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Abstract—Approximate computing is an emerging strategy to
improve the energy efficiency of many error-tolerant applications.
To design approximate circuit automatically, many approximate
logic synthesis (ALS) methods have been proposed, among
which many are greedy. To improve the synthesis quality of
these greedy methods, one key is to calculate the errors of all
candidate approximate transformations accurately. However, the
traditional simulation-based method is time-consuming. Instead,
many existing methods just perform quick but inaccurate error
estimation. In this work, to improve both the accuracy and
runtime of error estimation, we propose VECBEE, a versatile
efficiency-accuracy configurable batch error estimation method
for greedy ALS. It is based on Monte Carlo simulation and an
efficient technique to capture whether a signal change due to an
introduced approximation will be propagated to each primary
output. VECBEE is generally applicable to any statistical error
measurement, such as error rate and average error magnitude,
and any graph-based circuit representation. It allows a flexible
trade-off between the error estimation accuracy and the runtime,
while even the fully accurate version is much faster than the
traditional simulation-based method. We apply VECBEE to
two representative greedy ALS methods and demonstrate its
effectiveness in generating better approximate circuits. The code
of VECBEE is made open-source.

Index Terms—approximate computing, approximate logic syn-
thesis, error estimation

I. INTRODUCTION

As the transistor size shrinks into the nano-scale [1], power
consumption has become a major concern in designing modern
computing systems. Meanwhile, much workload of computing
systems today is error-tolerant applications, such as machine
learning, data mining, and image processing. Given these
trends, approximate computing [2]–[4] is proposed as a novel
power-efficient design paradigm for these error-tolerant ap-
plications. Its basic idea is to deliberately introduce a small
amount of error into the computing systems. If the error is

Sanbao Su (susannju@163.com) was and Chang Meng (chang-
meng@sjtu.edu.cn) and Weikang Qian (qianwk@sjtu.edu.cn) are with the
University of Michigan-Shanghai Jiao Tong University Joint Institute, Shang-
hai Jiao Tong University, China. Weikang Qian is also with the MoE Key
Laboratory of Artificial Intelligence, Shanghai Jiao Tong University, China
and the State Key Laboratory of ASIC & System, Fudan University, China.

Fan Yang (yangfan@fudan.edu.cn) is with the School of Microelectronics
and the State Key Laboratory of ASIC & System, Fudan University, China.

Xiaolong Shen (shenxiaolong3@huawei.com), Leibin Ni
(nileibin@huawei.com), Wei Wu (wuwei102@huawei.com), Zhihang Wu
(wuzhihang@huawei.com), and Junfeng Zhao (junfeng.zhao@huawei.com)
are with Huawei Technologies Co., Ltd.

Sanbao Su and Chang Meng contributed equally. Corresponding author:
Weikang Qian.

introduced properly, significant improvement in area, delay,
and power consumption can be achieved.

The concept of approximate computing is applicable to
almost all layers of modern computing systems. At the circuit
layer, there are two main research fields: manual design
and automatic synthesis. The former manually designs some
widely-used approximate arithmetic units such as adders [5]–
[9] and multipliers [10]–[14]. The latter develops algorithms
to produce a good approximate version for an arbitrarily
given circuit. It can be further divided into approximate high-
level synthesis [15]–[17] and approximate logic synthesis
(ALS) [18]–[33].1 In ALS, many studies target at the common
circuit form, the multi-level circuit [20]–[33].

To explore the extremely large design space of an approxi-
mate circuit efficiently, many multi-level ALS methods [20]–
[27] are greedy. They derive the final approximate circuit
through multiple rounds of approximate local transformations
(ALTs). In each round, all candidate ALTs are identified.
Then, the quality improvement such as area, delay, or power
improvement and the induced error such as error rate (ER) or
average error magnitude (AEM) of each ALT are evaluated.
The one with the largest figure-of-merit (FOM) is then selected
and applied.

For these methods, it is crucial to calculate the induced
error accurately. Otherwise, the greedy method may choose an
inferior ALT in each round, which eventually leads to an infe-
rior final approximate design. Even worse, an inaccurate error
estimation may overestimate the errors, causing a premature
termination of the ALS loop. This is because at some round,
the overestimated errors of the candidate ALTs all exceed the
error bound, and the loop stops at this round, but with accurate
error estimation, the loop can still continue.

A motivating example is given in Fig. 1. It shows the
importance of the accurate error estimation to an existing
ALS method SASIMI [21]. There are two groups of curves
in the figure, where the upper and lower group shows how
the SASIMI methods with and without accurate error estima-
tion, respectively, work on the benchmark c7552. The error
constraint is an ER threshold of 1%. The ERs of the circuits
are derived by random simulation with 100000 samples. Since
the randomness in the error estimation may affect the synthesis
result, we repeat both SASIMI flows 80 times, and plot the

1We note that in a survey on ALS [34], approximate high-level synthesis
(HLS) is classified as a sub-category of ALS. However, in our taxonomy,
following the traditional view that HLS is not a sub-category of logic
synthesis, we do not classify approximate HLS as a sub-category of ALS.
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Fig. 1. Ratio of area reduction versus error rate for the same ALS method
SASIMI with and without accurate error estimation.

curves that can achieve the best, the worst, and the median
area reduction for each method, which correspond to the 3
curves in each group. Each point on a curve corresponds to the
result after one round in the corresponding ALS flow. We can
see that with 100000 samples, the 3 curves in each group are
almost the same, but there is clear difference between the two
groups of curves. The lower curves show that SASIMI without
accurate error estimation stops after 3 rounds. It is because in
the third round, due to the inaccurate error estimation, the best
candidate ALT it selects actually increases the ER by 2.39%,
which causes the resulting circuit to exceed the error limit. In
contrast, with accurate error estimation, candidate ALTs with
smaller induced error can be found. This leads to more rounds
and better quality for the final approximate circuit, as shown
by the upper curves. For this example, the SASIMI method
with accurate error estimation can reduce 7.84% more area
than that without accurate error estimation in the median case.

