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ABSTRACT

Approximate computing, an emerging design paradigm for
error-tolerant applications, has received considerable inter-
est recently. Approximate logic synthesis (ALS) is an au-
tomatic process to generate approximate circuits. Many ex-
isting ALS methods are implemented in an iterative greedy
way. For each iteration, they choose a local approximate
change (LAC) with the highest score. Since greedy approaches
have the shortcoming of easily getting into local minima,
we apply two advanced search algorithms, beam search and
Monte Carlo tree search, to determine a better ordering of
LACs. Each algorithm achieves an order in which the area
of approximate designs is improved.
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1 INTRODUCTION

Approximate computing is an emerging design paradigm for
digital systems. As energy consumption of digital systems
grows rapidly, energy efficiency has become an essential
concern in their design [1]. Fortunately, many applications
are error-resilient, such as image processing, data mining,
and machine learning. Thus, they allow to introduce some
errors into the overall function. If the errors are introduced
properly, the application-level quality is still maintained, but
the area, delay, and power consumption of the circuits could
be dramatically reduced. Therefore, approximate computing
has received considerable attention recently.

This work focuses on approximate logic synthesis (ALS)
for multi-level circuits. ALS automatically generates inexact
circuits of better quality from the original accurate circuits
under the constraints on some error metrics. Typical quality
measures include circuit area and delay, while typical error
metrics include error rate and error magnitude. To derive an
approximate design, many existing works iteratively apply
local approximate changes (LACs) to the circuit. Some
representative LACs include simply replacing a gate by a

constant 0/1 [2] and substituting a signal by another one
with similar functionality [3].

Many existing ALS methods are iterative. In each iteration,
they determine which LAC should be applied greedily [2-6].
Specifically, a score is calculated for each valid LAC based
on its local quality improvement (such as area improvement)
and induced error. Then, the one with the highest score is
selected. The iteration terminates when a given error limit
is reached.
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Figure 1: A greedy ALS method is stuck into a local opti-
mum. A node represents a circuit and an edge represents a
local approximate change (LAC). A and E denote the area and
error rate of the corresponding circuit, respectively. S is the
score of an LAC.

However, a greedy ALS method has its natural drawback of
getting stuck into a local optimum. Fig. 1 shows an example
for this. Assume that the error rate threshold is 1%. The target
is to synthesize a circuit with the minimum area and error
rate no more than 1%. Node () is the input accurate circuit,
which has an area of 305 and no error (i.e., A = 305, E = 0).
Each edge corresponds to an LAC and its score S is put
near the edge. If the method always chooses an LAC with
the highest score and modifies the circuit with the choice
each time, it will move along the red path and generate
an inexact design with area of 282 and error rate of 0.98%.
Unfortunately, the best order leading to the best solution
should be D—@—@— . Thus, a greedy ALS method
does not guarantee to produce an approximate circuit with
the best quality.



To overcome this issue, we propose to utilize two advanced
search algorithms to find a better ordering of applying LACs.
The first search algorithm we apply is beam search. It is
an extension of the basic greedy method by keeping track
of multiple top-scored LACs. The second is Monte Carlo
tree search (MCTS). It is a method for finding optimal de-
cisions by taking random samples in the search space. It has
been successfully applied to many planning problems [7-9].
Our experimental results showed that these algorithms are
effective in finding a better ordering than the basic greedy
search and thus, improve the quality of the final approximate
circuits.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 presents the prelim-
inaries and the basic ideas. Sections 4 and 5 describe the
proposed ALS methods with beam search and Monte Carlo
tree search, respectively. Section 6 shows the experimental
results. Section 7 concludes our work.

