
0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 1

Stochastic Circuit Synthesis by Cube Assignment
Xuesong Peng and Weikang Qian, Member, IEEE

Abstract—Stochastic computing (SC) is an unconventional
computation paradigm, in which digital circuits are adopted to
compute on stochastic bit streams. The value represented by a
stochastic bit stream is the probability of obtaining a one in
the stream. Stochastic circuits are highly tolerant to bit flip
errors. Compared to the conventional binary computing, SC
can perform complicated arithmetic computations with simple
circuits. With such advantages, SC has been applied in a number
of applications. This raises recent interests in developing general
methods to automatically synthesize stochastic circuits. However,
the synthesis problem is different from and more complicated
than the traditional logic synthesis, due to the special solution
space of the problem. In this work, we propose a novel method
to synthesize a high-quality stochastic circuit. Our method is
based on assigning cubes (i.e., product terms) to the on-set of
the Boolean function. A heuristic breadth-first search algorithm
is proposed to search for a good stochastic circuit in the solution
space. Our experimental results showed that the proposed method
can produce better circuits than the state-of-the-art methods.

Index Terms—stochastic computing, stochastic circuit synthe-
sis, cube assignment, general stochastic circuits, logic synthesis.

I. INTRODUCTION

AS semiconductor industry enters into the nano-scale
regime, reliability has become a paramount concern.

Stochastic computing (SC) [1], an unconventional computing
paradigm, has attracted attention due to its strong tolerance
to bit flip errors. In SC, a real-valued number x ∈ [0, 1] is
represented by a stochastic bit stream, in which every bit has
probability x of being a one and probability 1− x of being a
zero. As an example, the stream A in Fig. 1 contains four 1’s
out of total eight bits, so it encodes the value 0.5.

Since SC uses a uniform-weighted encoding, which usually
needs a long bit stream to represent a value, a single bit flip in
the stream does not change the value significantly. As a result,
SC is highly tolerant to bit flip errors [2].

1,0,0,1,0,0,1,0
C

1,0,0,1,0,1,1,0
A

1,0,1,1,1,0,1,1
B

a = 4/8

b = 6/8

c = 3/8

AND

Fig. 1: An AND gate performs multiplication on real values encoded
by stochastic bit streams.

Under the SC paradigm, many arithmetic functions can be
implemented by very simple circuits. Fig. 1 shows an example
where multiplication is realized by a single AND gate. Assume
that the two input stochastic bit streams are independent. Then,
the probability of a one in the output stream of the AND
is P (C = 1) = P (A = 1) · P (B = 1), where P (X =
1) represents the probability of a one in the bit stream X .
Given its low hardware cost, SC has been used in several
applications, such as image processing [3], [4], [5], digital

Xuesong Peng and Weikang Qian are with the University of Michigan -
Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University,
Shanghai, China, 200240. Email: xuesongp@126.com; qianwk@sjtu.edu.cn.

filters [6], [7], decoding of modern error-correcting codes [8],
[9], and artificial neural networks [10], [11], [12].

Early stochastic circuits were designed manually. Several
basic computing units, such as multiplier, scaled adder, divider,
and squaring unit, were proposed in this way [13]. However,
they can only perform limited types of computations. In order
to implement more arithmetic functions with SC, researchers
recently proposed several systematic synthesis methods [2],
[14], [15], [16], [17], [18], [19]. However, one specific chal-
lenge in stochastic circuit synthesis is its extremely large
design space: there are many different Boolean functions
realizing the same target function [16], [19]. Since different
Boolean functions have different costs, a critical problem is
to find a valid Boolean function with the smallest hardware
cost. One common feature of most previous methods is that
they only construct one specific solution for the design target.
Although these methods are very fast, they do not pay effort to
search the solution space for a better solution. As a result, the
synthesized circuit may still be far from the optimal solution.
The only exception is the work [19]. However, it can only
implement a special type of polynomial called multi-linear
polynomial.

In this work, we propose a novel method that searches
the space of the valid Boolean functions to derive a bet-
ter combinational stochastic circuit. Our method is general
enough to implement any polynomial as long as it maps the
unit interval into the unit interval, a necessary condition for
a polynomial to be realized by a combinational stochastic
circuit [20]. The basic idea is to iteratively add cubes (i.e.,
product terms) into the on-set of a Boolean function. The
set of cubes added must satisfy specific constraints so that
the final Boolean function realizes the target function in SC.
Nevertheless, at each iteration, there exist many valid cubes
that can be selected. In order to synthesize a good solution,
we propose a heuristic breadth-first search algorithm to explore
the solution space.

In summary, the main contributions of this work are as
follows.
• We propose a new method that iteratively selects cubes

to construct a Boolean function for a target computation
in SC.

• We develop a heuristic breadth-first search algorithm to
search for a good solution.

• We propose a basic version of the algorithm that works
for any univariate function and an extended version that
works for any multivariate polynomials.

A preliminary version of this work was published in [21],
in which a branch-and-bound-based algorithm is used to
explore the solution space. Compared to that version, we
have three major improvements in this work. We introduce
a breadth-first search algorithm, which is much more runtime-
efficient than the previous algorithm. We extend our method
to handle arbitrary multivariate polynomials. We also modify
the algorithm so that it can synthesize a high-quality multi-
level circuit, even though the primary optimization target is a
two-level circuit.

The rest of the paper is organized as follows. In Section II,
we discuss the related works. In Section III, we give the
background on a general design of stochastic circuit, which is
the focus of this work. We also present the key optimization
problem in synthesizing stochastic circuits of that form. In
Section IV, we present our proposed solution based on cube
assignment. In Section V, we present extensions to handle

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 2

multivariate polynomials. In Section VI, we analyze the time
and space complexity of the proposed method. In Section VII,
we show the experimental results. Finally, in Section VIII, we
conclude the paper.

II. RELATED WORKS

Several previous works have proposed methods to synthe-
size stochastic circuits. These methods can be classified into
two types. The first type of methods synthesize reconfigurable
stochastic circuits [20], [22], [23], [14], [24]. These circuits
can be configured to implement different functions. In [20],
the authors proposed to synthesize a combinational circuit to
realize univariate polynomial computation. Their method first
transforms the target polynomial into a Bernstein polynomial
and then realizes it by a circuit consisting of an adder and
a multiplexer. The work [22] extended the method in [20] to
handle multivariate polynomials. In [23], [14], and [24], the
authors proposed methods to implement SC by sequential cir-
cuits. Their methods model a sequential circuit with stochastic
input bit streams as a Markov chain and exploit the steady state
probability distribution to synthesize the target computation.

The second type of methods synthesize fixed stochastic
circuits [25], [15], [19], [16], [17], [18], [26]. The synthesized
circuit can implement only one specific function. Compared to
reconfigurable stochastic circuits, fixed circuits take less area.
The works [17], [26], [19] proposed methods for special type
of target functions. In [17], the authors proposed a method to
synthesize stochastic circuits for arithmetic functions. Their
method implements the Maclaurin series expansion of a
target function. It first factorizes the polynomial and then
realizes each factor by a series of NAND gates. However,
the restrictions of this method include that the coefficients
of a factor should be alternately positive and negative and
that their magnitudes should be monotonically decreasing.
In [26], the authors proposed a double-NAND structure for
realizing polynomial functions. However, the method can only
synthesize polynomials with positive coefficients. In [19],
the authors showed that different Boolean functions could
compute the same arithmetic function in SC. They introduced
the concept of stochastic equivalence class and proposed a
method to search for the optimal Boolean function within an
equivalence class. However, their method can only synthesize
multi-linear polynomials.

The works [18], [25], [15], [16] proposed methods to
synthesize fixed stochastic circuits for general polynomials.
It should be noted that our work also falls into this category.
The method in [18] is based on factorizing the polynomial into
first-order and second-order factors and implementing each
factor by a stochastic circuit. However, for some second-order
factors, a stochastic implementation requires a costly stochas-
tic subtractor. In [25], the authors established a fundamental
relation between stochastic circuits and spectral transform.
They proposed a general method to synthesize stochastic
circuits through this relation. The work [15] further extends the
work [25] by proposing a method to optimize the sub-circuit
that provides stochastic bit streams of constant probabilities,
which are needed in the stochastic implementation. In [16], the
authors designed a general combinational stochastic circuit to
realize arithmetic computation. Their work also described a
method to synthesize a low-cost stochastic circuit. However,
as we mentioned in Section I, these methods directly construct
a solution within the solution space without paying effort to
search for a better solution.

III. BACKGROUND ON SYNTHESIZING STOCHASTIC
CIRCUITS

Our proposed method is based on a general form of stochas-
tic circuit proposed in [16]. In this section, we introduce this
general form and discuss the key optimization problem in
synthesizing a target function. In what follows, when we say
the probability of a signal, we mean the probability of the
signal to be a one.

A. General Stochastic Circuit and Its Computation
A general form of a stochastic circuit is shown in Fig. 2.

It is a combinational circuit. The inputs of the circuit can be
partitioned into k+1 sets. The inputs in the i-th (1 ≤ i ≤ k) set
are Xi,1, . . . , Xi,di

. The last set of inputs are Y1, . . . , Ym. The
stochastic bit streams fed into these inputs are independent.
For each 1 ≤ i ≤ k, the probabilities of the bit streams
to inputs Xi,1, . . . , Xi,di

are all set as a variable probability
0 ≤ xi ≤ 1. The inputs Y1, . . ., Ym are all supplied
with stochastic bit streams with constant probabilities 0.5. As
will be shown shortly, these input streams of 0.5 probability
are used to realize different constant coefficients of a target
polynomial. Some previous works [2], [17], [26] assume
the availability of arbitrary constant probabilities. However,
different from conventional binary computing, in SC, the
generation of constant probabilities requires additional circuits.
Typically, a constant probability generator includes unbiased
random bit sources that generate 0.5 probabilities (e.g., the
DFFs in a linear feedback shift register (LFSR) [27]) and an
additional circuit that converts the 0.5 probabilities into the
final probability (e.g., a comparator [2]). In this sense, 0.5
probabilities are the ultimate constant input probabilities and
hence, we assume the inputs Yi’s are provided with these 0.5
probabilities. Furthermore, this choice eliminates the boundary
between the stochastic datapath and the constant probability
generators and hence, allows a larger optimization space. The
number of these inputs of 0.5 probability, m, affects the
quantization error and is chosen according to the precision
requirement on the coefficients of the target polynomial. For
example, if the coefficients of the polynomial should have a
precision of 1/28, then m is chosen as 8. The larger the value
m is, the smaller the quantization error will be. Therefore, we
refer to m as the precision parameter.

Combinational
Logic

...
X1,1 (prob= x1)

...

X1,d1
(prob= x1)

...
Xk,1 (prob= xk)

Xk,dk
(prob= xk)

...
Y1 (prob= 1/2)

Ym (prob= 1/2)

F

(prob= f(x1, . . . , xn))

Fig. 2: A general form of a stochastic circuit.

Suppose the Boolean function of
the combinational circuit in Fig. 2 is
B(X1,1, . . . , X1,d1 , . . . , Xk,1, . . . , Xk,dk

, Y1, . . . , Ym). Now,
we analyze the function realized by the stochastic circuit,
which is encoded by the output stochastic bit stream.

