit. Some deterministic methods transform an ALS
problem into a traditional logic synthesis problem and utilize logic
synthesis tools to solve it. For example, SALSA [6] and the method
in [7] identify approximate external don’t-cares (EXDCs) from the
maximum error distance constraint. Then, ALS is converted into a
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logic synthesis problem with EXDCs. However, they are unscalable
for large circuits, since the number of EXDCs increases exponentially
with the number of primary inputs (PIs).

Most deterministic methods modify local structures in the circuit.
Such modification is called a local approximate change (LAC).
Many types of LACs tend to have two drawbacks: they are either
too local or too coarse. A LAC is too local if it approximates the
node’s function using only nearby nodes, such as direct fanins. More
distant nodes are not used to express the approximate function, which
may lose opportunities for better approximation. For instance, Wu and
Qian introduce a LAC for Boolean networks, which removes literals
from the Boolean expression of each node in the network [8]. In this
case, the approximate function is expressed with the node fanins.
Yao et al. approximate a maximum fanout-free cone (MFFC) in the
circuit by a tree of gates obtained through approximate disjoint bi-
decomposition [9]. The new function is represented by the inputs of
the MFFC. On the other hand, a LAC is too coarse if it fails to closely
approximate the original function. Thus, large errors may occur. For
instance, Shin and Gupta propose to replace a gate by a constant zero
or one [10]. Chandrasekharan et al. rewrite the local critical cuts in an
AND-inverter graph with constant zero [11]. Obviously, such constant
substitutions produce large errors in the circuit. Venkataramani et al.
propose SASIMI where a LAC substitutes a node by another node
with a similar function [12]. Su et al. further improve SASIMI by an
accurate and efficient batch error estimation approach [13]. Yet, such
a single-input substitution may also introduce large errors, since a
function usually depends on multiple inputs and the expressive power
of a single input is limited.

To address the above challenges of deterministic ALS methods
based on local changes, we attempt to find a LAC that replaces a
node function with a multi-input function. It is neither too local if
remote nodes are selected to express the new function, nor too coarse
due to the rich expression power of multi-input functions. Notice
that in traditional logic synthesis, such a replacement is called a
resubstitution. Previous work [14] generates resubstitutions using the
care set of a node. In this work, we propose to generate approximate
resubstitutions using an approximate care set.

Our main contributions are as follows:

« We propose to approximate the care set using logic simulation.
For scalability, the care patterns are expressed in terms of
internal nodes instead of the Pls.

« We propose to generate approximate resubstitutions by comput-
ing irredundant sums-of-products (ISOPs) using approximate
care patterns. This novel type of LAC exploits distant signals to
form an approximation and has strong expressive power.

o We propose ALSRAC, an ALS flow by resubstitution with
approximate care set. It is an efficient simulation-only logic
synthesis flow that does not rely on complex Boolean manipu-
lation engines, such as satisfiability (SAT) and binary decision



diagram (BDD).

ALSRAC is applicable to statistical error metrics such as error
rate and mean error distance. The experimental results show that it
improves the quality of approximate circuits significantly on various
benchmarks and error metrics. It achieves 7%—18% more area savings
than the state-of-the-art methods. It also improves the circuit delays
and has much shorter runtime for most circuits. The code of ALSRAC
is made open-source at https://github.com/SJTU-ECTL/ALSRAC.

The remainder of this paper is organized as follows. Section II
introduces the preliminaries. Section III elaborates the proposed
LAC and the ALSRAC methodology. The experimental results are
presented in Section IV. Finally, Section V concludes the paper.

II. PRELIMINARIES

A. Circuit Terminology

Our work focuses on multi-level combinational circuits, which can
be modeled by a directed acyclic graph with nodes representing input
pins and logic gates, and directed edges representing wires connecting
the gates. The primary inputs (PIs) are source nodes of the graph.
The primary outputs (POs) are a subset of the nodes of the graph.
A widely-used circuit representation is AND-Inverter Graph (AIG),
in which each node is either a PI or a two-input AND gate, and each
edge optionally contains a marker indicating logical negation.