2 RELATED WORK

Many ALS methods have been proposed previously. Most of
them applied a greedy iterative method to find the sequence
of LACs to apply to the circuit. They differ by the types of
LACs used and the scoring mechanisms. Shin and Gupta
proposed LACs that replace a gate by a constant 0/1 [2].
The score of an LAC is evaluated as the ratio of area reduc-
tion over an error measure called rate-significance value.
Venkataramani et al. proposed LACs that replace a signal
by another with close functionality [3]. To determine which
LAC to choose at each step, they designed a comprehen-
sive score on area, delay, and error. Su et al. used the same
LACs as Venkataramani et al. [10], but they used a different
quality evaluation of candidate LACs, which is defined as
the reduced area over the increased error rate. They pro-
posed a method to efficiently and accurately obtain the error
rate and showed that it could help improve the synthesis
quality compared to [3]. Wu and Qian proposed an ALS
method working on Boolean network representation of a
circuit. Their proposed LACs remove some literals from the
Boolean expression of each node in the network [4]. The
ratio of the literal reduction over the estimated error rate is
used to assess each candidate LAC. Chandrasekharan et al.
proposed to get inexact circuit by approximately rewriting
AND-inverter graph. Their proposed LACs rewrite the cut
on the critical path [5]. The criterion is to choose the cut with
the minimum size. Yao et al. proposed LACs that approximate
a maximal fanout-free cone in the circuit by a tree of gates
obtained through approximate disjoint bi-decomposition [6].
They used the same score as the one used in [10]. Hashemi et

al. proposed LACs that approximate the truth table of multi-
output subcircuits through Boolean matrix factorization [11].
They assessed the quality of an LAC by the error rate.

There also exist other non-greedy ALS methods. Venkatara-
mani et al. proposed to transform the ALS problem into the
traditional logic synthesis problem by encoding the error
magnitude as a function [12]. Then, they could exploit ex-
ternal don’t cares to improve the circuit. Liu and Zhang
proposed a statistically certified ALS framework using the
techniques from stochastic optimization [13]. In each itera-
tion, the proposed method randomly selects a proper LAC
and accepts it with a certain probability.

Our work is different from the above-mentioned approaches
in terms of how we search for a good ordering of LACs. We
use advanced search algorithms to find a good sequence of
LACs from a global perspective.

3 PRELIMINARIES AND BASIC IDEAS
3.1 Error Metric

Our method can handle any error metric, such as error rate,
average error magnitude, and maximum error magnitude.
However, in the following, we just use error rate (ER) for
illustration. Let the set of input vectors of the circuit be
{x1,...,%Xpm}. Assume that x;(1 < i < M) occurs with a
probability p;. Let y; and y; be the approximate and accurate
output vectors for x;, respectively. ER is calculated as the
probability that the outputs are incorrect.

Given that the number of input vectors is exponential to
the input size of a circuit, it is impractical to calculate the
exact ER for a large circuit. Therefore, in our experiments, we
derive the ER by logic simulation using a sufficiently large
number of random input stimuli.

3.2 Local Approximate Change

We use the LACs proposed in [3] to illustrate our method,
although it is not only limited to this type of LACs. These
LACs replace one signal in the circuit, called target signal
(TS), by another, called substitution signal (SS). By doing
so, the gates in the netlist only contributing to generate the
TS can be removed and the circuit area is reduced. In the
approximate computing context, we do not require TS and
SS to be exactly identical in their functions. In our approach,
a valid LAC in a gate netlist must satisfy:

e TS is a gate.

e SS can be a gate or its negation, a primary input (PI)
signal or its negation, or a constant 0/1.

e SS has no larger arrival time than TS. This guarantees
that the final approximate circuit has no larger delay
than the original accurate one.

o After substituting TS with SS, the ER conforms to the
constraint.



Figure 2: An illustration of beam search with K = 3.

3.3 Problem Formulation and Basic Ideas

Given an accurate gate netlist and an ER constraint, we want
to find a good ordering to apply LACs, with which the ALS
method could achieve an approximate circuit with smaller
area. This problem can be formulated as a state-space search
problem where states represent the original circuit and all
approximate circuits obtained from it by successive applica-
tions of LACs. A good solution satisfying the ER constraint
can be found by searching a corresponding state-space search
tree. Fig. 1 shows an example of the search tree for our prob-
lem. In such a tree, each node represents a gate netlist, and
the actions of each node are valid LACs. The successors of
a node represent all the circuits obtained by applying valid
LACs on it. The root node is the original netlist and a leaf
node of the tree, called goal state, is a circuit that cannot be
further approximated without increasing its ER above the
limit. Our target is to achieve a goal state with the minimum
area while satisfying the ER constraint.