The above example clearly shows that an accurate error
estimation is helpful to a greedy ALS method. The traditional
method for accurate error estimation needs to apply each ALT
to the current circuit and simulate the resulting circuit. We
refer to this method as traditional simulation-based method in
this paper. However, it is time-consuming, since in order to get
the errors for all the ALTs, its number of simulations equals
the ALT number. Consequently, many existing greedy ALS
methods just perform quick but inaccurate error estimation.

To improve the quality of a greedy ALS approach with-
out increasing its runtime, we need to develop an efficient
and accurate batch error estimation method for all the can-
didate ALTs. For this purpose, in this work, we propose
VECBEE, a versatile efficiency-accuracy configurable batch
error estimation method for greedy ALS flows. To make it
generally applicable to any input distribution, VECBEE is
based on Monte Carlo (MC) simulation. To avoid the time-
consuming MC simulation for all the ALTs, we develop an
efficient technique to capture whether a local signal value
change due to an ALT will be propagated to each primary
output (PO). VECBEE allows a trade-off between efficiency
and accuracy. Although the most efficient version is not fully
accurate, it is still accurate enough. The fully accurate version
takes a longer runtime, but it is still much faster than the
traditional simulation-based method.

VECBEE is versatile. It is applicable to any statistical error
measure, such as ER and AEM, and any input distribution.
It can also be applied to any graph-based representation of
circuits, such as AND-inverter graph (AIG) [35], majority-
inverter graph (MIG) [36], and gate netlist after technology

mapping. Yet, one requirement for applying VECBEE to a
greedy ALS flow is that the local circuits affected by the ALTs
have a single output. Fortunately, many existing ALTs satisfy
this requirement.

We apply VECBEE to two representative ALS methods,
SASIMI [21] and approximate node simplification (ANS) [22].
Our experiment results show that the ALS methods enhanced
by VECBEE improve the circuit quality for both the ER and
the AEM constraints compared to the original methods. The
code of VECBEE is made open-source at https://github.com/
SJTU-ECTL/VECBEE.

A preliminary version of this work is published in [37],
where we propose a basic batch error estimation method,
which is efficient but not fully accurate. In this work, we
further extend the basic method to make it efficiency-accuracy
configurable. Particularly, the improved method includes the
fully accurate mode. We also apply the proposed method to
the ANS ALS flow to demonstrate its wide applicability.

The rest of the paper is organized as follows. Section II dis-
cusses the related works. Section III presents the preliminaries.
Section IV elaborates the VECBEE methodology. Section V
shows the experimental results. Finally, Section VI concludes
the paper.

II. RELATED WORKS

This section discusses the related works on ALS for multi-
level circuits and error estimation for approximate circuits.

A. ALS Methods for Multi-level Circuits
In this section, we briefly discuss some representative ALS

methods for multi-level circuits. For a more general survey on
ALS, the readers can refer to [34].

Several works propose greedy ALS methods for statistical
error measure [20]–[24]. Shin and Gupta propose a greedy
ALS method under ER and error magnitude constraint [20].
Its ALT is approximating a signal with a constant 0 or 1. ER
is estimated by parallel random fault simulation. Venkatara-
mani et al. introduce a greedy ALS method, SASIMI, which
can handle either ER or AEM constraint [21]. Its ALT is
substituting a wire in the circuit with another of similar
functionality. To avoid the time-consuming error estimation
at the POs, the error for each substitution is estimated as
the probabilities that the two signals in the substitution pair
are different. Wu and Qian propose a greedy ALS method
under the ER constraint [22]. Its ALT is an approximate node
simplification (ANS), which deletes some literals from the
Boolean expression of a node in the network. The ER of each
ALT is estimated as the ER at the output of each changed
node, not the ER at the POs. The work [23] proposes a greedy
ALS approach for FPGA designs under ER constraint. Its
ALT is removing one input of a single-output local circuit
and then reconfiguring the local function. Similar to [22],
it estimates ER from the output of the local circuit only.
Hashemi et al. propose an ALS method with ALTs based
on Boolean matrix factorization (BMF) [24]. Its ALTs are
applied to sub-circuits that can have multiple outputs. For these
works except [24], VECBEE can help improve their algorithm
runtime or synthesis quality. For example, it can accelerate
the error estimation and hence, the entire ALS flow of [20]. It
can also improve the error estimation accuracy and hence, the
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synthesis quality for the works [21]–[23]. Since VECBEE can
only handle ALTs affecting local circuits with a single output,
it is not applicable to the ALS method in [24].