The inputs of a node are called its fanins. If there is a path from
node A to B, A is a transitive fanin (TFI) of B. The TFI cone of
a node includes the node itself and its TFIs [15].

The don’t-cares for a logic function are those input patterns that
allow its output to be either O or 1. All don’t-care patterns constitute
the don’t-care set of the function, while the complement is the care
set. Due to the complement relationship, we only focus on the care
set in the rest of the paper.

An irredundant sum-of-products (ISOP) of a function is a
sum-of-product expression, in which each product term is a prime
implicant and no product term can be deleted without changing the
function [16].

B. Error Metrics

Error metrics are essential for measuring the accuracy of approxi-
mate circuits. The metrics relevant to our work are error rate (ER)
and error distance (ED).

In a circuit with I PIs and O POs, let the set of all possible
input combinations be {X1, ..., X }. Assume that x; (1 < i < 27)
occurs with a probability p;. Let y; and y; be the values encoded
by the approximate and accurate output vectors for input vector x;,
respectively.

ER is calculated as the probability that the outputs are incorrect:
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It can evaluate the accuracy of random/control circuits, such as voters
and decoders.

The difference between y; and y; is known as the error distance
(ED). In practice, two statistical measures on ED are typically
used, which are normalized mean error distance (NMED) and
mean relative error distance (MRED) [17]. They can measure the
accuracy of arithmetic circuits, such as adders and multipliers.

NMED is the mean ED normalized by the maximum output value,
defined as follows:
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MRED is the mean of the relative EDs, defined as follows:
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To avoid division by zero, the denominator above is set as the
maximum of the correct output value and 1.

I1I. METHODOLOGY

In this section, we present the technique to generate the approx-
imate care set. Then, we introduce the proposed LAC, which is a
resubstitution using this care set. Finally, we present an ALS flow
based on the LAC.

A. Approximation of Care Set

We generate the set of approximate care patterns for a node
function using logic simulation with random input patterns following
a user-specified distribution.

Assume that a node function is to be expressed using a set of nodes
belonging to the same circuit, called divisors. We call the patterns
appearing at the divisors after logic simulation the approximate
cares of the node at the divisors. All PI patterns producing the
approximate cares at the divisors are called the approximate cares of
the node at the PIs. In what follows, unless otherwise specified, we
use approximate cares to refer to approximate cares at the divisors.
Since only some of patterns are selected as the approximate cares,
such an approximation shrinks the care set. The following example
shows how to generate an approximate care set.

Example 1. The circuit shown in Fig. la has 4 inputs a, b, ¢, and
d, with 16 PI combinations in total. The node values under all PI
patterns are listed in Table I. To derive an approximate function of
node v with divisors {u, z}, we randomly select 5 PI patterns abcd =
{0000, 0010, 0011, 0100, 1000} (see the shaded rows in Table I) and
simulate the circuit. The patterns {00,01, 10} appearing at divisors
g = {u,z} are the approximate cares of node v at g. Among all
the 16 PI combinations, 11 patterns produce the approximate cares
at g. They are the approximate cares of node v at the Pls. Based
on this, v’s function can be simplified from the original expression
v=z®wtod = —(uV z) (see Example 4 for details). The
resulting circuit is shown in Fig. 1b, which is simplified compared
to the original one. If the inputs are uniformly distributed, such a
simplification introduces 18.75% error rate at node v (i.e., 3 in 16
PI patterns generate incorrect outputs).

a z z
b
c w
d

(a) Original circuit.

(b) Approximate circuit.

Fig. 1: Example circuits.

Our approximation of the care set is expressed by representing care
patterns at the set of divisors. Compared to the previous approaches
based on approximate EXDC [6], [7], our representation scales better
for large circuits since EXDCs are expressed at the Pls. Indeed, in
Example 1, the 3 approximate cares at divisors {u, z} correspond to
11 approximate cares at the PIs. It implies that a few approximate
cares expressed with divisors are equivalent to many approximate



TABLE I: Node values under all PI patterns for the circuit in Fig. 1a.

abed x y u z w |

0001

cares expressed with PIs. Therefore, even in large circuits with many
PIs, we can store the approximate care patterns without a large
memory overhead, while they have the same expressive power as
the approximate cares at the Pls.