For simplicity, we define n =
∑k

i=1 di. First, we introduce
the following two definitions.

Definition 1. For any 0 ≤ s1 ≤ d1, . . . , 0 ≤ sk ≤ dk, we
define the set

M(s1, . . . , sk) = {(a1,1, . . . , ak,dk
, b1, . . . , bm) ∈ {0, 1}n+m :

di∑
j=1

ai,j = si, for all i = 1, . . . , k}.

Definition 2. For a Boolean function B, its on-set, denoted as
On(B), is the set of input vectors that let the Boolean function
evaluate to 1.

Consider any input vector (a1,1, . . . , ak,dk
, b1, . . . , bm) ∈

{0, 1}n+m. Suppose it is in a set M(s1, . . . , sk).
The probability that the random input vector
(X1,1, . . . Xk,dk

, Y1, . . . , Ym) = (a1,1, . . . , ak,dk
, b1, . . . , bm)

is
k∏

i=1

di∏
j=1

Pr(Xi,j = ai,j) ·
m∏
i=1

P (Yi = bi). (1)

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 3

By the probability configuration, for any 1 ≤ i ≤ k and
1 ≤ j ≤ di, Pr(Xi,j = 1) = xi and Pr(Xi,j = 0) =
1 − xi; for any 1 ≤ i ≤ m, Pr(Yi = 1) = Pr(Yi = 0) =
0.5. Furthermore, since

∑di

j=1 ai,j = si, the probability value
shown in Eq. (1) is equal to

1

2m

k∏
i=1

xsii (1− xi)di−si .

The above analysis indicates that for any two input vectors
in the same set M(s1, . . . , sk), the probability of a random
input vector equal to the first is same as the probability of
a random input vector equal to the second. In contrast, for
any two input vectors in two different sets M(s1, . . . , sk),
the probability of a random input vector equal to the first is
different from the probability of a random input vector equal
to the second. Therefore, the sets M(s1, . . . , sk) form a set
of equivalence classes over {0, 1}n+m. The cardinality of the
set M(s1, . . . , sk) is 2m

∏k
i=1

(
di

si

)
.

The output function f(x1, . . . , xk) of the stochastic circuit
is the probability that B(X1,1, . . . , Xk,dk

, Y1, . . . , Ym) = 1,
given that the input vector (X1,1, . . . , Xk,dk

, Y1, . . . , Ym) is
random. We have
f(x1, . . . , xk) = Pr(B(X1,1, . . . , Xk,dk

, Y1, . . . , Ym) = 1)

=
∑

(a1,1,...,ak,dk
,

b1,...bm)∈On(B)

P ((X1,1,...,Xk,dk
,Y1,...,Ym)

=(a1,1,...,ak,dk
,b1,...,bm)) .

Since we can partition the on-set On(B) into subsets On(B)∩
M(0, . . . , 0), . . ., On(B) ∩M(d1, . . . , dk), we can represent
f(x1, . . . , xk) as

f(x1, . . . , xk)

=

d1∑
s1=0

· · ·
dk∑

sk=0

∑
(a1,1,...,ak,dk

,

b1,...bm)∈
On(B)∩M(s1,...,sk)

P ((X1,1,...,Xk,dk
,Y1,...,Ym)

=(a1,1,...,ak,dk
,b1,...,bm))

=

d1∑
s1=0

· · ·
dk∑

sk=0

|On(B)∩M(s1,...,sk)|
2m

k∏
i=1

xsii (1− xi)di−si ,

(2)

where |S| denotes the cardinality of the set S.

Example 1. Consider a combinational circuit with k = 2,
d1 = 2, d2 = 1, and m = 2. Suppose its Boolean function
is B(X1,1, X1,2, X2,1, Y1, Y2) = X1,1X1,2 Y1Y2 +X2,1Y1. By
definition,

M(1,1) = {(a1,1, a1,2, a2,1, b1, b2) ∈ {0, 1}5 :

a1,1 + a1,2 = 1, a2,1 = 1}
= {(1, 0, 1, b1, b2), (0, 1, 1, b1, b2) : (b1, b2) ∈ {0, 1}2}.

Therefore, we have

O(B) ∩M(1, 1) = {(1, 0, 1, 0, 1), (1, 0, 1, 1, 0), (1, 0, 1, 1, 1),
(0, 1, 1, 1, 0), (0, 1, 1, 1, 1)}.

and |O(B) ∩M(1, 1)| = 5. Similarly, we can obtain

|O(B) ∩M(0, 0)| = 0, |O(B) ∩M(0, 1)| = 2,

|O(B) ∩M(1, 0)| = 1, |O(B) ∩M(2, 0)| = 0,

|O(B) ∩M(2, 1)| = 2.

Therefore, the function realized by the stochastic circuit is

f(x1, x2) =
1

2
(1− x1)2x2 +

1

4
x1(1− x1)(1− x2)

+
5

4
x1(1− x1)x2 +

1

2
x21x2.

B. Synthesis of Arbitrary Target Function and the Key Opti-
mization Problem

Given a target arithmetic function on k variables x1, . . . , xk,
we first approximate it as a multivariate polynomial
f(x1, . . . , xk). As long as the multivariate polynomial eval-
uates inside the interval (0, 1) for all 0 ≤ x1 ≤ 1, . . .,
0 ≤ xk ≤ 1, we can apply a method proposed in [22] to
transform it into a multivariate Bernstein polynomial [28] with
all the coefficients in the unit interval of the following form

f1(x1, . . . , xk)

=

d1∑
s1=0

· · ·
dk∑

sk=0

αs1...sk

k∏
i=1

(
di
si

)
xsii (1− xi)di−si ,

(3)

where 0 ≤ αs1...sk ≤ 1 (0 ≤ s1 ≤ d1, . . . , 0 ≤ sk ≤ dk)
are the constant coefficients. As we will show shortly, our
method can realize any multivariate Bernstein polynomial with
all coefficients in the unit interval. Therefore, our method can
synthesize any multivariate polynomial that evaluates inside
(0, 1) for all 0 ≤ x1 ≤ 1, . . ., 0 ≤ xk ≤ 1. Note that since
SC encodes values by probabilities, a polynomial that can be
realized by a stochastic circuit must be in the interval [0, 1]
for all 0 ≤ x1 ≤ 1, . . ., 0 ≤ xk ≤ 1. Therefore, our method
can synthesize almost all polynomials that can be realized by
SC theoretically. For a polynomial that evaluates outside the
interval (0, 1) for some 0 ≤ x1 ≤ 1, . . . , 0 ≤ xk ≤ 1, we
cannot implement it by our method. To synthesize it, we need
to first perform an affine transformation to make it fall into
the valid range.

In what follows, we suppose that by applying the techniques
mentioned above, the original function is transformed into
a multivariate Bernstein polynomial with all coefficients in
the unit interval as shown in Eq. (3). For any 0 ≤ s1 ≤
d1, . . . , 0 ≤ sk ≤ dk, we let G(s1, . . . , sk) be an integer
rounded from the value

αs1...sk · 2m ·
k∏

i=1

(
di
si

)
.

Then, we have

G(s1, . . . , sk)

2m
≈ αs1...sk

k∏
i=1

(
di
si

)
.

and our target function is further approximated as

f2(x1, . . . , xk)

=

d1∑
s1=0

· · ·
dk∑

sk=0

G(s1, . . . , sk)

2m

k∏
i=1

xsii (1− xi)di−si .
(4)

Note that since αs1...sk is in the unit interval, G(s1, . . . , sk)
is an integer in the range [0, 2m

∏k
i=1

(
di

si

)
].

In summary, by applying the above sequence of transforma-
tions, the original target function is transformed into the one
shown in Eq. (4). Comparing Eq. (4) with Eq. (2), we find that
any function B satisfying that for all 0 ≤ s1 ≤ d1, . . . , 0 ≤
sk ≤ dk,

|On(B) ∩M(s1, . . . , sk)| = G(s1, . . . , sk)

will realize the given target function. In other words, if there
are G(s1, . . . , sk) vectors in the set M(s1, . . . , sk) that make

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 4

the Boolean function B evaluate to 1, then the Boolean func-
tion B realizes the target function in SC. However, there are a
large number of Boolean functions satisfying the requirement.
If we want to synthesize an optimal circuit, we need to find
an optimal Boolean function that satisfies the requirement. In
our work, we primarily focus on two-level circuits, and we
use the literal count in the sum-of-product (SOP) form as the
cost measure [29]. However, it is also possible to synthesize
a multi-level circuit from the obtained optimal SOP, which
is demonstrated to have a good quality by our experimental
results.

In summary, the optimization problem we consider is as
follows:

Given an integer m and
∏k

i=1(1 + di) integers
G(0, . . . , 0), . . . , G(d1, . . . , dk) such that
0 ≤ G(s1, . . . , sk) ≤ 2m

∏k
i=1

(
di

si

)
for all 0 ≤ s1 ≤ d1,

. . ., 0 ≤ sk ≤ dk, determine a Boolean function
B(X1,1, . . . , X1,d1

, . . . , Xk,1, . . . , Xk,dk
, Y1, . . . , Ym)

with minimal literal count satisfying that for all
0 ≤ s1 ≤ d1, . . . , 0 ≤ sk ≤ dk,

|On(B) ∩M(s1, . . . , sk)| = G(s1, . . . , sk).

To facilitate the solving of the optimization problem, we
represent a Boolean function in the solution space, B(X1,1 ,
. . . , Xk,dk

, Y1 , . . . , Ym), as a matrix, where the columns
represent the X-variables and the rows represent the Y -
variables. As an example, Fig. 3 shows such a matrix for
the Boolean function B(X1,1, X1,2, X1,3, Y1, Y2) = X1,1 Y1+
X1,2Y1+X1,1X1,3. For this case, k = 1, d1 = 3, and m = 2.

Y \X 000 001 010 011 100 101 110 111

00 1 1 1 1 1 1

01 1 1 1 1 1 1

10 1 1

11 1 1

Fig. 3: The matrix representation of the Boolean function
B(X1,1, X1,2, X1,3, Y1, Y2) = X1,1 Y1 +X1,2Y1 +X1,1X1,3.

To understand the problem under the matrix representation,
we first introduce the following set definition.

Definition 3. For any 0 ≤ s1 ≤ d1, . . . , 0 ≤ sk ≤ dk, we
define the set

I(s1, . . . , sk) = {(a1,1, . . . , ak,dk
) ∈ {0, 1}n :

di∑
j=1

ai,j = si, for all i = 1, . . . , k}.

With the matrix representation, the set M(s1, . . . , sk) is
composed of all the columns with their indices in the set
I(s1, . . . , sk). For simplicity, we say a column is in the set
I(s1, . . . , sk) if its index is in the set I(s1, . . . , sk). The
optimization problem is to distribute G(s1, . . . , sn) ones to the
columns in the set I(s1, . . . , sn), for all 0 ≤ s1 ≤ d1, . . . , 0 ≤
sk ≤ dk, to obtain an optimal Boolean function.

A method was proposed in the previous work [16] to find a
solution. It applies a simple heuristic strategy to distribute the
ones. However, this method only constructs a single solution
without paying any effort to explore the solution space. Thus,
the solution may be further improved. In our work, we propose
a search-based method to find a better solution.