There are also ALS methods that are not for statistical
error measure or not greedy. For example, the work [28]
considers ALS under maximum error magnitude constraint.
Since the targeted error metric is not a statistical error measure,
VECBEE is not applicable. Another work proposes a non-
greedy ALS flow [31]. In each iteration, it randomly selects
an ALT and accepts it probabilistically. For early iterations,
VECBEE may not help, as there is only one ALT under
consideration and hence, an accurate error calculation for this
single ALT is affordable. However, we can apply VECBEE
in later iterations when the accumulated error is near the
limit. In this case, due to the reduced error margin, it may be
advantageous to consider multiple candidate ALTs and choose
the best one.

B. Error Estimation Methods for Approximate Circuits
Many prior works present error estimation methods for

approximate circuits, which can be classified into module-level
and gate-level methods.

The module-level methods mainly focus on circuits com-
posed of approximate arithmetic modules, such as approximate
adders and multipliers. They model and propagate the error
through the approximate arithmetic modules [38]–[40]. For
example, Sengupta et al. propose to obtain the probability
mass function of approximate modules and propagate the error
using the Fourier and the Mellin transforms [38]. Huang et
al. propose to model and propagate errors of approximate
modules using an interval-based approach [39].

The gate-level methods work on lower-level representation
of the approximate circuits, such as partial product generators
in multipliers or gates in gate netlists. They model and
propagate the error at the gate level. They can be further
divided into two categories based on the targeted circuit type.

The first category focuses on adders [41]–[43] and multipli-
ers [44]. For example, Liu et al. propose a framework based
on analytical models for evaluating the error characteristics
of approximate adders [41]. Mazahir et al. present the error
probability analysis for recursive approximate multipliers with
approximate partial products [44].

The second category focuses on generic circuits, and our
proposed method, VECBEE, belongs to it. For example,
Venkatesan et al. propose to compute the error of approx-
imate circuits using satisfiability (SAT) and binary decision
diagram (BDD) [45]. However, their method is not scalable
for large circuits, due to the high complexity of SAT and BDD.
Scarabottolo et al. propose to partition the circuit into sub-
circuits, and then determine the error propagation model of
the resulting sub-circuits [46]. However, their method analyzes
the maximum error magnitude, which is different from the
statistical error metrics considered in our work. Echavarria et
al. propose an error transition model that propagates the bit
error rate through cascaded sub-circuits [47]. Instead of using
logic simulation, it directly propagates the signal probabilities.
Hence, it is faster than the simulation-based methods. Never-
theless, its accuracy is affected by reconvergent paths and the
error magnitude metric is not supported.

We also highlight that different from most prior works
on error estimation, VECBEE is an ALS-friendly approach,
since it is designed to handle numerous approximate circuits
considered in synthesis simultaneously. In that sense, the only
comparable work to the best of our knowledge is [46], but it
handles an error metric different from VECBEE.

III. PRELIMINARIES

We introduce some preliminaries in this section.

A. Circuit Terminology
We focus on multi-level combinational circuits, which can

be modeled as a directed acyclic graph with nodes representing
input pins and logic gates, and directed edges representing
wires connecting the gates. Source nodes are those nodes in
the graph without any fanins, while sink nodes are those nodes
in the graph without any fanouts. The primary inputs (PIs) are
source nodes of the graph. The POs are a subset of the nodes
of the graph, including all the sink nodes and possibly some
non-sink nodes of the graph. In a circuit, if there is a path
from node n to node m, then m is a transitive fanout (TFO)
of n and n is a transitive fanin (TFI) of m. Node n itself is
a trivial TFO/TFI of n. The TFO (resp. TFI) cone of n is a
node set that includes all the TFOs (resp. TFIs) of n.

B. Statistical Error Measure
In this work, we consider the situation where statistical error

measure is used. Two typical statistical error measures are ER
and AEM. We use �x to denote an input vector of a circuit and

use
−→
forg(�x) and

−−→
fapp(�x) to denote output vectors of the original

and approximate circuits for the input vector �x, respectively.
ER is defined as

ER =
∑

�x:
−→
fapp(�x) �=−→

forg(�x)

P (�x), (1)

where P (�x) is the occurrence probability of the input vector
�x. AEM is defined as

AEM =
∑

�x:
−→
forg(�x) �=−→

fapp(�x)

∣∣∣−−→fapp(�x)−−→
forg(�x)

∣∣∣P (�x), (2)

where
∣∣∣−−→fapp(�x)−−→

forg(�x)
∣∣∣ represents the absolute difference

between the binary number encoded by
−−→
fapp(�x) and that by−→

forg(�x). AEM is usually applied to arithmetic circuits.

C. Greedy ALS Methods
As we stated in Section II-A, many existing multi-level ALS

methods are greedy. They can be summarized into a general
procedure shown in Algorithm 1. Its basic idea is to gradually
improve the circuit by applying an ALT in each iteration. An
ALT is a small perturbation to the circuit. Several examples
of ALT can be found in Section II-A.

In each iteration, the procedure chooses the optimal ALT
and applies it to the current approximate circuit Capp. For
this purpose, Line 3 first collects all possible ALTs of Capp.
Then, Lines 5–6 evaluate the quality improvement ΔQ and
the error increase ΔE caused by each ALT, where the quality
can be area, delay, or power consumption and the error can
be ER or AEM. Note that both the quality improvement
and the error increase for an ALT are calculated over the
current approximate circuit. Then, the ALT that maximizes an
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Algorithm 1: A general greedy ALS procedure.