B. Proposed Local Approximate Change

In this section, we present a novel LAC by resubstituting a node
function with another function derived using the approximate care
set. The original node function is represented with its fanins, while
the approximate resubstitution function is expressed with some
divisors that are not necessarily its fanins. In Example 1, the original
node function for v is z @ w. It is replaced by divisors {u, z} with
a resubstitution function v = —(u V z), using the approximate care
set uz = {00, 01,10}.

To generate approximate resubstitutions for a node, three basic
questions need to be answered:

« How to select good divisors among internal nodes in the circuit?

o Is a given set of divisors feasible to perform approximate
resubstitution of the function?

« Given a feasible divisor set and an approximate care set, how to
derive an approximate resubstitution function of the node, which
can replace the original function?

We answer these three questions in Sections III-B1, III-B2,
and III-B3, respectively. After that, we present how to generate LAC
candidates in Section III-B4.

1) Selection of Divisors: For each node, there are numerous
divisor sets producing different resubstitutions. We only select part
of them for the sake of efficiency. Our strategy is illustrated in
Algorithm 1. Specifically, the divisor sets for a node V' are generated
by the following operations.

o Remove a fanin n from the fanin set of node V' (Lines 5-6).

« Replace a fanin n in the fanin set of node V' with another node

u in V’s TFI cone (Lines 7-9).

Only the divisors in V'’s TFI cone are considered, since the function
of V more likely depends on them, instead of the divisors outside
the cone.

Algorithm 1: Select_Divisor_Sets(V, G)

Input: node V, circuit G
Output: divisor sets S

1 Find the TFI cone T of node V' in circuit G,

2 Sort nodes in 7" in ascending order of logic levels;

3 Divisor sets S < 0, node set F'1 < V’s fanins;

4 for each node n in FI do

5 Divisor set A «+— FI\{n}; /* remove a fanin n */

6 Add A into S;

7 for each node u in TFI cone T do

8 Divisor set B «— AU {u}; /* replace a fanin n by u */
9 Add B into S;

10 return S,

2) Feasibility of Divisors: Note that given a set of divisors, it may
be impossible to derive a function with them to substitute the original
node function. For instance, in Fig. 1a, we cannot find a function in
terms of a and b to resubstitute v. The reason is that v not only
depends on a and b, but also on ¢ and d. Thus, for a divisor set
generated from Algorithm 1, it is necessary to check the feasibility
of the divisors to form a valid resubstitution function. Our proposed
check method is based on the following theorem for checking the
feasibility of an accurate resubstitution [18].

Theorem 1. Assume that there are m divisors with functions g1 (x),
92(X), ..., gm(x) and a node V with the function F(x), where
X is the set of PI variables. The divisors can form an accurate
resubstitution function of node V', if and only if there are no PI
patterns x1 and X2, such that F(x1) # F(x2), but gj(x1) = g;(X2)
foralll1 <j<m.

The theorem can be explained intuitively as follows. If there is a
function H (g1 (x), ..., gm(x)) that can accurately resubstitute F'(x),
then for any PI patterns x; and x2 satisfying g;(x1) = g;(x2)
for all j’s, we must have F(x1) = H(g1(x1),...,9m(x1)) =
H(g1(x2),...,9m(x2)) = F(x2). A simple application of Theo-
rem 1 is as follows.

Example 2. For the circuit in Fig. la, to check whether divisors
{u, z} can accurately resubstitute v with a function, we enumerate
all the 16 PI patterns. Under PI patterns abcd = 0001 and 0010,
node v takes different values. Yet the patterns on {u, z} are the same
(i.e., uz = 10). By Theorem 1, it is impossible to derive a function
in terms of {u, z} to accurately resubstitute v.