The main challenge of our problem is the huge search
space. On the one hand, by the type of LACs we use here, the
number of valid LACs at each node is quadratic to the number
of signals in the circuit, since a TS can be any gate and an SS
can be any signal with no larger arrival time. Consequently,
the number of branches from each node is extremely large.
On the other hand, even if the branching factor were a small
constant, the size of the search tree would grow exponentially
with its depth. As many LACs may be applied before reaching
the final ER limit, the depth of the search tree may be large.
Therefore, it is infeasible to perform basic search algorithms
such as breadth-first search and depth-first search.

To solve this challenge, we turn to advanced state-graph
search algorithms. By focusing on promising candidates,
these search algorithms tend to explore earlier the branches
possibly containing the best solution in the search tree. We
apply two advanced search algorithms in this work. The first
one is beam search, which is an extension of the basic greedy
search. The second is Monte Carlo tree search.

Algorithm 1: The BS-ALS algorithm.
Input

:the original netlist Cor;, the error rate threshold Te,,
and the branching factor K;
Output :an approximate netlist Cgy;

1 list L « {Cori}, set of candidate approximate circuits S « @;

2 while L # @ do

3 if |L| > K then

4 keep K best circuits with the smallest error rates and
remove others from L;

5 new list Lyew «— @;

6 for each circuit C in L do

7 if C has no valid LACs then

8 ‘ S—SUCGC;

9 else

10 for each valid LAC I, of C do

11 apply I, on C and get new circuit Cpeny;

12 Lnew < Lnyew U Crews

13 L < Lpew;

14 find the circuit C4, with minimum area from S;
15 return Cgy;

4 ALS BY BEAM SEARCH

Beam search is a straightforward way to extend the basic
greedy search. The basic greedy search only keeps one most
promising state at each level of the search tree and expands
it to reach to the states at the next level. Beam search extends
this by always keeping K rather than just one most promising
states at each level and expanding them to reach all new
states [14]. Fig. 2 illustrates a beam search with K = 3. At
each level, all states expanded from the last level are checked
and only 3 states (i.e., the green nodes) with the highest
scores are kept. Then, only these 3 states are expanded by
their actions to reach the states at the next level.

The basic idea behind beam search is that it maintains K
parallel “search threads”, among which useful information
is passed. In essence, the states that generate the best suc-
cessors will inform the others that the optimal solution is
more likely located in the corresponding branch. Thus, it
quickly abandons unpromising searches and focuses at the
promising choices.

We combine Beam Search with the ALS method and design
the BS-ALS algorithm. The detailed algorithm is shown in
Alg. 1. It takes the original circuit C,,; as input. We maintain
a list L to store the best K states. Initially, L only contains
the original circuit C,,; (Alg. 1, Line 1). Meanwhile, a set S of
candidate approximate circuits is used to record the possible
solutions. In each iteration, the algorithm first resizes the list
L and keeps at most K best circuits in L (Alg. 1, Lines 3-4).
In our implementation, we use ER as the criterion. Then,
we create an empty list L,¢,, and iterate over all circuits in
L. For a circuit C in L, if it has no valid LACs, it is a goal
state and it will be added into the candidate set S (Alg. 1,



Lines 7-8). Note that by our definition, a valid LAC should
ensure that the ER of the updated circuit does not exceed
the ER threshold. Thus, it is possible for a circuit to have no
valid LACs. Otherwise, we will obtain all circuits generated
by applying the valid LACs to circuit C and add them into
the list Lyew (Alg. 1, Lines 10-12). After all circuits in L are
checked, L is updated by the list L, (Alg. 1, Line 13). The
entire loop terminates until L is empty. This happens when
all circuits in the last iteration have no valid LACs. Then, the
circuit with the minimum area in set S is returned.