Input: original circuit C and error threshold Eth;
Output: approximate circuit Cout;

1 error E ← 0; Capp ← C;
2 while E ≤ Eth do
3 Cout ← Capp; identify candidate ALT set S from Capp;
4 foreach ALT A in S do
5 estimate quality improvement ΔQ due to A;
6 estimate error increase ΔE due to A;
7 choose the ALT in S with the highest FOM

f(ΔQ,ΔE) and apply it to Capp to update Capp;
8 calculate accurate error E between Capp and C;
9 return Cout;

FOM defined over ΔQ and ΔE is selected and applied (see
Line 7). A typical FOM is ΔQ/ΔE, which favors an ALT
that maximizes the quality improvement while minimizing the
error increase. Finally, Line 8 calculates the actual error of the
new approximate circuit. If it is smaller than the given error
threshold Eth, the next iteration begins; otherwise, the entire
loop finishes and the last approximate circuit satisfying the
error bound, Cout, is returned.

IV. METHODOLOGY

This section elaborates the methodology of VECBEE.

A. Overview of VECBEE

VECBEE is based on Monte Carlo (MC) simulation. We
first argue the necessity of using MC simulation in estimating
the error. For a statistical error such as ER or AEM, which is
of interest in this work, there are usually two ways to obtain it,
analytical methods and MC simulation. The analytical methods
are based on signal probability propagation [48] or BDD [49].
They only work when all the inputs are independent, which
may not be true for a general input distribution. Furthermore,
its scalability is a problem. Thus, to make the approach more
general, MC-based logic simulation should be applied. Strictly
speaking, an MC simulation cannot give the exact result due
to its random variation. However, by the law of large numbers,
if a sufficient number of samples are used, the final obtained
result will be very close to the exact value [50].

From the general procedure shown in Algorithm 1, an
important step is to evaluate the errors of all the candidate
ALTs in one iteration. To obtain the accurate error for each
ALT, the circuit Capp,ALT obtained by applying that ALT to the
current approximate circuit Capp should be simulated and the
simulation result should be compared with that of Capp. Thus,
to get the accurate errors for all the candidate ALTs, the total
number of MC simulations equals the number of ALTs, which
can lead to a long runtime.

To reduce the runtime, some previous methods just use the
error observed at the output of the local circuit affected by
the ALT as an estimate to the final exact error [21]–[23]. In
this case, for each ALT, we only need to simulate the local
circuit affected by the ALT by propagating existing simulation
results at its inputs to its outputs. We do not need to propagate
the simulation results to the POs of the circuit. Thus, the
simulation time can be significantly reduced. However, since
these methods ignore the potential logic masking effect from
the output of a local circuit to the POs, the error estimation
can be quite inaccurate. Below shows an example.

Example 1 Consider the circuit shown in Fig. 2. Nodes
I1, . . . , I7 are the PIs and nodes O1 and O2 are the POs.
Assume that the i-th input pattern in the MC simulation is
I1 . . . I7 = 0111011. The value of each wire under this input
pattern is shown above the wire in the figure. Consider an
ALT that simply replaces node e with a constant 0. Under
the current input pattern, this ALT causes an error at node
e. However, the error is masked by the following NOR gate
given that I7 = 1. Thus, the error cannot be propagated to
PO O2. Besides, PO O1 does not depend on node e. Thus,
for that input pattern, the error at node e does not cause an
output error for the circuit.

I1

I2 b O1

I3 a d

I4

I5
c e

I6 O2

I7

0

1

1

1

0

1

1

0

0

0

0

1

0

0

P = 0

P = 0

P = 0

P = 1

P = 0

P = 1
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Fig. 2. An example circuit. The number above each wire is the signal value
under the i-th input pattern in the MC simulation. The red number above each
gate n is the change propagation matrix entry P [i, n,O1] computed by the
method in Section IV-B, which is fast but sometimes inaccurate. Particularly,
P [i, a, O1] = 0 is inaccurate, and the accurate value P [i, a, O1] = 1 can be
obtained by the method in Section IV-C.

In this work, we propose a method to enhance the accuracy
of batch error estimation while still using a small amount
of MC simulation. The procedure of our proposed method,
VECBEE, is shown in Algorithm 2. It gives the error increases
for all the ALTs of the current approximate circuit.

Algorithm 2: The proposed batch error estimation
procedure, VECBEE, for one iteration in an ALS flow.

Input: the original circuit Corg, the current approximate
circuit Capp, and the sample number M in the MC
simulation;

Output: the vector ΔE of error increases for all the ALTs
of Capp;

1 generate the matrix Ω representing M random input patterns;
2 simulate Corg with Ω and get the output value matrix Oorg;
3 simulate Capp with Ω and get the node value matrix Napp;
4 identify candidate ALT set S from Capp;
5 P ← GetCPM(Capp, Napp);
6 foreach ALT A in S do
7 ΔE[A] ← ErrorEstimate(A, Capp, P , Oorg, Napp);

8 return ΔE;