In [18], Theorem 1 is converted into a SAT instance to check
the feasibility of divisors. It is time-consuming for large circuits.
For approximate computing, it is not necessary to check all the PI
combinations with a SAT solver. Instead, we only check PI patterns
appearing in the logic simulation. If Theorem 1 is satisfied under
PI patterns appearing in limited simulation rounds, then the given
divisors can form an approximate resubstitution function.

Example 3. Consider the circuit in Fig. 1a. Assume that the same PI
patterns of Example 1, i.e., abed = {0000, 0010, 0011, 0100, 1000}
(see the shaded rows in Table 1), are selected to perform logic
simulation. We check whether divisors {u,z} can resubstitute v
with an approximate function under these simulation patterns. In
this case, the corresponding patterns on the divisor set are uz =
{00, 10, 10,01, 01}, while v takes the value {1,0,0,0,0}. We can
see that each pattern on {u,z} corresponds to only one value of
v (i.e.,, 00, 01, and 10 correspond to 1, 0, 0, respectively). Thus,
Theorem 1 holds for the set of random simulation patterns. Therefore,
it is possible to derive an approximate function in terms of {u, z} to
resubstitute v. In other words, {u, z} is a feasible divisor set.

3) Derivation of Approximate Resubstitutions: At this point, we
have selected feasible divisor sets. We also have the approximate
cares on each divisor set. Approximate resubstitution functions will
be derived from them. Instead of utilizing a SAT-based method in [14]
or a BDD-based method in [18], we efficiently generate approximate
resubstitution functions by computing ISOP expressions.

For node V' and a feasible divisor set g of V, we build the
truth table of an approximate resubstitution function for V' on the
approximate cares at g. Its input variables are the nodes in g and the
output variable is node V. In the truth table, if an input combination
is not in the approximate care set at nodes in g, its output value
is a don’t-care (“—7). Otherwise, the output value is the value of
V' for the corresponding approximate care pattern. Note that since
the divisor set is feasible, although there may be many PI patterns



producing the same approximate care pattern, the value of node V
for all of them is the same.

Next, we compute an ISOP expression from the truth table as the
approximate resubstitution function using Espresso [19]. After that,
the ISOP expression will be converted to some nodes in the circuit.
Then, the new nodes are used to replace the original node V' and
change the local structure of the circuit.

Example 4. From Example 3, for the circuit in Fig. la, there
exist approximate functions in terms of {u,z} to resubstitute v
if logic simulation is performed with 5 PI patterns abcd =
{0000, 0010, 0011, 0100, 1000}. To derive an approximate function,
a truth table shown in Table Il is built with inputs w and z and
output 0. The pattern uz = 11 is not in the approximate care set,
so it is a don’t care pattern. For the approximate care patterns
uz = {00,01,10}, the corresponding output values are set as
0 = {1,0,0}, which can be directly obtained from Table I. If ¥
takes 0 when uz = 11, a possible ISOP expression is 0 = —u A\ =z,
and it is converted into an NOR gate. Then, gates w and v in Fig. la
are removed and NOR gate U is added into the circuit, producing the
approximate circuit shown in Fig. 1b.

TABLE II: A truth table of an approximate function with inputs «
and z and output ¥ in Example 4.

4) Generation of LAC Candidates: After showing the answers to
the three basic questions, we present our method to generate LAC
candidates. It is shown in Algorithm 2.

Algorithm 2: Generate_LACs(G, N, L)

Input: circuit G, simulation round N, limit of LAC count L
Output: LAC candidate set 11

1 Perform logic simulation for N rounds;

2 LAC candidate set IT < (;

3 for each node V in G do

4 Divisor sets S < Select_Divisor_Sets(V, G);

5 LAC count [ < 0;

6 for each divisor set g in S do

7 if [ > L then break;

8 if g is feasible to resubstitute V then

9 l+—1+1;

10 Build truth table B with input set g and output V;
1 New function f < Find_ISOP(B);

12 Add function f into candidate LAC set II;

13 return II;

The inputs of Algorithm 2 are a circuit G, a simulation round N,
and the maximum number of LAC candidates L, while its output is a
LAC candidate set II. First, we perform N rounds of logic simulation
in circuit G (Line 1). Then, for each node, we select some divisor
sets .S by Algorithm 1 (Line 4). After that, the feasibility of each
divisor set (Line 8) is checked. If it is feasible, the truth table B
with input set g and output V' are generated (Line 10). Based on this,
an approximate resubstitution function f is derived by computing an
ISOP expression and added into the LAC candidate set II (Lines 11—
12). To limit the total number of LACs, at most L LACs are generated
for each node V' (Line 7).