Algorithm 2: The MCTS-ALS algorithm.
Input

:the original netlist C,;, the error rate threshold T,
and the runtime limit T;
Output :an approximate netlist Cgx
// Area(C) is the area of the circuit C
create root node R with the original netlist Cy;;
final approximate circuit Cax < Cori;
while runtime is less than T do
V « Selection ();
new expanded node N, « Expansion (V);
(new approx. circuit Cpeny, reward A) < Playout (Ne);
Backpropagation (Ng, A);
if Area(Cgy) > Area(Cpew) then Cax «— Crey 3
return Cgy;
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5 ALS BY MONTE CARLO TREE SEARCH

Monte Carlo tree search (MCTS) is an emerging search
method that exploits randomness to efficiently explore large
search trees, while focusing its effort on the most promising
parts of the tree search [15]. It has been shown to be an
essential component for building an expert-level computer
player for the game of Go [16], but it has also revealed to be
efficient in other domains. In particular, planning or ordering
is also a domain in which MCTS-based techniques are widely
used [7, 8, 17]. MCTS enjoys several advantages compared
to traditional search algorithms. Notably, MCTS is:

o Asymmetric. MCTS expands the search tree asymmet-
rically, which is suitable for a large search space. It
visits more frequently nodes that are likely to reach
good goal states, and therefore focuses on exploring
the promising parts of the tree.

o Anytime. MCTS can be terminated at any time and
return the best solution found so far.

We combine Monte Carlo Tree Search with the ALS method
and design the MCTS-ALS algorithm, aiming at finding a
good ordering of LACs and getting an approximate circuit
with higher quality improvement. The overall algorithm is
shown in Alg. 2 and some supporting functions are shown in
Alg. 3. The algorithm is based on the most popular version
of MCTS, the upper confidence bound for trees (UCT)
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Figure 3: The steps of Monte Carlo tree search (MCTS).

algorithm [15]. We integrate the domain knowledge of ALS
into it.

The algorithm first creates the root node R of the search
tree, which corresponds to the original netlist C,,; (Alg. 2,
Line 1). Like any MCTS algorithm, it iteratively expands the
search tree by repeating four basic steps—selection, expan-
sion, playout, and backpropagation (Alg. 2, Lines 4-7)—until
a computational budget is reached. For simplicity, we use a
total runtime limit T (Alg. 2, Line 3). Unlike standard MCTS,
we keep track of the best goal state (i.e., approximate circuit)
Cax found so far (Alg. 2, Line 8), which is returned at the end.
We can therefore get an approximate design at any time, and
its quality increases with more runtime.

An illustration of the four basic steps, which are described
in details next, is shown in Fig. 3. Conceptually, the selec-
tion step chooses a promising node V in the current search
tree to further expand during the expansion step, which
adds a new node N, by applying a new LAC (if any) to V.
The playout step applies a random sequence of LACs to N,
which provides a noisy evaluation A to it. This information
is backpropagated to N, and its predecessors in the back-
propagation step.

Some of these steps call a supporting function GetValid-
LACs, which returns a set of valid LACs for a circuit. It will
be described in detail later.

Selection. This step (Alg. 3, Lines 1-7) traverses the cur-
rent search tree to find a most promising node to expand. It



Algorithm 3: The supporting functions used in the MCTS-
ALS algorithm.

// Ckt(V) is the circuit of node V
Function Selection():