Assume the number of samples used in the MC simulation
is M , the number of outputs of the original circuit is O,
and the number of nodes of the current approximate circuit
is N . Line 1 first generates M random input patterns, which
are sampled from a given input distribution. Then, Lines 2–3
apply them to both the original circuit Corg and the current
approximate circuit Capp, and produce the output value matrix
Oorg of the original circuit and the node value matrix Napp
of the current approximate circuit, which will be used later.
The matrix Oorg is an M × O matrix. It records the values
for all the POs of Corg in the simulation. Each entry in Oorg
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is indexed as Oorg[i, o], where 1 ≤ i ≤ M corresponds to the
i-th input pattern and o is a PO of the circuit Corg. The entry
Oorg[i, o] gives the value of PO o under the i-th input pattern.
The matrix Napp is an M × N matrix. It records the values
for all the nodes of Capp in the simulation. Each entry in Napp
is indexed as Napp[i, n], where 1 ≤ i ≤ M corresponds to the
i-th input pattern and n is a node in the approximate circuit
Capp. The entry Napp[i, n] gives the value of node n under the
i-th input pattern.

Lines 5–7 are the key steps of VECBEE. In order to obtain
the error increase caused by each ALT, we propose to first
characterize whether a value change occurring at the output
of the local circuit affected by the ALT will be propagated to
each PO. To capture the local change propagation, we define
a change propagation matrix.

Definition 1 A change propagation matrix (CPM) P for a
circuit is a three-dimensional 0-1 matrix of size M ×N ×O.
Each entry in the CPM is indexed as P [i, n, o], where 1 ≤ i ≤
M corresponds to the i-th sample in the MC simulation, n is
a node in the circuit, and o is a PO of the circuit. The entry
P [i, n, o] = 1 if and only if a value change on node n can be
propagated to the output o under the i-th input pattern.

Line 5 obtains the CPM for the current approximate circuit
Capp based on the node value matrix Napp obtained before.
Two detailed implementations of this step will be shown
in Sections IV-B and IV-C, respectively. Specifically, Sec-
tion IV-B shows a very efficient but sometimes inaccurate
method to obtain CPM. Section IV-C extends the method
to an efficiency-accuracy configurable version, which can be
configured into a fully accurate version with a longer runtime.
After obtaining the CPM, Line 7 estimates the error increase
for each ALT of Capp based on the CPM and the matrices Oorg
and Napp. Its detail will be described in Section IV-D. Note
that with the help of the CPM, estimating the error increases
for all the ALTs requires no additional MC simulation of the
entire circuit.

B. An Efficient Approximate Method to Obtain CPM
In this section, we present a very efficient method to obtain

the CPM. However, it is subject to some accuracy loss. The
method is based on Boolean difference, defined as follows.

Definition 2 Given a function f , its Boolean difference (BD)
over a variable x is denoted as ∂f

∂x and computed as:
∂f

∂x
= fx ⊕ fx̄, (3)

where fx and fx̄ are the positive cofactor and the negative
cofactor of f with respect to x, obtained by setting x to 1 and
0 in f , respectively.

The BD ∂f
∂x is a function on all the other input variables

of f except x. By definition, if a combination of all the other
input variables lets the BD ∂f

∂x be 1, then for this combination,
the value of f will change if x changes.

For each node n in the circuit, we define Sn as the set of
direct fanouts of node n. For each 1 ≤ i ≤ M , each node n
in the circuit, and each node nf ∈ Sn, we use the variable

D[i, n, nf ] to represent the value of BD
∂nf

∂n under the i-th
input pattern. To efficiently obtain the CPM, we need to obtain

the value for each D[i, n, nf ], which can be obtained by two

steps. First, we compute the BD
∂nf

∂n by Eq. (3). This gives
a function g on all the other inputs of nf except n. Then,
we apply the values of the other inputs under the i-th input
pattern to the function g and get the value D[i, n, nf ].

Example 2 In Fig. 2, the function of node O2 is e+ I7.
By Eq. (3), the BD of O2 with respect to e is ∂O2

∂e =
1 + I7⊕0 + I7 = I7. Since I7 = 1 under the i-th input pattern,
we have that D[i, e, O2] = 0. Similarly, we can obtain that
D[i, d, O1] = 1, D[i, b, d] = 0, D[i, c, d] = 0, D[i, c, e] = 0,
D[i, a, b] = 1, and D[i, a, c] = 1.

If D[i, n, nf ] = 1, it means that a value change on n will
be propagated to nf under the i-th input pattern.

Now, we show how to obtain the CPM. For each fixed i
and fixed PO o, we will get P [i, n, o] for each node n in the
circuit. We first handle the case where n is just o. Since a
value change on o can always be observed at o itself, we have
P [i, o, o] = 1. Then, we obtain the values of P [i, n, o] for all
the remaining nodes n in the circuit in a reverse topological
traversal over the circuit. We start from the sink nodes, such
as O1 and O2 in Fig. 2. For any sink node n except o, since
it can never have PO o as its TFO, its value change cannot be
observed at o. Thus, we have P [i, n, o] = 0. For any other node
n, the value P [i, n, o] can be recursively calculated. Indeed,
a value change on n can be observed at the output o when
n has a fanout nf satisfying that 1) the value change on n
causes a value change on nf and 2) the latter change can be
propagated to the output o. These two conditions correspond
to D[i, n, nf ] = 1 and P [i, nf , o] = 1, respectively. Thus, we
have the following recursive formula for calculating P [i, n, o]:

P [i, n, o] =
∨

∀nf∈Sn

(P [i, nf , o] ∧D[i, n, nf ]). (4)

Example 3 Consider the circuit in Fig. 2. Suppose that we
want to get the CPM entries P [i, n,O1] for all the nodes
n in Fig. 2 under the i-th simulation sample. Initially, we
have P [i, O1, O1] = 1. For the sink node O2, we have
P [i, O2, O1] = 0. By applying Eq. (4) in a reverse topological
order and using the BD values from Example 2, we can obtain

P [i, d, O1] = P [i, O1, O1] ∧D[i, d, O1] = 1,

P [i, e, O1] = P [i, O2, O1] ∧D[i, e, O2] = 0,

P [i, c, O1] = (P [i, d, O1] ∧D[i, c, d])

∨ (P [i, e, O1] ∧D[i, c, e]) = 0.