Note that although the optimization problem has flexibility
in determining the final Boolean function, it is different from
the traditional logic minimization with don’t cares or Boolean
relation minimization problem [30]. The problem we consider

here specifies the number of input vectors of a set that
can be assigned into the on-set of the Boolean function.
However, neither logic minimization with don’t cares nor
Boolean relation minimization can constrain the number of
input vectors of a set that can be assigned into the on-set.
Therefore, new methods are needed to solve the optimization
problem.

IV. PROPOSED METHOD BY CUBE ASSIGNMENT

In this section, we present our proposed method by cube
assignment. For simplicity, we first explain how it works for
univariate polynomials, i.e., the cases where k = 1. We will
show the extensions to handle multivariate polynomials in
Section V. For univariate cases, the number n = d1, and the
d1 X-inputs X1,1 , X1,2 , . . . , X1,d1

are simply denoted as
X1, . . ., Xn.

A. Preliminaries
In this section, we first introduce some notations and

definitions which will be used later.
For univariate cases, there are (n + 1) M sets, namely

M(0), . . . ,M(n). We use a vector (V (0) , . . . ,V (n)) to rep-
resent the numbers of unassigned minterms for the (n + 1)
M sets, where V (i) records the number for the set M(i).
We call such a vector problem vector. Initially, the problem
vector is equal to (G(0) , . . . ,G(n)), given by the problem
specification. As cubes are added into the on-set, the entries
in the problem vector will be reduced. Eventually, when all the
minterms have been decided, the problem vector will become
a zero vector.

We can also represent a cube by a vector [C(0), . . . , C(n)]
of length (n + 1), where C(i) (0 ≤ i ≤ n) represents the
number of minterms of the cube in the set M(i). We call
such a vector cube vector. Note that in order to distinguish
it from the problem vector, we represent the cube vector by
square brackets. For example, assume that n = 2 and m = 1.
The cube X1 contains four minterms (a1, a2, b1) = (1, 0, 0),
(1, 0, 1), (1, 1, 0), and (1, 1, 1), as shown in Fig. 4a. The
minterms (1, 0, 0) and (1, 0, 1) are in the set M(1), the
minterms (1, 1, 0) and (1, 1, 1) are in the set M(2), and there
are no minterms of the cube X1 in the set M(0). Therefore,
the vector for the cube X1 is [0, 2, 2]. Note that although each
cube has a unique cube vector, a cube vector may correspond
to several different cubes. For example, the cube X2, as shown
in Fig. 4b, has the same cube vector as the cube X1.

Y1\X1X2 00 01 10 11
0 1 1
1 1 1

(a) Cube X1

Y1\X1X2 00 01 10 11
0 1 1
1 1 1

(b) Cube X2

Fig. 4: Two different cubes of the same cube vector [0, 2, 2].

Our approach splits the problem vector into a set of cube
vectors. In order to do this, it is important to study the valid
form of a cube vector. We have the following claim.

Theorem 1. Suppose a cube C is composed of u uncom-
plemented X-variables, c complemented X-variables, and l
Y -variables, where 0 ≤ u, c ≤ n, u+ c ≤ n, and 0 ≤ l ≤ m,
then the cube vector is of the form

2m−l ×
[
0, . . . , 0,

(
r

0

)
,

(
r

1

)
, . . . ,

(
r

r

)
, 0, . . . , 0

]
,

where 0 ≤ r = n−u−c ≤ n and the cube vector has u zeros
at the beginning and c zeros at the end.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 5

Proof. Consider the matrix representation of the cube. Since
there are l Y -variables in the cube, the number of missing
Y -variables is m − l. Thus, the cube covers 2m−l rows and
all these rows cover the same set of columns. Therefore, we
only need to show that for each row, it contains 0 items in the
set M(i) for any 0 ≤ i < u and n − c < i ≤ n, and

(
r

i−u
)

items in the set M(i) for any u ≤ i ≤ n− c.
Now, we consider the sub-cube CX which is composed of

all the X-variables of the cube C. Let Sn be the set of vectors
(a1, . . . , an) ∈ {0, 1}n that are contained in the sub-cube CX .
Since the number of uncomplemented X-variables in CX is
u and the number of missing X-variables is r = n − u − c,
we have that for any i = 0 , . . . , r, there are

(
r
i

)
vectors

(a1, . . . , an) ∈ Sn satisfying that
∑n

i=1 ai = u + i. For
any 0 ≤ i < u or n − c < i ≤ n, there are no vectors
(a1, . . . , an) ∈ Sn satisfying that

∑n
i=1 ai = i. Therefore, the

above claim on each row in the matrix representation of the
cube C is proved.

Example 2. Assume that n = 3 and m = 2. The cube
X1Y1 contains 8 minterms (a1, a2, a3, b1, b2) = (1, 0, 0, 1, 0),
(1, 0, 0, 1, 1), (1, 0, 1, 1, 0), (1, 0, 1, 1, 1), (1, 1, 0, 1, 0),
(1, 1, 0, 1, 1), (1, 1, 1, 1, 0), and (1, 1, 1, 1, 1), By definition,
its cube vector is [0, 2, 4, 2]. For this cube, the number
of uncomplemented X-variables is 1, the number of
complemented X-variables is 0, and the number of Y -
variables is l = 1. By Theorem 1, the cube vector is
22−1 × [0,

(
2
0

)
,
(
2
1

)
,
(
2
2

)
], which is the same as that obtained

by definition.

B. The Basic Idea
The idea of our proposed method is to add cubes into the

on-set of the Boolean function iteratively. Each time a cube
is added, the number of unassigned minterms in the related
M sets will be reduced. Hence, the corresponding entries in
the problem vector will be reduced. Eventually, the problem
vector becomes a zero vector, and the Boolean function is
constructed.

In general situations, adding an arbitrary cube to the on-set
may cause intersection with the existing cubes in the on-set.
However, in our method, we restrict that the cubes added in
different iterations should be disjoint to each other. In this way,
a cube added later does not contain any minterms belonging
to cubes added before, and we can simply subtract the cube
vector from the problem vector to update it after assigning
a cube. We call this restriction disjointness constraint. Be-
sides the benefit of updating the problem vector easily, this
restriction also eliminates many redundant cases. For example,
adding two non-disjoint cubes X1 and X2 is equivalent to
adding two disjoint cubes X1 and X1X2. With disjointness
constraint, only the latter situation is valid. Note that although
the Boolean function is constructed by adding disjoint cubes,
the final Boolean function will be further simplified by the
two-level logic optimization tool ESPRESSO [31]. Thus, the
final result is a set of non-disjoint cubes corresponding to a
minimum SOP expression.

Our method picks one cube at each iteration. Since we
will subtract the cube vector from the problem vector, we
require that each entry in the cube vector for the cube should
be no larger than the corresponding entry in the current
problem vector. This constraint is called capacity constraint.
If a cube satisfies both the disjointness constraint and the
capacity constraint, we say the cube is valid.

In each iteration, we apply a greedy strategy to choose the
cube to be added. We choose the largest cube among all valid
cubes. One reason for this is that larger cubes have fewer
literals. Since our primary goal is to minimize the literal count,
we want to pick those largest cubes at the beginning, instead of
expanding smaller cubes to larger ones by later added cubes.
Another reason is that if we pick the largest cube in each

iteration, the problem vector will be reduced to zero vector
much faster, reducing the number of iterations.

It takes two steps to determine a cube to be added. First,
we select the possible cube vectors for the largest cubes. The
details will be discussed in Section IV-C. Second, we obtain
the cubes for the candidate cube vectors. The details will be
discussed in Section IV-D. Since there may exist multiple
largest valid cubes at each iteration, therefore, even though we
only consider the largest cubes, the potential solution space
is still very large. We apply a heuristic breadth-first search
method to find a good solution, which will be discussed in
Section IV-E. Finally, given the runtime concern, we discuss
a few speed-up techniques in Section IV-F.

It should be noted that the feasible solution space of the
optimization problem is extremely large. Thus, it is computa-
tionally intractable to obtain an exact optimal solution. Nev-
ertheless, the proposed method strives to explore a promising
subset of the entire solution space to derive a good solution
within a reasonable amount of time.

C. Determining the Cube Vector for the Largest Valid Cubes
Suppose that at the beginning of one iteration, the problem

vector is (V (0) , . . . , V (n)). Let s be the sum of all the entries
in the problem vector, i.e., s =

∑n
i=0 V (i). Let q = blog2 sc.

Since the largest valid cubes satisfy the capacity constraint,
they contain at most 2q minterms. Our method to find the
largest valid cubes begins by checking whether there exist
valid cubes with 2q minterms.

Based on Theorem 1, the cube vector should be of the form
2m−l × [0, , . . . , 0 ,

(
r
0

)
,
(
r
1

)
, . . . ,

(
r
r

)
, 0 , . . . , 0], where 0 ≤

r ≤ n, 0 ≤ l ≤ m, and the vector has 0 ≤ u ≤ n− r zeros at
the beginning. Moreover, we require that m−l+r = q, because
the cube consists of 2q minterms. Our method will examine
all cube vectors that satisfy the above constraints on r, l, and
u, and keep those which also satisfy the capacity constraint.
For the kept cube vectors, we will find the corresponding cube
assignments that satisfy the disjointness constraint. The details
of how to check the existence of such a cube will be illustrated
in Section IV-D. Such a cube is a largest valid cube. The
following is an example of selecting a largest valid cube.

Example 3. Suppose in a univariate case, n = 2, m = 2,
and the initial problem vector is (2, 5, 2). The sum of all
the entries in the vector is 9. Thus, the maximum size of the
valid cube is 8. We first check whether there exists any valid
cube with 8 minterms. The cube vector for the cube should
be 2m−l × [0, , . . . , 0 ,

(
r
0

)
,
(
r
1

)
, . . . ,

(
r
r

)
, 0 , . . . , 0], where

0 ≤ r ≤ 2, 0 ≤ l ≤ 2, 2 − l + r = 3, and the vector has
0 ≤ u ≤ 2−r zeros at the beginning. Given the requirements,
we have (l, r, u) = (0, 1, 0), (0, 1, 1), or (1, 2, 0). As a result,
the possible cube vectors are [4, 4, 0], [0, 4, 4], and [2, 4, 2].
Although we have three cube vectors of size 8, only the cube
vector [2, 4, 2] satisfies the capacity constraint. Therefore, we
will keep this vector and further find the corresponding cube
assignments satisfying the disjointness constraint. Since we
assume that (2, 5, 2) is the initial problem vector, there are
no cubes assigned yet. Thus, any cube assignment with the
cube vector as [2, 4, 2] satisfies the disjointness constraint. For
example, we can choose the cube as Y1. It is one of the largest
valid cubes.

However, in some situations, it is impossible to find a valid
cube with 2q minterms, because all cubes of size 2q violate
either the capacity constraint or the disjointness constraint. The
following shows an example.

Example 4. Suppose in a univariate case, n = 2, m = 3,
and the initial problem vector is (1, 6, 2). The sum of all the
entries in the vector is 9. Theoretically, the largest cube could
have 8 minterms. The possible cube vectors of 8 minterms
are [0, 0, 8], [0, 8, 0], [8, 0, 0], [0, 4, 4], [4, 4, 0], and [2, 4, 2].

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 6

However, none of these vectors satisfy the capacity constraint.
Thus, there is no valid cube of size 8.