1
2 node V « root node R;
3 candidate LAC set Sp ac « GetValidLACs(Ckt(V), Ter);
4 while S; oc # @ and all LACs in Sy oc have been explored
do
5 V «arg maXVjeV’s children 1%2“2; + ﬁ 21;1]{\‘2;/);
6 Spac < GetValidLACs(Ckt(V), Ter);
7 return V;
s Function Expansion(V):
9 Srac < GetValidLACs(Ckt(V), Ter);
10 if S;ac = @ then return V ;
11 randomly choose one unexplored LAC € Spac;
12 add a new child N, to V;
13 apply LAC on Ckt(V') and get Ckt(Ne);
14 return Ne;
15 Function Playout (Ne):
16 Cnew < Ckt(Ne);
17 Srac < GetValidLACS(Chew, Ter);
18 while S; 4c # @ do
19 choose LAC € Sy 4¢ randomly;
20 simplify Cpeyy with LAC;
21 Srac < GetValidLACS(Chew, Ter);
22 simplify Cpey with a traditional logic synthesis tool;
23 reward A < 1 — Area(Cpew) | Area(Cori);
24 return (Cpew, A);
25 Function Backpropagation(V,A):
26 while V is not null do
27 Q(V) < Q(V) + A
28 N(V)— NV)+1;
29 V « parent of V;

starts from root R and iteratively selects child nodes until a
candidate node V is reached. A candidate node is either a
goal state or an expandable node, which is a node that still
has some LACs that have not been tried yet.

For a non-candidate node V, the selection rule for the next
child node V; consists in maximizing the following expres-
sion (Alg. 3, Line 5):

o) . [zmN)
Ny TP TN @

where Q(V;) is the sum of rewards A received in node Vj,
N(V;) (resp. N(V)) counts how many times node V; (resp. V)
has been explored, and f is a constant parameter. The reward
provides a noisy evaluation of the quality of a sequence of
actions. In the general case, an MCTS algorithm aims at
finding a sequence of actions that maximizes the reward. In

the context of ALS, we want to choose a sequence of LACs to

apply to maximize the final area saving of the approximate
circuit over the original circuit. Thus, we define the reward
A as the area reduction ratio (ARR):

Area(Cpew)

A=ARR = 1- ,
Area(Cori)

()

where Area(Ce4y) is the area of the new approximate circuit
derived from playout (see the “playout” paragraph later for
detail) and Area(C,,;) is the area of the original circuit.

The values of Q and N are accumulated through the back-
propagation step (see the “backpropagation” paragraph later
for detail). Empirically, B is set to V2 when the reward A is
limited within the range [0, 1] [18], which is the case for our
choice of A.

Eq. (1) computes a high-probability upper confidence bound
on the estimation of the true value of a node. It was analyzed
in [19] as a selection rule in MCTS algorithms. It balances the
exploitation of the action currently believed to be optimal
with the exploration of other actions that may turn out to
be superior in the long run [15]. More specifically, the first
term of Eq. (1), Q(V;)/N(V}), gives an estimated expectation
of the reward for choosing node V;. A potential good order-
ing of LACs corresponds to a path from the root to a goal
state in which the nodes have high expectations of rewards.
Thus, the first term encourages the exploitation of promising
LACs. However, when N(V;) is small, which means that node
V; has only been explored for a few times, the estimation
Q(V;)/N(V;) may be far from the true expectation. Thus, the
second term, which is larger if N(V}) is small, encourages
the selection of under-explored nodes.

Expansion. This step (Alg. 3, Lines 8-14) is an essential
operation to grow the search tree from candidate node V'
obtained in the selection step if V is expandable. If V is a goal
state (i.e., no valid LACs), V itself is returned. Otherwise, an
unexplored valid LAC of candidate V is chosen and applied
to generate a new approximate circuit, i.e., a new node N, is
added into the current tree as a child of V. Finally, the node
N, is returned (Alg. 3, Lines 11-14).

Playout. This step (Alg. 3, Lines 15-24) is a Monte Carlo
process. It starts from the new node N, and iteratively ap-
plies valid LACs at random to reach an approximate circuit
with no more valid LACs, which corresponds to a goal state
(Alg. 3, Lines 18-21). Since a sequence of introduced LACs
may induce some redundancies in the circuit, the final cir-
cuit generated by playout is optimized by a traditional logic
synthesis tool (Alg. 3, Line 22). This could further reduce
the area, while not increasing the ER. Finally, the final ap-
proximate circuit and the reward A calculated by Eq. (2) are
returned.