C. Proposed Approximate Logic Synthesis Flow

In this section, we present ALSRAC, an ALS flow based on the
proposed LACs, which is shown in Algorithm 3.

Algorithm 3: ALSRAC flow.

Input: original circuit G;y, error threshold FE}, initial
simulation round N, limit of LAC count L, controlling
parameter ¢, scaling factor » (0 < r < 1).

Output: approximate circuit Goyt

1 Circuit G < Convert_To_AIG(Gir), E + 0;

2 while £ < E; do

3 Generate N PI patterns randomly;

4 Candidate LAC set IT < Generate_LACs(G, N, L),

5 if I # () then

6

7

8

9

Find the best LAC in II with the smallest error E;
if £ > FE, then break;

Apply the best LAC with the smallest error to G;
Optimize G with traditional logic synthesis tool;

10 if II = O for continuous t iterations then N < N x r,
Gout + Technology_Mapping(G);

return Gou¢

—
[ S

The inputs of the algorithm are an accurate circuit Gy, an error
threshold F;, an initial simulation round N, a limit of LAC count
L, a controlling parameter ¢, and a scaling factor r. The controlling
parameter and the scaling factor are related to the adjustment of IV,
which will be described later. The flow works on an AIG iteratively
and returns an approximate design G, meeting the error threshold.
For each iteration, if the error is no more than the threshold, the
LAC candidates are generated by Algorithm 2 (Line 4). Then, we
evaluate the induced errors of LACs and find the best one with
the smallest error £ (Line 6). In order to evaluate the errors of all
LAC:s efficiently, we apply the batch error estimation method [13],
which has the same error estimation accuracy as applying traditional
simulation to each LAC individually, but is much faster. If the error
FE does not exceed the error threshold E: (Line 7), the best LAC is
applied to simplify the circuit (Line 8). Due to the redundancies in
the circuit after applying the LAC, traditional logic optimization is
performed (Line 9). Finally, after the iteration loop terminates, we
perform technology mapping and return the resulting approximate
circuit satisfying the error constraint (Line 11).

One important feature of ALSRAC is that the simulation round
N is adjusted dynamically to control the approximation degree.
Theoretically, as N increases, the approximate care set approaches
the accurate one. In this case, the LAC will be closer to the
accurate function, and hence, the induced error of the LAC decreases.
However, since a large IV increases the size of approximate care set, it
limits the approximation space. Therefore, sometimes finding a LAC
from approximate care patterns with a large NV is difficult. On the
contrary, as [N decreases, it is easier to find a LAC.

In our implementation, N is set to a suitable value initially. If the
circuit to be approximated does not have any LAC candidates (i.e.,
II = (), it means that the size of the care set is too large. In this case,
we should shrink the approximate care set by reducing the simulation
round N. Thus, more LAC candidates with larger induced error
can be generated. However, different PI patterns generate distinct
approximate care patterns. Therefore, when IT = () for a set of PI
patterns, we can try another set of PI patterns to get a different care
set (Line 3), which may generate some LACs. Hence, N will not
be reduced as soon as II = (). Instead, we introduce a controlling
parameter ¢ to control the decreasing of simulation round N. N will
be scaled by 7 (0 < r < 1) only when IT = @ for ¢ consecutive
iterations (Line 10).