If there exists no valid cube with 2q minterms, our method
will continue to check for smaller cubes. It will reduce the
minterm number by half, and check whether there exists a
valid cube with 2q−1 minterms. This procedure will be re-
peated until a valid cube with 2i minterms for some 0 ≤ i ≤ q
is found. This cube is a largest valid cube. In the worst case,
the size of the cube is reduced to one. Since we can always
find a valid cube of size 1, the procedure is guaranteed to
terminate at some point.

We should note that in general cases, there could be more
than one valid cube with the largest size. One reason is that
there are more than one cube vector that satisfies the capacity
constraint. Another reason is that for a specific cube vector,
there could be multiple ways to assign the minterms. The
following is an example.

Example 5. Suppose in a univariate case, n = 2, m = 3,
and the initial problem vector is (4, 8, 3). The largest possible
cube has 8 minterms. The cube vectors of size 8 that satisfy
the capacity constraint are [0, 8, 0], [4, 4, 0], and [2, 4, 2].
Moreover, since (4, 8, 3) is the initial problem vector, all
the cubes with these cube vectors satisfy the disjointness
constraint. For example, both the cubes X1X2 and X1X2 with
the cube vector as [0, 8, 0] are valid.

When there are more than one choice for the largest valid
cube, we want to evaluate them and choose the best one. In
Section IV-E, we will discuss an algorithm to traverse these
choices and obtain a good choice.

D. Obtaining Cubes for a Cube Vector
To obtain a largest valid cube, we further need to construct

a cube for a candidate cube vector. We require the cube to
satisfy the disjointness constraint. Since a cube is composed
of X-variables and Y -variables, our procedure is divided into
two steps: determining the sub-cube composed of X-variables
and determining the sub-cube composed of Y -variables. For
simplicity, we call them X-cube and Y -cube, respectively.

The X-cube is determined from the pattern of the cube
vector. As shown in Theorem 1, if the vector is of the form
2m−l× [0 , . . . , 0 ,

(
r
0

)
,
(
r
1

)
, . . . ,

(
r
r

)
, 0 , . . . , 0], where there

are u zeros at the beginning and c zeros at the end, then the
X-cube is composed of u uncomplemented X-variables and
c complemented X-variables.

Example 6. Suppose in a univariate case, n = 3 and we want
to assign a cube for a potential cube vector [0, 2, 2, 0]. Since
it has one zero at the beginning and one zero at the end, by
Theorem 1, its X-cube should contain one uncomplemented
X-variable and one complemented X-variable. Thus, the X-
cube could be one of X1X2, X1X3, X1X2, X2X3, X1X3,
and X2X3.

Next, for each candidate X-cube, we determine its associ-
ated Y -cube so that the cube obtained by ANDing the X-cube
and Y -cube is disjoint to any of the cubes already added into
the on-set. In the matrix representation, an X-cube specifies
a set of columns and a Y -cube specifies a set of rows. The
number of rows associated with the Y -cube is 2m−l. In order
for the combination of the X-cube and the Y -cube to satisfy
the disjointness requirement, the intersections of the rows
associated with the Y -cube and the columns associated with
the X-cube should all be 0. In other words, no minterms have
been assigned to these intersections. Therefore, the Y -cube can
only cover those rows that contain no ones at the intersections
with the columns specified by the given X-cube.

Example 7. Consider the case shown in Example 6, in which
we want to assign a cube for the cube vector [0, 2, 2, 0]. We
further assume that m = 3 and that 12 minterms have already

Y \X 000 001 010 011 100 101 110 111

000 1 1 1 1

001 1 1 1 1

010 1 1

011 1 1

100

101

110

111

Fig. 5: Matrix representation for a univariate problem with n = 3
and m = 3.

been assigned as shown in Fig. 5. Suppose we are considering
the X-cube X1X3, which covers columns 001 and 011. Given
the minterm assignment shown in the matrix, the possible rows
that the Y -cube can cover are rows 100, 101, 110, and 111.

The set of candidate rows that the Y -cube can cover can be
represented as a Boolean function F , which includes all the
minterms representing the candidate rows. For the situation
shown in Example 7, the candidate rows form the Boolean
function F = Y1. In order to obtain a valid Y -cube, we only
need to find a cube of size 2m−l that is covered by the Boolean
function F .

In our implementation, we use ESPRESSO [31] to get
such a cube. We apply ESPRESSO to simplify the SOP F
constructed from the candidate rows for the Y -cube. If the
size of the largest cube in the simplified SOP is smaller than
2m−l, then it means the largest cube covered by the Boolean
function F has a size smaller than 2m−l and hence, we cannot
assign a Y -cube for the given X-cube. Otherwise, there exists
a valid Y -cube. Indeed, in most cases, the valid Y -cube is not
unique. If we consider all the valid Y -cubes, we will obtain
many largest valid cubes. To reduce the number of choices,
in our implementation, we only pick one cube of size 2m−l

contained within the largest cubes returned by ESPRESSO.
The cube we select is composed of the first 2m−l minterms
of the largest cube.

E. Heuristic Breadth-First Search
As we discussed before, our method will choose the largest

cube at each iteration. In many cases, there may exist multiple
choices. However, among these choices, we cannot immedi-
ately know which one will lead to an expression with the least
literals. Thus we will keep all of the choices and expand from
them. This process will lead to a solution tree. An example of
a solution tree for a univariate polynomial is shown in Fig. 6.
The initial problem vector is (4, 8, 2). For simplicity, we use
a cube vector to represent a cube and we only distinguish
branches by the different cube vectors that can be derived
from each node. Each leaf of the solution tree corresponds to
a final solution, represented by a set of cubes. Each internal
node stores the remaining problem vector and a partial solution
composed of a set of assigned cubes. The root node contains
only the initial problem vector. At each internal node, the
multiple choices of the largest valid cubes lead to multiple
branches from the node.

In order to traverse the solution tree to obtain a good
solution, we apply a breadth-first search. However, due to the
exponential increase of the number of nodes with the level,
our method does not expand all the nodes at each level. In
contrast, it only expands a small set of local minimal nodes
at each level.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 7

(4, 8, 2)

[4, 4, 0] + (0, 4, 2)

[4, 4, 0]
+[0, 4, 0]
+(0, 0, 2)

[4, 4, 0]
+[0, 4, 0]
+[0, 0, 2]

[4, 4, 0]
+[0, 2, 2]
+(0, 2, 0)

[4, 4, 0]
+[0, 2, 2]
+[0, 2, 0]

[2, 4, 2] + (2, 4, 0)

[2, 4, 2]
+[2, 2, 0]
+(0, 2, 0)

[2, 4, 2]
+[2, 2, 0]
+[0, 2, 0]

[2, 4, 2]
+[0, 4, 0]
+(2, 0, 0)

[2, 4, 2]
+[0, 4, 0]
+[2, 0, 0]

Fig. 6: An illustration of the solution tree for a univariate problem
with the initial problem vector (4, 8, 2) and m = 2.

As we just mentioned, each node in the solution tree may
produce multiple branches, each corresponding to a largest
valid cube that can be extracted from the remaining problem
vector of the node, given the partial solution stored at that
node. However, for different nodes at the same level, their
largest valid cubes could have different sizes. In our proposed
algorithm, for the next level, we only keep those nodes such
that their newly added cubes are the largest among all the
newly added cubes. For example, suppose that at the current
level, we have three nodes N1, N2, and N3. N1 will branch to
two nodes M1 and M2, each with a newly added cube of size
8. N2 will branch to three nodes M3, M4, and M5, each with
a newly added cube of size 4. N3 will branch to two nodes
M6 and M7, each with a newly added cube of size 8. Then,
at the next level, we will keep the nodes M1, M2, M6, and
M7.

We only keep this set of nodes at the next level because
for these nodes, the unassigned minterms are the fewest. For
the previous example, suppose that the numbers of remaining
minterms for the nodes N1, N2, and N3 are 18. Then, for
the nodes M1, M2, M6, and M7, their numbers of remaining
minterms are all 10, while for the nodes M3, M4, and M5,
their numbers of remaining minterms are all 14. Moreover,
by our procedure, the cubes added later are no larger than the
ones added before. Since the largest cubes that can be extracted
from the node N2 are of size 4, this means the largest cubes
that can be further extracted from M3, M4, or M5 have a
size at most 4. However, the largest cubes that can be further
extracted from the nodes M1, M2, M6, and M7 could have a
size of 8. Given this, the numbers of cubes in the final solutions
from the nodes M1, M2, M6, or M7 are likely to be fewer
than those in the final solutions from the nodes M3, M4, or
M5, and hence, the final solutions from the former are likely
to have fewer literals than those from the latter.

Suppose the set of nodes at the next level with the largest
added cubes is S. To further remove the unpromising candi-
dates, we do a second round of filtering on the nodes in the
set S. The criterion we use is the literal count of the partial
solution formed by the set of assigned cubes at the node. For
example, for the node [4, 4, 0] + [0, 4, 0] + (0, 0, 2) in Fig. 6,
its set of assigned cubes includes two cubes with cube vectors
as [4, 4, 0] and [0, 4, 0], respectively. Then, we use the literal
count of the partial solution formed by these two cubes as the
filtering criterion. The literal count is obtained by ESPRESSO.

The second round of filtering works as follows. Assume that
among all the nodes in the set S, the fewest literal count of the
partial solution is min. Then, we only keep the nodes whose
partial solutions have the literal counts less than or equal to
min+ w, where w is a non-negative integer. Here, we apply
a heuristic that a better partial solution is likely to lead to
a better final solution. Therefore, we only keep nodes such
that the literal counts for their partial solutions are close to
the minimal value. Note that we do not just keep the nodes
with the optimal partial solutions, i.e., the nodes such that the

literal counts for the partial solutions are min, because it is
possible that a better final solution is reached from a node
with a suboptimal partial solution. By changing the value of
w, we can trade off solution quality with runtime.

Algorithm 1 shows the proposed heuristic breadth-first
search algorithm. It takes as inputs a problem vector v, a
precision parameter m, and an optimization objective obj. The
optimization objective can be anything that the user wants to
optimize, not just restricted to the literal count of an SOP.
For example, the objective can be set as the area, delay, or
area-delay product of a multi-level circuit. Then, the algorithm
will return a multi-level circuit which minimizes the specified
objective.

The vector V ec in the algorithm stores all the candidate
nodes at one level that are to be expanded next. Each node N
has two entries: N.cubeV ec, recording the remaining problem
vector at the node N , and N.cubeSet, recording the set of
assigned cubes at the node N .

The initial vector only contains a single node N with
N.cubeV ec as the input problem vector and N.cubeSet empty
(Lines 1–2). While the remaining cube vector of the first node
in V ec is not zero, the algorithm will obtain all the candidate
nodes for the next level (Lines 3–14). For each candidate node
N at the current level, the algorithm calls the findCubes
function to extract a set L of largest cubes from the node N
(Line 6). The function findCubes realizes the idea discussed
in Sections IV-C and IV-D; we will discuss the details of
findCubes shortly. Then, for each cube C in the set L,
a new node Nnew is created by including the cube C into
the current partial solution at the node N (Lines 8–9). The
new node Nnew is added into a vector V ecnew, which stores
all the potential nodes for the next level (Line 10). Finally,
the function filter is called to obtain the set of candidate
nodes for the next level that are to be expanded; the obtained
set is assigned to V ec again (Line 13). The function filter
implements the selection criteria we mentioned above: first, it
only keeps the nodes such that their newly added cubes are the
largest among all the newly added cubes, and then, it keeps
the nodes such that the literal counts for their partial solutions
are in the interval [min,min+ w].