Backpropagation. This step (Alg. 3, Lines 25-29) updates
two pieces of vital information in each node along the path
from the newly expanded node N, back to root R. They are
the total reward Q and the total visited time N. For each vis-
ited node, total reward Q increases by a reward A returned
from the playout step and total visited time N is incremented
by 1. These two values are used in Eq. (1) to guide the selec-
tion step in future rounds.

Speed-up by Limiting the Number of Valid LACs. The se-
lection, expansion, and playout steps all call function Get-
ValidLACs that returns a set of valid LACs to consider for
a circuit under an ER threshold. However, as mentioned in
Section 3.3, the number of valid LACs is quadratic to the
number of signals in the circuit. If we consider all valid LACs
for each node, then the tree would grow too fast, which
would lead a to prohibitive amount of computation. Thus, to
make our algorithm practical, we propose to only select a
subset of valid LACs: after obtaining all valid LACs, we only
keep the top B of them that introduce the smallest ERs to
the circuit as the LAC candidates. In this way, we reduce the
number of unpromising LACs and hence, avoid the unneces-
sary exploration of unpromising tree branches with higher
ERs.

Table 1: Benchmark information

Circuit Area Delay # PIs/POs
C432 309 21.9 36/7
C499 792 15.3 41/32
C880 629 16.4 60/26
C1908 747 24 33/25
C2670 1374  15.7 233/140
C3540 1915 28.7 50/22
C5315 2408 30.2 178/123
C7552 3328 25.2 207/108

6 EXPERIMENTAL RESULTS

In this section, we present the experimental results of our
proposed methods based on advanced search algorithms. The
algorithms were implemented in C++ and tested on a desktop
computer with an eight-core 3.6GHz Xeon CPU, operating
on Ubuntu 16.04.

We applied the LACs mentioned in Section 3 to simplify
the circuit. We chose ER as the error metric. It was mea-
sured by performing logic simulation. We assumed that all
primary input vectors are uniformly distributed. For each
algorithm, we randomly generated 100,000 input vectors at
the beginning and applied them in each logic simulation for
measuring the ER throughout the entire process of approxi-
mate circuit generation. However, when we obtained the ER
of the final approximate circuit, we used 1,000,000 different
input vectors to measure the ER more accurately. Note that

due to the randomness, if the final measured ER exceeds the
threshold, we undid the last applied LAC and repeated this
process until we reached a circuit with the final measured
ER smaller than the threshold. The area reduction ratio
(ARR), defined as the ratio of the reduced area over the orig-
inal area (see Eq. (2)), was used to evaluate the quality of
inexact designs. Although circuit delay is not the focus here,
all produced approximate designs do not have delay increase
over their original designs thanks to our proper choices of
LAGs.

We used the ISCAS85 benchmark suite and mapped those
benchmarks with MCNC generic standard cell library [20].
The delay, area, and number of primary inputs/outputs of
each benchmark is listed in Table 1. The traditional logic
synthesis and technology mapping were performed by the
logic synthesis tool ABC [21].

6.1 Comparison of Approximate Circuit
Quality for Different Methods

We compared the performance of the basic greedy method
with our proposed approaches, BS-ALS and MCTS-ALS. The
greedy method used for comparison here is a state-of-the-
art method described in [10]. It scores an LAC by the ratio
of the area reduction over the increased ER. In the BS-ALS
algorithm, we kept K = 10 best candidates for each level of
the search tree. In the MCTS-ALS algorithm, the top B = 100
LACs with lower ERs were kept.

The results of the three methods are shown in Table 2.
We list ARRs for 4 ER thresholds (0.5%, 1%, 3%, 5%) for each
benchmark. “Greedy”, “BS”, and “MCTS” in the table cor-
respond to the greedy, BS-ALS, and MCTS-ALS methods,
respectively. We highlight the best quality improvement at a
certain ER constraint for a benchmark in bold.
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Figure 4: Area reduction ratio v.s. error rate for MCTS-ALS.

We can see that for most cases, BS-ALS reduces more
area than the greedy method. On average, BS-ALS behaves
slightly better and improves the ARR by 0.43%, 0.63%, 0.82%,



Table 2: Area reduction ratios (ARRs) of three different ALS methods.