P [i, b, O1] = P [i, d, O1] ∧D[i, b, d] = 0,

P [i, a, O1] = (P [i, b, O1] ∧D[i, a, b])

∨ (P [i, c, O1] ∧D[i, a, c]) = 0.

From the above example we can see that by applying Eq. (4)
in a reverse topological order, the CPM entry P [i, n,O1] for
each node n in Fig. 2 is obtained with a small amount of
additional computation. This is clearly much faster than a
straightforward method to obtain a CPM entry, in which the
value of the corresponding node is first flipped and then the
entire TFO of the node is re-simulated.

From the above CPM entries, we can conclude that a value
change on d can be propagated to O1 for the i-th simulation
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sample, while the changes on a, b, c, and e cannot. We also
remark that all the above CPM entries except P [i, a, O1] are
correct. The accurate value of P [i, a, O1] is actually 1. This
inaccuracy will be analyzed in detail in Example 4.

The procedure of computing the CPM is shown in Algo-
rithm 3. It takes a circuit C and a node value matrix Nv

obtained from an MC simulation as inputs. Line 2 computes
the D[i, n, nf ] values based on the BD function and the local
input values of each node n. Line 5 sets the CPM entry
P [i, o, o] to 1. Lines 6–7 set the CPM entry P [i, n, o] to 0
for each sink node n in the circuit except node o. Lines 8–13
compute the values P [i, n, o] according to Eq. (4) for all the
remaining nodes in the circuit.

Algorithm 3: The function GetCPM(C, Nv) for com-
puting the change propagation matrix P .

Input: a circuit C and a node value matrix Nv obtained
from MC simulation;

Output: three-dimensional change propagation matrix P ;
1 M ← number of samples in the MC simulation;
2 compute D[i, n, nf ] from the node value matrix Nv for all

1 ≤ i ≤ M , nodes n in C, and fanouts nf of node n;
3 foreach PO o in C do
4 for i from 1 to M do
5 P [i, o, o] ← 1;
6 foreach sink node n in C except node o do
7 P [i, n, o] ← 0;
8 foreach node n in C except node o and sink nodes in

reverse topological order do
9 Sn ← the set of direct fanouts of node n;

10 for i from 1 to M do
11 P [i, n, o] ← 0;
12 foreach node nf in Sn do
13 P [i,n,o]←P [i,n,o]∨(P [i,nf ,o]∧D[i,n,nf ]);

14 return P ;

However, the obtained CPM is sometimes inaccurate due to
the existence of reconvergent paths. Below shows an example.

Example 4 In Fig. 2, node a can reach PO O1 through either
the path a → b → d → O1 or the path a → c → d → O1.
Example 3 shows that P [i, a, O1] = 0. However, this CPM
value is inaccurate. If we change a’s value from 0 to 1 and
simulate the circuit again, we will have a = 1, b = 1, c = 1,
d = 1, and O1 = 1. Since O1 = 0 originally, a value change
on a is propagated to O1 under the i-the input pattern. Thus,
the correct value of P [i, a, O1] should be 1.

The reason why the existence of reconvergent paths causes
failure of Eq. (4) in Example 4 can be understood as follows.
By Eq. (4), P [i, a, O1] depends on P [i, b, O1], which further
depends on D[i, b, d]. This dependency is essentially due to
the path a → b → d → O1. Since ∂d

∂b = c, D[i, b, d] is the
value of c under the i-th input pattern. Due to the existence
of another path a → c → d → O1, the value of c depends
on the value of a. However, during the recursive procedure to
calculate P [i, a, O1], we use the value of c before a changes.
This causes a wrong value for D[i, b, d] and hence, a wrong
value for P [i, a, O1].
C. Improving the Accuracy of CPM Calculation: An
Efficiency-Accuracy Configurable Approach

In this section, we show methods to improve the accuracy
of CPM calculations. We first show how to obtain the fully

accurate CPM. Then, we present a method to trade accuracy
for runtime efficiency.

1) Calculating Fully Accurate CPM: In order to introduce
our method for computing a fully accurate CPM, we first give
the following definitions.

Definition 3 Assume that node n2 is a TFO of node n1.
The sub-circuit between nodes n1 and n2 is a sub-circuit
consisting of the nodes and edges on all paths from n1 to n2.

For example, the sub-circuit between nodes a and O1 in
Fig. 2 consists of nodes a, b, c, d, and O1 and the edges
connecting them, since there are two paths from a to O1,
a → b → d → O1 and a → c → d → O1. By definition,
the sub-circuit between nodes n1 and n2 can be obtained by
intersecting the TFO cone of n1 and the TFI cone of n2.