Finally, when the loop terminates, the function getBest
is called to choose the best Boolean function from all the
nodes in V ec based on the specified optimization objective
obj (Line 15).

Algorithm 1 The heuristic breadth-first search algorithm to find a
good Boolean function.

Input: problem vector v = (G(0), . . . , G(n)), an integer m, and an
optimization objective obj.

Output: the final Boolean function B.
1: initialize a node N : N.cubeV ec⇐ v; N.cubeSet⇐ ∅;
2: add the node N into an empty vector V ec;
3: while V ec[0].cubeV ec 6= 0 do
4: Vector V ecnew ⇐ ∅;
5: for each node N in V ec do
6: cube set L⇐ findCubes(N,m);
7: for each cube C in L do
8: Nnew.cubeV ec⇐ N.cubeV ec− cubeV ec(C);
9: Nnew.cubeSet⇐ N.cubeSet ∪ C;

10: add the node Nnew into V ecnew;
11: end for
12: end for
13: V ec⇐ filter(V ecnew);
14: end while
15: return getBest(V ec, obj);

One important function in our proposed algorithm is
findCubes. It implements the proposed techniques discussed
in Sections IV-C and IV-D to extract a set of largest valid
cubes from a given node N . Algorithm 2 shows the details of

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 8

this function. Specifically, it initializes an empty set L at the
beginning (Line 1). This set will eventually store the largest
valid cubes. Then, the procedure obtains a value q so that
2q is the maximal possible size of a valid cube (Line 2).
Then, it enters into a loop to decide a set of largest valid
cubes (Lines 3–15). In each iteration, it first decides a set
S of cube vectors of 2q minterms that satisfy the capacity
constraint specified by N.cubeV ec (Line 4). If the set S is not
empty, then for each vector in the set S, it calls the function
cubesFromV ector to derive a set of cubes of cube vector
V that are disjoint to the partial assignment N.cubeSet, and
adds that set to the set L (Lines 5–9). The detailed flow of the
function cubesFromV ector is shown in Algorithm 3, which
implements the procedure described in Section IV-D. After all
the vectors in the set S are visited, if the set L is not empty,
then its stores a set of largest valid cubes and we simply return
the set L (Line 11). Otherwise, the value q is decremented by
1 (Line 13), to further search for valid cubes of size 2q−1 in
the next iteration.

Algorithm 2 The procedure findCubes.

Input: a node N and an integer m.
Output: a set of largest valid cubes that can be extracted from the

node N .
1: L⇐ φ;
2: q ⇐ blog2 sum(N.cubeV ec)c;
3: while true do
4: obtain the set S of cube vectors of 2q minterms that satisfy

the capacity constraint specified by N.cubeV ec;
5: if S is not empty then
6: for each cube vector V in S do
7: L⇐ L ∪ cubesFromV ector(N,m, V);
8: end for
9: end if

10: if L is not empty then
11: return L;
12: else
13: q ⇐ q − 1;
14: end if
15: end while

Algorithm 3 The procedure cubesFromV ector.

Input: a node N , an integer m, and a cube vector V .
Output: a set of cubes of cube vector V that are disjoint to the

partial assignment N.cubeSet.
1: L⇐ φ;
2: let u and c be the numbers of zeros at the beginning and the end

of the vector V , respectively;
3: let 2m−l be the multiplying factor of the vector V ;
4: for each X-cube CX with u uncomplemented and c comple-

mented X-variables do
5: if there exists a Y -cube CY of size 2m−l such that the cube

CX ·CY is disjoint to the partial assignment N.cubeSet then
6: find one such Y -cube CY ;
7: add the cube CX · CY into the set L;
8: end if
9: end for

10: return L;

F. Speed-up Techniques
Although the heuristic breadth-first search algorithm re-

moves some unpromising nodes in the solution tree from
further expansion, there are still too many nodes to process
as the degree of the polynomial increases, which increases the
runtime considerably. In this section, we present two speed-up
techniques.

1) Removing Nodes with Duplicated Cube Sets: For a node
in the solution tree, even though the sum of all entries in its
problem vector is in the interval [2q, 2q+1− 1], the size of the
largest valid cubes may not be 2q . Example 4 shows such a
case. If this happens, we may add in sequence multiple cubes
of the same size of 2u, where u < q is an integer. In the
original algorithm, different orders in which these cubes are
added will produce different branches in the solution tree, but
in most cases, these different branches will eventually lead to
the same final result.

Example 8. Consider the case shown in Example 4. Although
the sum of all entries in the problem vector is 9 ∈ [8, 15], we
cannot extract a valid cube of size 8 from the initial problem
vector. As a result, the largest valid cubes contain 4 minterms.
The associated cube vector is either [1, 2, 1] or [0, 4, 0]. In
the original algorithm, if the first assigned cube is obtained
from the cube vector [1, 2, 1], then the second one will be
obtained from [0, 4, 0]. On the other hand, if the first assigned
cube is obtained from [0, 4, 0], then the second one will be
obtained from [1, 2, 1]. Thus, there will be two branches in the
solution tree. However, these two branches will produce the
same results.

These different branches caused by different orders in
selecting the cubes are unnecessary to be explored again. To
remove them, we keep track of the sets of cube vectors that we
have already processed. If the set of cube vectors at the current
node has been examined before, the node will be discarded.

2) Limiting the Number of X-cubes: As we mentioned in
Section IV-D, to construct a cube for a potential cube vector,
we will first enumerate all the X-cubes for that cube vector.
However, when we extract the largest cubes from the root
node in the solution tree, we do not need to enumerate all the
X-cubes for a valid cube vector. We only need to choose one
X-cube for the cube vector. The reason is that at this moment,
we have not selected any cubes yet. Since two X-cubes for
the same cube vector have the same numbers of complemented
and uncomplemented X-variables, they are equivalent under
the permutation of the X-variables.

However, when we extract the largest cubes from the later
nodes in the solution tree, we have to enumerate all the X-
cubes for a given cube vector. Although these X-cubes by
themselves are equivalent under the permutation of the X-
variables, when they are combined with the already selected
cubes, they form different Boolean functions even if variable
permutation is considered. Nevertheless, in our implementa-
tion, in order to reduce the runtime, we do not enumerate
all the X-cubes. Instead, we keep h of them. The larger the
value of h we choose, the more nodes in the solution tree are
explored and hence, the better the final result is. However, this
increases runtime. Therefore, by changing the value of h, we
can trade off solution quality with runtime.

V. SYNTHESIS OF MULTIVARIATE POLYNOMIALS

In Section IV, we describe the proposed method for uni-
variate polynomials. In this section, we present extensions to
handle arbitrary multivariate polynomials.

The procedure to synthesize Boolean function for multivari-
ate polynomials is the same as that for univariate polynomials.
However, the form of a cube vector and the way to determine
the valid cube vectors for a problem vector are different. In the
remaining of this section, we describe these major differences
and some associated changes.

For multivariate cases, the problem vector is defined as
(V (0, . . . , 0), . . . , V (d1, . . . , dk)), where for any 0 ≤ s1 ≤
d1, . . . , 0 ≤ sk ≤ dk, V (s1, . . . , sk) represents the number
of unassigned minterms in the set M(s1, . . . , sk). The cube
vector is defined as [C(0, . . . , 0), . . . , C(d1, . . . , dk)], where
for any 0 ≤ s1 ≤ d1, . . . , 0 ≤ sk ≤ dk, C(s1, . . . , sk)
represents the number of minterms of the cube that are in
the set M(s1, . . . , sk).

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 9

First, we have the following theorem on the form of a cube
vector.

Theorem 2. Suppose a cube C is a product of (k + 1)
sub-cubes CX1

, . . . , CXk
, CY . For 1 ≤ i ≤ k, the sub-cube

CXi
is composed of ui uncomplemented Xi,·-variables and

ci complemented Xi,·-variables, where 0 ≤ ui, ci ≤ di and
ui + ci ≤ di. The sub-cube CY is composed of l Y -variables,
where 0 ≤ l ≤ m. For each 1 ≤ i ≤ k, define a vector
[Ci(0), Ci(1), . . . , Ci(di)] such that for any 0 ≤ j < ui or
di − ci < j ≤ di, Ci(j) = 0 and for any ui ≤ j ≤ di − ci,
Ci(j) =

(
di−ui−ci

j−ui

)
. Then, for any 0 ≤ s1 ≤ d1, . . . , 0 ≤

sk ≤ dk, C(s1, . . . , sk) = 2m−l
∏k

i=1 Ci(si).

Proof. First, for any 1 ≤ i ≤ k and 0 ≤ si ≤ di, consider
the number of vectors (ai,1, . . . , ai,di

) ∈ {0, 1}di that are
contained in the sub-cube CXi and satisfy that

∑di

j=1 ai,j = si.
Denote that number as Fi(si). Since the cube CXi contains
ui uncomplemented Xi,·-variables and ci complemented Xi,·-
variables, for any ui ≤ si ≤ di − ci, we have Fi(si) =(
di−ui−ci
si−ui

)
, while for any 0 ≤ si < ui or di − ci < si ≤ di,

we have Fi(si) = 0. In summary, for any 0 ≤ si ≤ di, we
have Fi(si) = Ci(si).

By the definition of C(s1, . . . , sk), it denotes the number
of vectors (a1,1, . . . , ak,dk

, b1, . . . , bm) ∈ {0, 1}n+m such that
they are contained in the cube C and for all 1 ≤ i ≤ k,∑di

j=1 ai,j = si. By the above analysis on the sub-cube CXi

and the assumption that the number of Y -variables is l, we
have for any 0 ≤ s1 ≤ d1, . . . , 0 ≤ sk ≤ dk,

C(s1, . . . , sk) = 2m−l
k∏

i=1

Fi(si) = 2m−l
k∏

i=1

Ci(si).

Example 9. Assume in a multivariate case, we have k = 2,
d1 = 2, d2 = 3, and m = 2. Consider the cube X1,2X2,2Y1.
We first obtain its C(s1, s2) values by the definition. The cube
covers 16 minterms of the form (a1,1, 0, a2,1, 1, a2,3, 1, b2),
where a1,1, a2,1, a2,3, b2 ∈ {0, 1}. The minterms of the
cube that are in the set M(0, 1) is (0, 0, 0, 1, 0, 1, 0) and
(0, 0, 0, 1, 0, 1, 1). Therefore, C(0, 1) = 2. Similarly, we can
obtain C(0, 2) = 4, C(0, 3) = 2, C(1, 1) = 2, C(1, 2) = 4,
C(1, 3) = 2, and C(s1, s2) = 0, for all (s1, s2) such that
either s1 = 2 or s2 = 0.