IV. EXPERIMENTAL RESULTS
In this section, we present the experimental results of ALSRAC.



A. Experiment Setup

We implemented ALSRAC in C++ and tested it on a single
core of AMD 3700X processor running at 3.8GHz with 16GB
RAM. ER and ED are selected as the error metrics, which are
measured by performing 10,000,000 rounds of logic simulation to
guarantee good accuracy. All PI vectors are assumed to be uniformly
distributed in our experiments, although our method is applicable
to any PI distribution. The area ratio (the area of the approximate
circuit over the original one) and the delay ratio (the delay of the
approximate circuit over the original one) are used to evaluate the
approximated designs. Both ASIC and FPGA designs are considered
in our experiments. Particularly, the area and delay of an FPGA
design are measured using its LUT count and the depth of its LUT
network, respectively. It is obvious that smaller ratios are preferred
due to more reduction in area and delay. The traditional optimization
(Line 9 in Algorithm 3) is performed by ABC [20] using commands
“sweep, resyn2”.

Important parameters of our method are listed below. The number
of simulation rounds N is initially set to 32. The limit on LAC counts
at each node is L = 1. The simulation round NV is scaled by » = 0.9
only if there are no LACs for successive ¢t = 5 iterations.

It seems that the initial simulation round N = 32 is negligible
compared to the number of all PI patterns, which possibly introduces
large errors into the circuit. However, it does generate good approx-
imate circuits in our experiments even for a small error threshold.
The reason is that we work on an AIG (Line 1 in Algorithm 3). The
care sets and the resubstitution functions are expressed with at most
2 divisors. Thus, even using just a few PI patterns, the approximate
care set is still close to the accurate one.

In addition, due to the randomness of logic simulation, ALSRAC
may produce different approximate circuits in different runs. The
experiments have been performed three times and the average circuit
quality and runtime are reported.

TABLE III: Benchmarks used in our experiments.

EPFL random/control EPFL arithmetic
Circuit #LUT Depth Circuit #LUT Depth

ISCAS & arithmetic
Circuit Area Delay

alu4 2798 12.7  arbiter 409 23 adder 192 64
cl908 758 37.3 cavlc 101 6 shifter 512 4
c2670 1262 21.9 alu ctrl 27 2 divisor 3268 1208
c3540 1604 55.0 decoder 270 2 hyp 40406 4532
c5315 2451 47.5 i2c ctrl 227 7 log2 6574 119
c7552 2756  69.4 Int2float 28 6  max 523 189

c880 585 249 mem ctrl 2354 22 mult 4923 90

cla32 958 38.5 priority 110 26  sine 1229 55
ksa32 1128 17.8 router 52 6 sqrt 3077 1106
mtp8 1069 37.8 voter 1301 17 square 3246 74
rca32 666 16.1
wal8 1081 45.3

B. Experiments on ASIC Designs

We compare ALSRAC with a state-of-the-art ALS approach
in [13], Su’s method, on ASICs under ER and NMED constraints.
Both methods aim at the best approximate circuits with the smallest
area ratio satisfying the error constraint. Some ISCAS and arithmetic
benchmarks are used. They are listed in the first column of Table III
and are optimized with the logic synthesis tool SIS [21] before our
experiments. They are exactly the same ones as those used in [13]. We
reimplement Su’s method with C++. The final approximate circuits
in Su’s method and ALSRAC are mapped with MCNC standard cell
library [22] using the ABC command “map -D <original delay>".

1) Comparison under ER constraint: In this experiment, we
compare ALSRAC and Su’s method under ER constraint using the
ISCAS and the arithmetic circuits. The area ratio, delay ratio, and

TABLE IV: Comparison of ALSRAC and Su’s method under ER
constraint.