Circuit ARR at ER = 0.5% ARR at ER = 1% ARR at ER = 3% ARR at ER = 5% Average ARR
Greedy BS  MCTS |[Greedy BS  MCTS |Greedy BS  MCTS |Greedy BS  MCTS |Greedy BS  MCTS
C432 [18.12% 18.12% 18.12% | 18.12% 18.77% 19.09%| 18.12% 21.36% 24.92% | 20.06% 33.01% 33.01% | 18.61% 22.82% 23.79%
C499 | 1.14% 1.14% 1.14% | 2.27% 2.27% 2.27% | 9.09% 8.84% 9.72% | 14.27% 13.76% 19.95%| 6.69% 6.50% 8.27%
C880 | 4.29% 4.29% 4.29% | 4.61% 4.61% 5.25% | 6.68% 6.84% 17.01%| 18.28% 18.28% 19.71%| 8.47% 8.51% 11.57%
C1908 | 3.21% 3.48% 6.69% | 7.63% 7.90% 12.58%|40.96% 42.97% 50.60% | 61.98% 62.25% 62.25%| 28.45% 29.51% 33.03%
C2670 | 27.87% 28.31% 31.73%| 28.82% 30.71% 33.70%| 32.53% 32.61% 38.57%| 40.90% 40.03% 41.85%| 32.53% 32.91% 36.46%
C3540 | 3.29% 3.29% 6.63% | 3.92% 3.97% 10.86%| 8.36% 8.30% 15.87%|14.10% 14.20% 16.61%| 7.42% 7.44% 12.49%
C5315 | 2.41% 3.57% 3.57% | 3.53% 4.98% 4.98% | 4.44% 4.98% 5.11% | 5.15% 5.15% 5.56% | 3.88% 4.67% 4.81%
C7552 | 13.64% 15.20% 22.63%| 14.63% 15.32% 22.63% | 15.75% 16.56% 23.74%| 16.26% 17.67% 25.06%| 15.07% 16.19% 23.51%
Average| 9.25% 9.68% 11.85%| 10.44% 11.07% 13.92%| 16.99% 17.81% 23.19%| 23.88% 25.54% 28.00%| 15.14% 16.02% 19.24%

and 1.66% for the four ER thresholds over the greedy method.
Furthermore, with the help of MCTS, we can find even better
orderings of LACs and further improve the quality of ap-
proximate circuits. Indeed, MCTS-ALS performs best for all
cases in the table as all the values in the “MCTS” columns are
highlighted in bold. On average, it improves ARR by 2.6%,
3.48%, 6.2%, and 4.12% under the four ER thresholds over the
greedy method. In particular, MCTS-ALS further reduces the
area by 12.95% over the greedy method for circuit C432 when
ER = 5%. Fig. 4 plots the relationship between ER and ARR
for all the benchmarks using MCTS-ALS. We can see that it
could reduce 15%-60% area for most benchmarks under 5%
ER threshold.

It deserves a mention that BS-ALS sometimes generates
worse approximate designs than the greedy method (e.g.,
circuit C499 under ER threshold of 5%). Since beam search
is an extension of the basic greedy search, it also cannot
guarantee to find the best solution in the search space due
to falling into a local minimum. Even if beam search keeps
more than one most promising state, it is possible to make
bad choices at some steps, resulting in missing an optimal
goal state eventually. That is why BS-ALS sometimes does
not beat the basic greedy method.

6.2 Comparison of Runtime for Different
Methods

With regard to the runtime to obtain the results in Table 2,
the greedy method takes 16 minutes on average, while our
BS-ALS method consumes about 10X time compared with the
greedy method. This is reasonable since in the experiments,
we maintained K = 10 parallel “search threads”. For the
MCTS-ALS method, the given runtime limit T was set as
24 hours and it generates an approximate circuit as good as
possible.