Now, we obtain the C(s1, s2) values by Theorem 2. For
the sub-cube CX1

= X1,2, we have u1 = 0 and c1 = 1.
For the sub-cube CX2 = X2,2, we have u2 = 1 and
c2 = 0. For the sub-cube CY = Y1, we have l = 1.
The vector [C1(0), C1(1), C1(2)] = [1, 1, 0] and the vector
[C2(0), C2(1), C2(2), C2(3)] = [0, 1, 2, 1]. By Theorem 2, we
have

C(0, 0) = 2C1(0)C2(0) = 0, C(0, 1) = 2C1(0)C2(1) = 2,

C(0, 2) = 2C1(0)C2(2) = 4, C(0, 3) = 2C1(0)C2(3) = 2,

which are the same as what we obtained by the definition.
The other C(s1, s2) values obtained by Theorem 2 are also
the same as what we obtained by the definition.

The procedure to handle a multivariate case is similar to
the univariate case. In each iteration, we determine the largest
valid cubes that can be extracted from the current problem
vector. In order to do this, we first determine the largest valid
cube vectors and then map them into the largest valid cubes.
To determine the cube vector, it reduces to determine the
number of uncomplemented variables, ui, and the number of
complemented variables, ci, in each sub-cube CXi and the
number of Y -variables, l, in the sub-cube CY . Suppose we are

checking whether there exists a valid cube of size 2q . Then,
we have

m− l +
k∑

i=1

(di − ui − ci) = q. (5)

Furthermore, u1, c1, . . . , uk, ck, and l should satisfy
0 ≤ ui, ci ≤ di, ui + ci ≤ di, for all i = 1, . . . , k, (6)
0 ≤ l ≤ m. (7)

We will enumerate all sets of u1, c1, . . . , uk, ck, l that satisfy
Eqs. (5), (6), and (7). For each set, we apply Theorem 2
to obtain the cube vector and check whether it satisfies the
capacity constraint. If the capacity constraint is satisfied,
then we will record the set of u1, c1, . . . , uk, ck, l as a valid
set, which will be further mapped to the largest cubes. The
following example shows how we determine the valid sets of
parameters u1, c1, . . . , uk, ck, l for a multivariate problem.

Example 10. Assume in a multivariate case, we have k = 2,
d1 = 2, d2 = 1, and m = 3. The initial problem vec-
tor is (G(0, 0), G(0, 1), G(1, 0), G(1, 1), G(2, 0), G(2, 1)) =
(2, 3, 9, 10, 12, 10). The sum of all the entries is 46. Thus, the
theoretic largest cubes cover 25 = 32 minterms. We first check
whether there exists any valid set of parameters corresponding
to a cube of size 32. The requirements on the parameters
u1, c1, u2, c2, l are

3− l + 2− u1 − c1 + 1− u2 − c2 = 5,

0 ≤ u1, c1,≤ 2, u1 + c1 ≤ 2,

0 ≤ u2, c2 ≤ 1, u2 + c2 ≤ 1,

0 ≤ l ≤ 3.

Solving the above equations, we obtain five sets of parameters:

(u1, c1, u2, c2, l) = (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0),

(0, 0, 0, 1, 0), (0, 0, 0, 0, 1).

The corresponding cube vectors are

[C(0, 0), C(0, 1), C(1, 0), C(1, 1), C(2, 0), C(2, 1)] =

[0, 0, 8, 8, 8, 8], [8, 8, 8, 8, 0, 0], [0, 8, 0, 16, 0, 8],

[8, 0, 16, 0, 8, 0], [4, 4, 8, 8, 4, 4].

Among them, only the first one satisfies the capacity constraint.
Therefore, there exists one valid set of parameters, which is
(u1, c1, u2, c2, l) = (1, 0, 0, 0, 0). The corresponding cubes
only contain an uncomplemented X1,·-variable.

For each valid set of parameters u1, c1, . . . , uk, ck, l, we
further construct all possible cubes satisfying these parameters
and the disjointness constraint. Same as the univariate case, we
first determine the X-cube and then the Y -cube. For multi-
variate case, to determine the X-cube, we need to determine
all sub-cubes CX1 , . . . , CXk

. Note that given ui and ci, the
corresponding sub-cube CXi

is not unique. All possible X-
cubes should be built by all the combinations of the possible
sub-cubes CX1

, . . . , CXk
. However, in our implementation,

same as the univariate case, we limit the number of X-cubes
we consider to h, due to runtime concern. Each chosen X-
cube specifies a set of columns in the matrix representing
the Boolean function. We apply the same method shown in
Section IV-D to determine a valid Y -cube associated with each
chosen X-cube.

VI. COMPLEXITY ANALYSIS

In this section, we analyze the time and space complexity
of our method. The analysis is general for an arbitrary multi-
variate target polynomial.

Our method constructs a search tree of the form shown in
Fig. 6. Its time complexity is proportional to the product of
the amount of work at each node and the number of nodes in

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 10

the search tree. We first analyze the amount of work at each
node. At each node, our algorithm extracts a set of valid largest
cubes from the remaining problem vector of the node. This
procedure essentially enumerates all the valid X-cubes. For
each X-cube, it further decides a single valid Y -cube. Thus,
the amount of work is equal to the number of enumerated valid
X-cubes times the amount of work in deciding a single valid
Y -cube. The number of valid X-cubes enumerated is no more
than the number of all possible X-cubes. Given that there are
n X-variables in total, the total number of X-cubes is 3n,
because each X-variable could appear in the complemented
form, appear in the uncomplemented form, or not appear.
For each valid X-cube, the deciding of an associated Y -cube
involves manipulating the 1’s stored in the 2n-by-2m matrix
representing the partial solution at the node. The runtime of
this manipulation dominates the runtime of deciding a Y -cube
and is bound by a constant times the total number of entries
in the matrix (i.e., 2n+m). Therefore, the amount of work at
each node is bounded by c1 ·3n ·2n+m, where c1 is a constant.

Next, we analyze the number of nodes in the search tree.
Due to our strategy of keeping the local minimal at each
level of the search tree, the number of nodes at each level
can be treated as a constant. Thus, the number of nodes in
the search tree is proportional to the number of levels of the
search tree. Now, we analyze the number of levels of the
search tree. Suppose the sum of all the entries of the initial
problem vector is S. Due to our strategy of always choosing
the largest available cube, for a usual case, the number of
levels of the search tree is equal to the number of ones in the
binary representation of S. Note that since S ≤ 2n+m, the total
number of levels is bounded by (n+m). Thus, the number of
nodes in the search tree is bounded by c2(n +m), where c2
is a constant. In conclusion, the total amount of work of our
procedure is bounded by c1c2(n + m)3n · 2n+m. Therefore,
the runtime is O((n+m)3n · 2n+m).

In our implementation, the maximal space needed is to
store all the candidate nodes at the next level, which are
expanded from the nodes at the current level. By the above
analysis, the number of nodes at the current level is a constant.
For each node at the current level, the number of candidate
nodes expanded from it is bounded by 3n. Thus, the total
number of candidate nodes at the next level is O(3n). Note
that in our implementation, for the ease of manipulation, each
candidate node at the next level is associated with a 2n-by-
2m matrix recording the partial assignment of 1’s. This matrix
of size O(2n+m) dominates the storage of a candidate node.
Therefore, the maximal space consumption is O(3n · 2n+m).

Note that although our method is exponential in time and
space, the runtime and memory consumption of our algorithm
are still affordable for a normal stochastic circuit, since the
values n and m for a typical stochastic circuit tend to be
small.

VII. EXPERIMENTAL RESULTS

In this section, we show the experimental results of the
proposed method. All the experiments were conducted on a
desktop with 3.20 GHz Intel R© CoreTM i5-4570 CPU and 16.0
GB RAM. ESPRESSO [31] was used to evaluate the literal
count and ABC [32] was used to synthesize the multi-level
circuits.

In Section VII-A, we first study the effect of our proposed
heuristic breadth-first search strategy. We compare it with a
branch-and-bound strategy proposed in the preliminary version
of this work [21]. In Sections VII-B and VII-C, we compare
our method to previous state-of-the-art methods. Our method
can synthesize general polynomials. In Section VII-B, we
compare our method to a state-of-the-art method that can
also synthesize general polynomials, i.e., the method proposed
in [16]. In Section VII-C, we compare our method to a
method that is efficient in synthesizing some commonly used
arithmetic functions, i.e., the method proposed in [17].

A. Effect of the Proposed Breadth-first Search
In this work, we proposed a heuristic breadth-first search

algorithm to explore a small but promising subset of the
solution space. In a preliminary version of this work [21],
a branch-and-bound-based algorithm was proposed to explore
the solution space. In this section, we demonstrate the ad-
vantage of the breadth-first search strategy over the previous
branch-and-bound strategy. We compared the runtime and the
literal count of the final solution of both methods. The test
cases are univariate targets with degree n = 3 and precision
parameter m = 3, . . . , 7. For each pair of n and m, 50 random
problem vectors were generated as the inputs and the average
results of these 50 cases were presented. Our algorithm has
two parameters w, which is used to filter the unpromising
nodes, and h, which limits the number of X-cubes to be
considered for each valid cube vector. In this experiment, we
chose w = 2 and h = 5. The comparison result is shown in
Fig. 7, where the solid line shows the speed-up ratio of the
breadth-first search over the branch-and-bound algorithm (y
axis on the left) and the dotted line shows the relative literal
increase of the breadth-first search over the branch-and-bound
algorithm (y axis on the right).

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

8.00%

0

2

4

6

8

10

12

m=3 m=4 m=5 m=6 m=7

�✁✂✂✄☎✆✁ ratio ✝✂✞✟✠✡☛✂ ✞✡✠✂☞✟✞ ✡✌✍☞✂✟✎✂
✏
✑
✒
✓✔
✕
✖
✗
✘
✖
✖
✙
✚✑
✘
✛✜
✓✢
✣

✤
✥
✦✧
✥
★
✩✪
✫
✥
✬
✭
✮✯✩✥
✦✪
✮
✯★
✧
✦✥
✪
✰
✥

Fig. 7: The speed-up ratio and relative literal increase of the breadth-
first search algorithm over the branch-and-bound algorithm [21].

We can see that the breadth-first search algorithm is much
faster than the branch-and-bound algorithm. As the circuit size
increases, the speed-up ratio also increases. Meanwhile, its
quality loss, measured by the percentage of literal increase,
is small. For all pairs of n and m, the literal increase is less
than 7%. Therefore, we can see that the proposed breadth-
first search method dramatically improves the runtime with
negligible quality loss compared to the previous branch-and-
bound method.

B. Synthesizing Random General Polynomials
In this section, we use random general polynomials as the

design targets to study the effect of our proposed method.
We compared it with the method in [16], a state-of-the-art
method in synthesizing general polynomials. We show the
results for synthesizing both the univariate and the multivariate
polynomials.

1) Univariate Cases: In this section, we studied our pro-
posed method for synthesizing univariate polynomials. We
applied our method to different univariate problems with
degree n = 3, . . . , 7 and precision parameter m = 3, . . . , 7.
For each pair of n and m, 50 random problem vectors were
generated as the inputs and the average results of these 50
cases were presented. We chose the parameters w = 2 and
h = 5.