Average area ratio  Average delay ratio  Average time (s)

Circuit
ALSRAC Su’s ALSRAC Su’s ALSRAC Su’s
alud  7046% 73.72% 101.35% 100.00% 547 10639
c1908  75.24% 77.33% 79.70%  76.98% 19 398
c2670  66.75% 74.60% 89.89%  97.46% 6 491
c3540  92.89% 94.66%  86.47% 100.00% 199 2063
c5315  8791% 95.50%  73.53%  99.07% 66 3192
7552  80.30% 91.13% 77.97%  94.96% 153 10275
c880  90.48% 93.58% 89.50%  87.49% 20 59
cla32  59.72% 79.69% 84.34%  58.66% 6 625
ksa32  70.17% 84.14% 91.17%  72.79% 91 1148
mtp8  95.31% 96.73%  91.61%  98.94% 30 548
rca32  91.31% 94.79% 99.56%  99.47% 5 28
wal8  80.80% 93.56% 95.90%  82.09% 9 1092
Arithmean  80.11% 87.45%  88.42%  88.99% 32 2546

runtime are listed in Table IV. The values for each benchmark are the
average results under 7 ER thresholds (0.1%, 0.3%, 0.5%, 0.8%, 1%,
3%, 5%). The entries in bold highlight the cases where ALSRAC is
better than Su’s method. Similar notations are applied in the following
tables. For all cases, ALSRAC reduces more area than Su’s method.
On average, ALSRAC generates approximate circuits with an area
ratio of 80.11%, improving over Su’s method by 8.39% relatively.
For ¢7552, cla32, ksa32, and wal8, our approach reduces more than
10% area over Su’s method. Furthermore, all approximate designs
other than alu4 generated by ALSRAC have smaller delays compared
to the accurate circuits. Nearly half of the approximate designs have
better area and delay simultaneously than the circuits produced by
Su’s method. With regard to the runtime, ALSRAC is 80x faster
than Su’s method on average.

2) Comparison under NMED constraint: In this experiment, we
compare ALSRAC and Su’s method under NMED constraint. Only
the arithmetic circuits are selected, since NMED is an error metric
for arithmetic circuits. Table V lists the area ratio, delay ratio, and
runtime under the NMED constraint. The results for each benchmark
are the averages under 8 NMED thresholds (0.00153%, 0.00305%,
0.00610%, 0.01221%, 0.02441%, 0.04883%, 0.09766%, 0.19531%).
ALSRAC always reduces more area than Su’s method. On average,
our method produces approximate circuits with an area ratio of
39.64%, improving over Su’s method by 18.15% relatively. All
approximate circuits generated by ALSRAC have smaller delays than
the accurate ones. Two of them have better area and delay at the
same time than the circuits generated by Su’s method. Additionally,
our method has a speed-up of 3x over Su’s method on average.

TABLE V: Comparison of ALSRAC and Su’s method under NMED
constraint.

Average area ratio  Average delay ratio Average time (s)

Circuit
ALSRAC Su’s ALSRAC Su’s ALSRAC Su’s
cla32  15.85% 26.03% 58.34% 52.73% 404 2723
ksa32  16.11% 26.16% 87.78% 78.86% 714 4498
mtp8  78.60% 82.65%  97.52% 97.62% 2044 2254
rca32  2348% 28.68%  86.57% 95.81% 514 706
wal8  64.14% 78.63% 90.70% 89.74% 758 3592
Arithmean  39.64% 48.43% 84.18% 82.95% 887 2754

C. Experiments on FPGA Designs

We compare ALSRAC with a state-of-the-art ALS approach in [5],
Liu’s method, on FPGAs under ER and MRED constraints. Both
methods aim at finding the best approximate circuit with the smallest



area ratio satisfying the error constraint. The EPFL benchmarks are
used to test the performance on FPGA designs. They are listed in the
last two columns of Table III, which show the best synthesis results
obtained in recent years. The final approximate circuits are mapped
into 6-LUTs using the ABC command “if -K 6”.

1) Comparison under ER constraint: In this experiment, we
compare ALSRAC and Liu’s method using EPFL random/control
benchmarks using the ER threshold of 1%. The area ratio, delay ratio,
and runtime are listed in Table VI. In all cases, ALSRAC reduces
more area than Liu’s method. On average, our method generates
approximate circuits with an area ratio of 74.30%, improving over
Liu’s method by 7.41%. Meanwhile, the average delay ratio is
improved by 10.60%. In particular, only 9.09% of LUTs are needed
to approximate the priority circuit. All approximate circuits generated
by ALSRAC have delays no larger than the accurate ones. Half of
them have both better area and delay compared to Liu’s designs. Only
the runtime of our approach is provided, since that of Liu’s method
is not mentioned in [5]. Our algorithm is efficient for all cases, even
for the largest circuit mem ctrl with 2354 6-LUTs, ALSRAC can
produce an approximate design in an acceptable time.