Definition 4 The one-cut between a node n and a PO o is a
node t not equal to n and closest to n satisfying that all paths
from n to o pass through t.

For example, in Fig. 2, the one-cut between node a and PO
O1 is node d, and that between node a and PO O2 is node c.

Assume that the one-cut t between a node n and a PO o
has been determined. Then, we can derive the CPM entries
P [i, n, o] for each i. The one-cut t between n and o divides
the sub-circuit between n and o into two. The first is the
sub-circuit between n and t and the second is the sub-circuit
between t and o. By the property of the one-cut t, all paths
from n to o pass through t. Therefore, if a value change on n
propagates to o (i.e., P [i, n, o] = 1), then that change should
propagate to t through the first sub-circuit (i.e., D[i, n, t] = 1,
where D[i, n, t] is the BD of t with respect to n under
the i-th input pattern), and the value change on t should
further propagate to o through the second sub-circuit (i.e.,
P [i, t, o] = 1). Thus, we can calculate P [i, n, o] as follows:

P [i, n, o] = P [i, t, o] ∧D[i, n, t]. (5)

We apply Eq. (5) to calculate entries P [i, n, o] following
a reverse topological order on all the nodes in the circuit.
Thus, when we apply the equation to compute P [i, n, o]
for a particular n, P [i, t, o] has already been obtained. The
remaining task is to obtain the BD D[i, n, t]. It is done by
simulating the sub-circuit between n and t. Specifically, under
the i-th PI pattern, we flip the value of n and re-simulate the
sub-circuit between n and t. If the value of t changes, we have
D[i, n, t] = 1; otherwise, D[i, n, t] = 0.

Example 5 In Fig. 2, the one-cut between a and O1 is d. To
compute D[i, a, d] under input pattern i, we change the value
of a from 0 to 1 and then simulate the sub-circuit between a
and d. We get d = 1. Thus, the value change of a propagates to
d and hence, D[i, a, d] = 1. Since P [i, d, O1] = 1, by Eq. (5),
we have P [i, a, O1] = P [i, d, O1] ∧D[i, a, d] = 1. Compared
to Example 3, the new method obtains an accurate CPM entry.

The last problem is how to find the one-cut between a node
n and a PO o. A network flow-based approach is designed to
solve the problem. Initially, the sub-circuit Gsub between n
and o is extracted. We treat the node n as the input node with
an initial incoming flow of 1. The flow starts from the input
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node n and propagates through nodes in the sub-circuit Gsub

in a topological order. Each node has a total incoming flow
and each edge has an associated flow. The total incoming flow
of a node except n is the sum of the flows on its incoming
edges, while the flow on an edge equals the total incoming
flow of its source node divided by the number of fanouts of
the source node. In other words, the total incoming flow of
a node is distributed evenly among the outgoing edges of the
node. The first node except n in the topological order with a
total incoming flow of 1 is the one-cut between node n and
o. Note that the total incoming flow of 1 guarantees that all
paths from n to o must pass through the node.

Example 6 Suppose that we want to obtain the one-cut be-
tween node a and PO O1 in Fig. 2. The sub-circuit between
a and O1, Gsub, consists of nodes a, b, c, d, and O1 in a
topological order. The incoming flow to node a is set as 1.
That flow is distributed evenly over the two outgoing edges
of a. Thus, the flows on edges (a, b) and (a, c) are both 1/2.
Within the sub-circuit Gsub, b has only one incoming edge
(a, b) and hence, the total incoming flow of b is 1/2. The
same for node c. Within the sub-circuit Gsub, node b has a
single outgoing edge (b, d). Thus, the flow on that edge is 1/2.
Similarly, the flow on edge (c, d) is 1/2. Finally, we can get
the total incoming flow of node d as 1. Since d is the first
node except a in the topological order with a total incoming
flow of 1, it is the one-cut between a and O1.

2) Trade-off Between Efficiency and Accuracy: The last
subsection shows a method to obtain the CPM accurately.
However, it can take a long runtime. To compute the exact
CPM entry P [i, n, o] by Eq. (5), it needs to calculate the BD
value D[i, n, t] by flipping the value of node n and simulating
the sub-circuit between node n and the one-cut t. When
t is far from n, it is time-consuming to simulate the sub-
circuit. To avoid simulating a complex sub-circuit with a large
logic depth, we set a depth limit l on the sub-circuit. If the
logic depth between n and t is at most l, Eq. (5) is applied
to compute an exact CPM entry. Otherwise, the following
equation is used to compute the entry approximately:

P [i, n, o] =
∨

∀nf∈S′
n,l

(P [i, nf , o] ∧D[i, n, nf ]), (6)

where S′
n,l is the l-th level boundary of node n.

Generally speaking, the l-th level boundary S′
n,l of node n is

a set of nodes in n’s TFO cone such that the logic levels of all
the nodes are at least l. To produce the l-th level boundary, we
first extract the TFO cone of n and relabel the logic levels of
all nodes in the cone. The level of a non-PO node k in the cone
is the length of the longest path from n to k, while that of a PO
is labelled as +∞. The 1st level boundary of n consists of the
direct fanouts of n. To obtain the l-th (l > 1) level boundary,
a node set S is initialized with the 1st level boundary of n.
The levels of all nodes in the l-th level boundary are required
to be at least l. If the requirement is not satisfied for a node
in S, then a node u with the smallest level in S is replaced
by all of its fanouts. This update is repeated until the levels
of all nodes in S are at least l. At this moment, the obtained
node set S is the l-th level boundary.