Fig. 8 shows the literal count reduction by our method
over the previous method [16]. A positive value indicates a
reduction compared to the previous method, while a negative
value indicates an increase. It can be seen that compared to
the previous method, the proposed method reduces the literal
count for all combinations of n and m. When n is small,
the literal count reduction is small. It is because the previous
greedy method is able to find a good solution among limited

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 11

choices. However, as n increases, more percentage of literals
is saved. For n = 7, the literal saving reaches up to 28%.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

n=3 n=4 n=5 n=6 n=7

m=3 m=4 m=5

m=6 m=7
�
✁
✂
✄
✁
☎
✆
✝
✞
✁

✟
✠
✡
☛
✆
✁
✂
✝
✡
☞
✌
✍
✎
✏
✂
✁
✑
✒
✄
✆
☛
✟
☎

Fig. 8: The average percentage of literal count reduction by the pro-
posed method over the previous method [16] for univariate problems.

Although the primary target of our proposed method is
two-level circuits, it can be adapted to optimize multi-level
circuits by setting the obj parameter in Algorithm 1 as a
measure for multi-level circuits. To study the effectiveness of
our proposed method in synthesizing multi-level circuits, we
applied ABC [32] within the getBest function in Algorithm 1
to synthesize a multi-level design for each candidate Boolean
function in the final node vector V ec. We chose the objective
as the area-delay product, since for a multi-level circuit,
there is a trade-off between its area and delay. Therefore, the
getBest function returns a circuit with the minimal area-delay
product among all candidate Boolean functions in the final
node vector V ec.

Figs. 9, 10, and 11 plot the average percentage of reduction
in area, delay, and area-delay product, respectively, of the
multi-level circuits produced by the proposed method over the
previous method [16]. As we can see, for all the cases, our
proposed method reduces the delay and the area-delay product,
and for most cases, our method also reduces the area. Overall,
as the degree n increases, the reduction in area, delay, and
area-delay product also increases. For n = 7, the reduction in
area-delay product reaches up to 25%.

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

n=3 n=4 n=5 n=6 n=7

m=3 m=4 m=5

m=6 m=7

�
✁
✂
✄
✁
☎
✆
✝
✞
✁

✟
✠
✝
✂
✁
✝

✂
✁
✡
☛
✄
✆
☞
✟
☎

Fig. 9: The average percentage of area reduction of the multi-
level circuits produced by the proposed method over the previous
method [16] for univariate problems.

Finally, we studied the effects of different choices of the
parameters w and h. We chose w = 0, 1, 2 and h = 1, 5.
We applied each parameter combination to the same set of
test cases used before. For each parameter combination, we
obtained the average area-delay product improvement, literal
count improvement, and runtime over all the cases. The
results for different combinations of w and h are shown in
Fig. 12. From the figure, we can see that as w increases, the
circuit quality and the runtime does not change too much.
This indicates that for univariate cases, the final optimal
solution is very likely to be derived from one of the optimal
partial solutions. However, when h increases from 1 to 5,

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

n=3 n=4 n=5 n=6 n=7

m=3 m=4 m=5

m=6 m=7

�
✁
✂
✄
✁
☎
✆
✝
✞
✁

✟
✠
✡
✁
☛
✝
☞

✂
✁
✡
✌
✄
✆
✍
✟
☎

Fig. 10: The average percentage of delay reduction of the multi-
level circuits produced by the proposed method over the previous
method [16] for univariate problems.

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

n=3 n=4 n=5 n=6 n=7

m=3 m=4 m=5

m=6 m=7
�
✁
✂
✄
✁
☎
✆
✝
✞
✁

✟
✠
✝
✂
✁
✝
✡
☛
✁
☞✝
✌

✍
✂
✟
☛
✎
✄
✆
✂
✁
☛
✎
✄
✆
✏
✟
☎

Fig. 11: The average percentage of area-delay product reduction of
the multi-level circuits produced by the proposed method over the
previous method [16] for univariate problems.

the circuit quality has a much larger increase at the cost of
longer runtime. This is because more X-cubes are selected for
each valid cube vector and hence, a larger solution space is
explored. Thus, we can conclude that for univariate cases, an
effective way to improve the circuit quality is to choose more
number of X-cubes for each valid cube vector. The parameter
combination (w, h) = (2, 5) has the longest runtime among
all the combinations. For this parameter choice, the average
runtime is below 2 minutes.

00:00.0

00:15.0

00:30.0

00:45.0

01:00.0

01:15.0

01:30.0

01:45.0

02:00.0

02:15.0

0.00%

5.00%

10.00%

15.00%

20.00%

(0,1) (1,1) (2,1) (0,5) (1,5) (2,5)

Average area-delay product improvement

Average literal �✁✂✄☎ improvement

Average runtime

✆
✝
✞✟
✝
✠
✡☛
☞
✝
✌
✍
✎✏
✑
✞✌
✒
✝
✏
✝
✠
✡ ✓

✔
✕
✖✗
✘
✕
✖✙
✚
✛✜✢
✕
✣✢
✜✚
✤✥
✕
✦
✧

Fig. 12: The average area-delay product improvement, literal count
improvement, and runtime with different parameter combinations
(w, h) for univariate problems.

2) Multivariate Cases: In this section, we studied our
proposed method for synthesizing multivariate polynomials.
We used bivariate polynomials (i.e., k = 2) as the test
cases. We generated 100 groups of problem vectors for bi-
variate polynomials, with each group characterized by a tuple
(d1, d2,m), where d1 and d2 are the degrees of the variables
x1 and x2 in the given polynomial, respectively. We chose

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 12

the degree sum n = d1 + d2 from 3 to 7 and the precision
parameter m from 3 to 7. For each 3 ≤ n ≤ 7, we chose d1
from 1 to (n−1) and set d2 = n−d1. Thus, the total number
of different (d1, d2,m) tuples is (2+3+4+5+6)×5 = 100.
For each tuple (d1, d2,m), 50 random problem vectors were
generated as the inputs and the average results of these 50
cases were presented. We chose the parameters w = 2 and
h = 5.

Fig. 13: The average percentage of literal count reduction by
the proposed method over the previous method [16] for bivariate
problems.

Fig. 13 shows the average percentage of literal count reduc-
tion by the proposed method over the previous method [16].
Different markers correspond to different parameters m, rang-
ing from 3 to 7. The horizontal labels mark the degree
pairs (d1, d2). Fig. 13 shows that compared to the previous
method, our method achieves literal count reduction for all
tuples (d1, d2,m). For some tuples, the literal count reduction
reaches 20%. However, unlike univariate cases, there is no
trend that as n = d1 + d2 increases, the percentage of literal
count reduction increases.

We also studied the performance of our method in synthe-
sizing multi-level circuits. The experiment setup was similar
to that for the univariate cases. Due to the space limit, we only
show the average percentage of reduction in area-delay product
of the multi-level circuits produced by our proposed method
over the previous method [16]. The result is shown in Fig. 14.
We can see that for all the tuples, our method reduces the
circuit area-delay product, compared to the previous method.
For n = 7, the reduction in the area-delay product reaches up
to 17%, while for m = 7, the reduction reaches up to 11%.

Fig. 14: The average percentage of area-delay product reduction of
the multi-level circuits produced by the proposed method over the
previous method [16] for bivariate problems.

We also studied the effects of different choices of the
parameters w and h. We chose four parameter combinations,
which are (w, h) = (0, 1), (1, 1), (2, 1), and (2, 5). The other
parts of the experiment setup are similar to those for the
univariate cases. Fig. 15 shows the average area-delay product
improvement, literal count improvement, and runtime for these
four parameter combinations. We can see that as w changes
from 0 to 2, the circuit quality improves, which is different

from the univariate cases. It is because for bivariate cases,
the solution tree has much more branches and therefore, the
optimal final solution is more likely to be derived from a
suboptimal partial solution. As w increases, more suboptimal
partial solutions are explored, hence leading to a better final
solution. When the parameter h changes from 1 to 5, the circuit
quality also improves at the cost of longer runtime, which is
similar to what we observed for the univariate cases. From
Fig. 15, it is also interesting to note that the improvement
in the area-delay product is smaller than that in the literal
count for each parameter combination. We believe the reason
is because for bivariate cases, as the circuits become more
complicated than those for univariate cases, the correlation
between the quality of a two-level design and that of a multi-
level design becomes weaker. This calls for a more powerful
synthesis method for stochastic circuits that directly targets at
multi-level designs, which we will study in our future work.

Finally, we compared the accuracy and the runtime of
our method to those of the previous method [16]. For a
combinational stochastic circuit, its output accuracy depends
on the error between the target function and the stochastic
function realized by the stochastic circuit and the length of the
stochastic bit streams [2]. Given the same target function and
the same precision parameter m, the functions realized by the
stochastic circuits produced by our method and by the previous
method [16] are the same. Therefore, with the same stochastic
bit stream length, the two methods produce circuits with the
same accuracy. In terms of runtime, the previous method [16]
is much faster than ours, because it does not search the feasible
solution space. Indeed, the previous method only takes time to
fill 1’s into a matrix of size 2n by 2m and hence, has runtime
of O(2n+m). By our analysis in Section VI, the runtime of
our method is O((n+m)3n · 2n+m). Thus, our method takes
much more time than the previous method [16]. However,
this is unavoidable in order to have a decent search of the
solution space. Nevertheless, the runtime of our algorithm is
still affordable: as shown in Figs. 12 and 15, the average
runtime for the parameter combination (w, h) = (2, 5) is on
the scale of several minutes. In situations where better circuit
quality is pursued, our method gives a better solution under a
reasonable amount of runtime.

00:00.0

01:00.0

02:00.0

03:00.0

04:00.0

05:00.0

06:00.0

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

(0, 1) (1, 1) (2, 1) (2, 5)

�✁✂✄☎✆✂ ☎✄✂☎✝✞✂✟☎✠ ✡✄☛✞☞✌✍ ✎✏✡✄☛✁✂✏✂✑✍

✒✓✔✕✖✗✔ ✘✙✚✔✕✖✘ ✛✜✢✣✚ ✙✤✥✕✜✓✔✤✔✣✚

✒✓✔✕✖✗✔ ✕✢✣✚✙✤✔

✦
✧
★✩
✧
✪
✫✬
✭
✧
✮
✯
✰✱
✲
★✮
✳
✧
✱
✧
✪
✫ ✴

✵
✶
✷✸
✹
✶
✷✺
✻
✼✽✾
✶
✿✾
✽✻
❀❁
✶
❂
❃

Fig. 15: The average area-delay product improvement, literal count
improvement, and runtime with different parameter combinations
(w, h) for bivariate problems.

C. Synthesizing Commonly Used Arithmetic Functions
In this section, we applied our method to synthesize some

commonly used arithmetic functions, such as trigonometric,
exponential, and logarithmic functions. We compared our
method to the method in [17], a state-of-the-art method in
synthesizing these commonly used functions.

The original target functions are shown in column 1 of
Table I. Same as [17], we used the Maclaurin series expansions
of these functions as our synthesis target polynomials. The
degrees of these Maclaurin expansions are listed in column
2 of the table. Besides, same as [17], a scaling of 1/π is

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 13

applied to the Maclaurin expansion of the function sin(πx).
These target polynomials are all univariate polynomials.