Since the runtime mentioned above is not equivalent for
different ordering methods, we further explore the tradeoff
between runtime and ARR for different ALS methods. To
illustrate how much time the MCTS-ALS method consumes
to reach the same approxiamte circuit quality as the greedy

method, we terminate MCTS-ALS flow as soon as it finds an
approximate design with ARR larger than or equal to that
of the greedy flow. We recorded the terminating time Ty
and compare it with the time T of the greedy method in
Table 3. We also list the ratio % in the table. We considered
three different ERs of 1%, 3%, and 5%. On average, in order
to get the same quality, MCTS-ALS method requires 4X run-
time compared to the greedy method. Although the runtime
of MCTS is longer than the greedy method, it has the ad-
vantage of continuously improving the quality as runtime
increases, which will be discussed in the following section.
It is beneficial when the quality is the primary concern.

Table 3: Runtime of the greedy and the MCTS-ALS
methods for reaching the same area improvement. Tg

and T denotes the time in seconds of the greedy and
the MCTS-ALS methods, respectively.

Circuit ER =1% ER = 3% ER = 5% Average
Ic  Tm % Ic Tm % Tc  Tm % %
C432 9 10 11| 15 120 8.0f 17 101 59| 5.0
C499 6 11 18| 27 53 2.0] 36 35 10| 16
C880 | 17 18 11| 21 21 1.0f 32 226 7.0 3.0
C1908 | 76 151 2.0 211 639 3.0{ 213 998 47| 3.2
C2670 | 266 264 1.0 354 368 1.0|438 4326 99| 4.0
C3540 | 469 3802 8.1 699 3492 5.0{1513 1510 1.0 4.7
C5315 | 971 2900 3.0{1329 1300 1.0|2117 4266 2.0/ 2.0
C7552 (2821 28000 9.9{2999 18993 6.3(3101 28912 9.3| 8.5
Average|579.4 4394.5 3.5|706.9 3121.5 3.4|933.4 5387.5 8.2| 4.0

6.3 Quality Configurable ALS Flow with
MCTS

MCTS can be stopped at any time and return the best order-
ing of LACs, which corresponds to an approximate circuit
with the highest quality (such as ARR) so far. The quality of
an approximate circuit gradually improves as iteration (i.e., a
loop of selection, expansion, playout, and backpropagation)
number increases. Fig. 5 shows the relationship between
ARR and iteration time of MCTS using circuit C1908 and
ER threshold of 3% as an example. The staircase-like curve
in blue plots ARRs versus iteration times for MCTS-ALS,



while the horizontal line in orange, drawn as a reference, is
the ARR of the approximate circuit generated by the greedy
method. We can see that the quality produced by MCTS-ALS
grows in a staircase-like way, since the current best area is
updated at the end of each loop, as shown in Alg. 2. These
two curves intersect at the third iteration of the MCTS-ALS
method. This means after three loops of MCTS, it has already
found an LAC ordering that produces an approximate cir-
cuit with the same quality (i.e., 40.9% area reduction) as the
greedy method.
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Figure 5: Circuit quality improves with iteration number
for the MCTS-ALS method. The results were obtained on cir-
cuit C1908 under ER threshold of 3%.

Consequently, we could flexibly use the MCTS-ALS method
to generate inexact designs with different qualities in accor-
dance with the user requirement. In case of a strict demand
on quality improvement from the user, MCTS-ALS could be
given more computational budget to produce a better ap-
proximate design. In contrast, if the user does not care much
about the quality, MCTS-ALS could produce a satisfying
design in shorter time.

7 CONCLUSION

In this paper, we proposed to utilize advanced search meth-
ods to determine a good ordering of applying the local ap-
proximate changes for multi-level approximate logic syn-
thesis. We proposed two new ALS methods, BS-ALS and
MCTS-ALS, based on beam search and Monte Carlo tree
search, respectively. They show improvement over the ba-
sic greedy search method. The experimental results showed
that MCTS-ALS performs best. It has the attractive feature of
continuously improving the design quality as more runtime
is allowed. As a future work, we will consider how to further
speed-up the MCTS-ALS algorithm.
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