TABLE VI: Comparison of ALSRAC and Liu’s method under ER
constraint.

Circuit Area ratio Delay ratio ALSRAC
ALSRAC Liu’'s ALSRAC Liu’s time (s)

arbiter 53.06% 61.37% 43.48% 56.52% 39
cavle 93.07 % 99.01% 83.33% 83.33% 69

alu ctrl 96.30% 100.00%  100.00% 100.00% 0.2
decoder 97.78% 100.00%  100.00% 100.00% 5
i2¢ ctrl 78.41% 90.31% 85.71% 85.71% 24
Int2float 89.29% 92.86% 83.33% 100.00% 4
mem ctrl 70.56 % 88.62% 36.36% 68.18% 2059
priority 9.09% 10.91% 11.54% 11.54% 2
router 57.69% 59.62% 16.67 % 33.33% 2
voter 97.77% 99.85% 99.85% 100.00% 967
Arithmean 74.30% 80.25% 66.03% 73.86% 317

2) Comparison under MRED constraint: In this experiment, we
compare ALSRAC and Liu’s method using EPFL arithmetic bench-
marks under the MRED threshold of 0.19531%. Notably, Liu’s work
uses MRED instead of NMED as the measure on ED. Thus, this
experiment also uses MRED as the error metric. The area ratio, delay
ratio, and runtime are listed in Table VII. All the EPFL arithmetic
circuits are listed in the table except hyp, since it has a massive
number (40406) of 6-LUTs and ALSRAC cannot synthesize it within
24 hours. In terms of performance, ALSRAC reduces more area
than Liu’s method for all the benchmarks except divisor and max.
Especially for the circuit max, ALSRAC is not competitive compared
to Liu’s method. With/without the max circuit, our method generates
approximate designs with an area ratio of 59.69%/56.20%, improv-
ing by 1.48%/11.86% compared to Liu’s method. In particular, for
shifter and mult, ALSRAC reduces nearly 20% more area. Besides,
only 3.09% of 6-LUTs are required to approximate the sgrt circuit.
All approximate circuits generated by ALSRAC have delay no larger
than the accurate ones. More than half of them have both area and
delay not worse than Liu’s method. The runtime is provided only for
our approach because the runtime is not reported in [5]. Overall, the
runtime of our method is acceptable.

V. CONCLUSION

This paper proposes ALSRAC, an approximate logic synthesis flow
that relies on resubstitution with an approximate care set to produce
high-quality approximate circuits. The main idea is to control the size
of the approximate care set by logic simulation and find approximate

TABLE VII: Comparison of ALSRAC and Liu’s method under
MRED constraint.

Circui Area ratio Delay ratio ALSRAC
rcuit

ALSRAC Liu’'s ALSRAC Liu’s  time (s)

adder 68.23% 71.35% 4.69% 15.63% 891

shifter ~ 71.48% 90.04% 100.00% 100.00% 435

divisor  99.72% 98.90%  70.94%  88.41% 1982

log2  90.07% 97.37% 90.76%  90.76% 614

max 87.57% 35.18% 100.00%  10.05% 134

mult 8.00% 27.16%  21.11%  40.00% 25086

sine  96.75% 99.19%  83.64%  98.18% 52

sqrt 3.09% 10.98% 1.81% 10.13% 4238

square  12.26% 15.10% 27.03%  25.68% 9998

Arithmean  59.69% 60.59% 55.55%  53.20% 4826

Arithmean 56 200, 63.76%  50.00%  58.60% 5412
w/0 max

changes that can be applied to the design. The experimental results
show that ALSRAC significantly improves the quality of approximate
logic synthesis.
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