Before applying our approach, we performed a simple trans-
formation on the input Maclaurin expansion when possible.
We use sin(x) as an example. The 7-th order Maclaurin
expansion of sin(x) is

sin(x) ≈ x− x3

3!
+
x5

5!
− x7

7!
= x · g(x2),

where g(t) = 1− t/3!+ t2/5!− t3/7!. Our proposed approach
is applied to the function g(t). After we obtain a stochastic
implementation of g(t), we replace each input for t by an
AND gate with two inputs as x, which implements x2. Then,
the output of the circuit is g(x2). Finally, we multiply the
output by an x using an extra AND gate. This eventually gives
xg(x2), the 7-th order Maclaurin expansion of sin(x). This
kind of transformation was also applied to cos(x), tanh(x),
and sin(πx) in Table I.

We compared our designs to the designs synthesized by
the approach in [17]. In [17], a factorization-based method
is applied to the Maclaurin expansion of a target function.
The designs in [17] include some constant input probabilities.
However, as we mentioned in Section III-A, the generation
of these constant input probabilities is not free. Typically,
they are generated from source input probabilities of 0.5 by
additional conversion circuits. For a fair comparison, we used a
method proposed in [15] to synthesize the optimal conversion
circuits. Also, the designs in [17] include some delay elements
to generate roughly independent x input bit streams. For
a fair comparison, we converted the designs in [17] into
combinational circuits by removing the delay elements and
adding the AND gates that generate the power terms of x
when proper.

For both methods, the precision m was chosen as 8. Once a
circuit was constructed, ABC was further applied to optimize
it to obtain the final area and delay. The area, delay, and area-
delay product of the two methods are listed in columns 4,
5, and 6 of Table I, respectively. The rows with “Cube” and
“Factor” correspond to our method and the method in [17],
respectively. Column 7 lists the ratio of the area-delay product
of our method over that of the previous method. We can
see that the circuits obtained by our method have smaller
area-delay products than the previous method for most of the
functions. The geometric mean of the area-delay product ratio
between the two methods is 0.806, which indicates that on
average, our method can reduce the area-delay product by 20%
over the method in [17].

TABLE I: Comparison between our method and the method in [17]
in synthesizing some commonly used arithmetic functions.

Function Degree Area Delay Area-delay Product MAEproduct ratio

sin(x) 7
Cube 43 6.7 288.1 0.686 0.0106
Factor 56 7.5 420.0 0.0107

cos(x) 8
Cube 27 4.7 126.9 0.332 0.0075
Factor 58 6.6 382.8 0.0079

tanh(x) 9
Cube 74 6.4 473.6 0.992 0.0115
Factor 62 7.7 477.4 0.0113

log(1 + x) 5
Cube 49 6.3 308.7 0.757 0.0172
Factor 48 8.5 408.0 0.0173

e−x 5
Cube 67 6.6 422.2 1.082 0.0109
Factor 47 8.3 390.1 0.0104

sin(πx) 9
Cube 76 6.6 501.6 1.484 0.0312
Factor 52 6.5 338.0 0.0318

We also compared the accuracy of the two methods. We
chose the length of the stochastic bit streams as 1024. For each
function f(x), we chose 9 input points x = 0.1, 0.2, . . . , 0.9
for simulation. For each input point, the stochastic circuit
of a target function was simulated for 100 times. The mean
absolute error (MAE) was obtained over all input points and
simulation runs. The MAE’s for the two methods are listed in
column 8 of Table I. The result shows that the two methods
have almost the same accuracy. This is because they implement
the same Maclaurin expansion for each arithmetic function.
The differences are due to the randomness in the simulation.

VIII. CONCLUSION

In this work, we proposed a method based on cube assign-
ment to synthesize general stochastic circuits. Different from
the traditional logic synthesis problems, for stochastic circuit
synthesis, there exist many different Boolean functions that
perform the same computation. Primarily targeting at two-
level designs, we proposed a heuristic breadth-first search
algorithm to explore the solution space. The experimental
results showed that our algorithm can synthesize SOPs with
much fewer literals than a previous state-of-the-art method. A
straightforward mapping of the obtained SOP to a multi-level
design showed that our method is also better than previous
methods in terms of the area-delay product. In our future work,
we will develop a synthesis method that directly targets at
multi-level stochastic circuits.

ACKNOWLEDGMENT

This work is supported by National Natural Science Foun-
dation of China (NSFC) under Grant No. 61472243 and
61204042.

REFERENCES

[1] B. R. Gaines, “Stochastic computing systems,” in Advances in informa-
tion systems science. Springer, 1969, pp. 37–172.

[2] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An
architecture for fault-tolerant computation with stochastic logic,” IEEE
Transactions on Computers, vol. 60, no. 1, pp. 93–105, 2011.

[3] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-
time image-processing applications,” in Design Automation Conference,
2013, pp. 136:1–136:6.

[4] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams: Digital image processing case studies,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 22,
no. 3, pp. 449–462, 2014.

[5] M. H. Najafi and M. E. Salehi, “A fast fault-tolerant architecture for
Sauvola local image thresholding algorithm using stochastic computing,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 24, no. 2, pp. 808–812, 2016.

[6] H. Ichihara, T. Sugino, S. Ishii, T. Iwagaki, and T. Inoue, “Compact
and accurate digital filters based on stochastic computing,” accepted by
IEEE Transactions on Emerging Topics in Computing, 2016.

[7] Y. Liu and K. K. Parhi, “Architectures for recursive digital filters using
stochastic computing,” IEEE Transactions on Signal Processing, vol. 64,
no. 14, pp. 3705–3718, 2015.

[8] S. S. Tehrani, S. Mannor, and W. J. Gross, “Fully parallel stochastic
LDPC decoders,” IEEE Transactions on Signal Processing, vol. 56,
no. 11, pp. 5692–5703, 2008.

[9] S. S. Tehrani, A. Naderi, G.-A. Kamendje, S. Hemati, S. Mannor, and
W. J. Gross, “Majority-based tracking forecast memories for stochastic
LDPC decoding,” IEEE Transactions on Signal Processing, vol. 58,
no. 9, pp. 4883–4896, 2010.

[10] V. Canals, A. Morro, A. Oliver, M. L. Alomar, and J. L. Rosselló,
“A new stochastic computing methodology for efficient neural network
implementation,” IEEE Transactions on Neural Networks and Learning
Systems, vol. 27, no. 3, pp. 551–564, 2016.

[11] B. Li, M. H. Najafi, and D. J. Lilja, “Using stochastic computing to
reduce the hardware requirements for a restricted Boltzmann machine
classifier,” in International Symposium on FPGA, 2016, pp. 36–41.

[12] K. Kim, J. Kim, J. Yu, J. Seo, J. Lee, and K. Choi, “Dynamic energy-
accuracy trade-off using stochastic computing in deep neural networks,”
in Design Automation Confererence, 2016, pp. 124:1–124:6.

[13] B. D. Brown and H. C. Card, “Stochastic neural computation I: Com-
putational elements,” IEEE Transactions on Computers, vol. 50, no. 9,
pp. 891–905, 2001.

0278-0070 (c) 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2018.2789725, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems

IEEE TRANSACTIONS ON CAD, VOL. XX, NO. X, 201X 14

[14] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. Riedel, “The synthesis
of complex arithmetic computation on stochastic bit streams using se-
quential logic,” in International Conference on Computer-Aided Design,
2012, pp. 480–487.

[15] A. Alaghi and J. Hayes, “STRAUSS: Spectral transform use in stochastic
circuit synthesis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 11, pp. 1770–1783, 2015.

[16] Z. Zhao and W. Qian, “A general design of stochastic circuit and its
synthesis,” in Design, Automation & Test in Europe, 2015, pp. 1467–
1472.

[17] K. Parhi and Y. Liu, “Computing arithmetic functions using stochastic
logic by series expansion,” accepted by IEEE Transactions on Emerging
Topics in Computing, 2016.

[18] Y. Liu and K. K. Parhi, “Computing polynomials using unipolar
stochastic logic,” ACM Journal on Emerging Technologies in Computing
Systems, vol. 13, no. 3, pp. 42:1–42:30, 2017.

[19] T.-H. Chen and J. P. Hayes, “Equivalence among stochastic logic circuits
and its application,” in Design Automation Conference, 2015, pp. 131:1–
131:6.

[20] W. Qian and M. D. Riedel, “The synthesis of robust polynomial
arithmetic with stochastic logic,” in Design Automation Conference,
2008, pp. 648–653.

[21] X. Peng and W. Qian, “A branch-and-bound-based minterm assignment
algorithm for synthesizing stochastic circuit,” in International Workshop
on Logic and Synthesis, 2016, pp. 155–162.

[22] W. Qian and M. D. Riedel, “The synthesis of stochastic logic to perform
multivariate polynomial arithmetic,” in International Workshop on Logic
and Synthesis, 2008, pp. 79–86.

[23] P. Li, W. Qian, M. D. Riedel, K. Bazargan, and D. J. Lilja, “The synthesis
of linear finite state machine-based stochastic computational elements,”
in Asia and South Pacific Design Automation Conference, 2012, pp.
757–762.

[24] N. Saraf and K. Bazargan, “Polynomial arithmetic using sequential
stochastic logic,” in Great Lakes Symposium on VLSI, 2016, pp. 245–
250.

[25] A. Alaghi and J. P. Hayes, “A spectral transform approach to stochastic
circuits,” in International Conference on Computer Design, 2012, pp.
315–321.

[26] S. A. Salehi, Y. Liu, M. D. Riedel, and K. K. Parhi, “Computing
polynomials with positive coefficients using stochastic logic by double-
NAND expansion,” in Great Lakes Symposium on VLSI, 2017, pp. 471–
474.

[27] S. W. Golomb, Shift Register Sequences, Revised Ed. Aegean Park
Press, 1981.

[28] J. Berchtold and A. Bowyer, “Robust arithmetic for multivariate
Bernstein-form polynomials,” Computer-Aided Design, vol. 32, no. 11,
pp. 681–689, 2000.

[29] R. K. Brayton, C. McMullen, G. D. Hachtel, and A. Sangiovanni-
Vincentelli, Logic Minimization Algorithms for VLSI Synthesis. Kluwer
Academic Publishers, 1984.

[30] D. Baneres, J. Cortadella, and M. Kishinevsky, “A recursive paradigm
to solve boolean relations,” IEEE Transactions on Computers, vol. 58,
no. 4, pp. 512–527, 2009.

[31] R. L. Rudell and A. Sangiovanni-Vincentelli, “Multiple-valued mini-
mization for PLA optimization,” IEEE Transactions on Computer-Aided
Design, vol. 6, no. 5, pp. 727–750, 1987.

[32] A. Mishchenko et al., “ABC: A system for sequential synthesis and
verification,” URL: http://www.eecs.berkeley.edu/˜alanmi/abc, 2007.

Xuesong Peng is a master student in the University
of Michigan-Shanghai Jiao Tong University Joint
Institute at Shanghai Jiao Tong University. He re-
ceived his B.S. degree from the same Institute. He
is interested in electronic design automation.

Weikang Qian is an assistant professor in the Uni-
versity of Michigan-Shanghai Jiao Tong University
Joint Institute at Shanghai Jiao Tong University. He
received his Ph.D. degree in Electrical Engineering
at the University of Minnesota in 2011 and his
B.Eng. degree in Automation at Tsinghua Univer-
sity in 2006. His main research interests include
electronic design automation and digital design for
emerging technologies. His research works were
nominated for the Best Paper Awards at the 2009 In-
ternational Conference on Computer-Aided Design
(ICCAD) and the 2016 International Workshop on

Logic and Synthesis (IWLS).