Example 7 Fig. 3 shows the TFO cone of node a, where each
number is the logic level of the corresponding node. Nodes o1
and o2 are POs and their logic levels are set to +∞. By
definition, the 1st level boundary of a is formed by the direct
fanouts of a. Thus, S′

a,1 = {b, c, d}. To obtain the 2nd level
boundary of a, nodes b and c in S′

a,1, which are with levels less
than 2, are replaced by their direct fanouts d, e, and o2, all of
which are with levels at least 2. Thus, the 2nd level boundary
of a is S′

a,2 = {d, e, o2}. To obtain the 3rd level boundary of
a, node d in S′

a,2 is replaced with its direct fanout e of level
3. Thus, the 3rd level boundary of a is S′

a,3 = {e, o2}.

a, 0

b, 1

c, 1

d, 2 e, 3 o1,∞

o2,∞

Fig. 3. Examples of l-th level boundary. The red, blue, and orange polygons
circle out the 1st, 2nd, and 3rd level boundary of a, respectively.

The depth limit l can tune the accuracy of CPM. When
l = 1, Eq. (6) degrades into Eq. (4), because S′

n,1 only contains
the direct fanouts of n. As l becomes larger, nodes in S′

n,l are
further away from n, as shown in Example 7. Therefore, more
reconvergent paths starting from node n converge before the
l-th level boundary and hence, the accuracy of CPM computed
by Eq. (6) increases. When l becomes sufficiently large, then
Eq. (5) is applied to compute every entry in the CPM, and the
CPM becomes fully accurate.

Algorithm 4: The function GetCPM(C,Nv, l) for
computing the change propagation matrix P under the
depth limit l.

Input: a circuit C, a node value matrix Nv obtained from
MC simulation, and a depth limit l;

Output: three-dimensional change propagation matrix P ;
1 M ← number of samples in the MC simulation;
2 foreach PO o in C do
3 for i from 1 to M do
4 P [i, o, o] ← 1;
5 foreach sink node n in C except node o do
6 P [i, n, o] ← 0;
7 foreach node n in C except node o and sink nodes in

reverse topological order do
8 get the one-cut t between n and o;
9 if logic depth between t and n is at most l then

10 for i from 1 to M do
11 compute D[i, n, t] from matrix Nv;
12 P [i, n, o] ← P [i, t, o] ∧D[i, n, t];
13 else
14 get the l-th level boundary S′

n,l of node n;
15 for i from 1 to M do
16 P [i, n, o] ← 0;
17 foreach node nf in S′

n,l do
18 compute D[i, n, nf ] from matrix Nv;
19 P [i, n, o] ←

P [i, n, o] ∨ (P [i, nf , o] ∧D[i, n, nf ]);
20 return P ;

Based on the above discussion, we can update Algorithm 3
into an efficiency-accuracy configurable version, which is
shown in Algorithm 4. Besides the same inputs as Algorithm 3,
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it has an extra input, the depth limit l. For each PO o, Lines 4–
6 first initialize CPM entries for PO o and the sink nodes.
For each node n except PO o and the sink nodes in reverse
topological order, Line 8 first obtains the one-cut t between
n and o. If the logic depth between t and n is at most l, we
obtain CPM by Eq. (5) (see Lines 9–12). Otherwise, Line 14
first obtains the l-th level boundary S′

n,l of node n and then
Lines 15–19 obtain CPM by Eq. (6).

We remark that Line 8 obtains the one-cut for each pair of
node n and PO o, which is time-consuming for large circuits.
We can accelerate this step by first analyzing the given circuit
and recording whether for each pair of node n and PO o, the
direct fanouts of n reconverge to o. If not, the corresponding
CPM entry can be obtained by Eq. (4) without the need to
compute the one-cut between n and o. Otherwise, we still
get the one-cut between n and o, and then use Lines 9–19 in
Algorithm 4 to get the CPM entry.

D. Error Estimation for a Single ALT

After we obtain the CPM, we can use it to do batch error
estimation for all the ALTs of the current approximate circuit,
as shown by Lines 6–7 in Algorithm 2. The key step is to
obtain the error increase for an ALT based on the CPM.
Its flow is shown in Algorithm 5. It is generally applicable
to any statistical error measure. It takes an ALT A under
consideration, the current approximate circuit C, and the CPM
P for the circuit C as inputs. Besides, it also has the output
value matrix Oorg of the original circuit and the node value
matrix Napp of the approximate circuit C as inputs. They are
obtained from the MC simulation shown in Algorithm 2.

Line 2 extracts the output value matrix Oapp of the circuit
C from the matrix Napp, which will be used later. Line 3
identifies the local circuit CL of C affected by the ALT A.
Line 4 further gets the output node nx of the local circuit
CL. Node nx is important since the effect of the ALT can
be observed from this node. In order to derive the error
increase caused by the ALT, Lines 5–7 then obtain the MC
simulation results of nx before and after we apply the ALT.
The simulation result of a node n is represented by a signal
value vector, which is a size-M vector with the i-th entry
giving the signal value of the node under the i-th input pattern.
The signal value vector vapp of node nx before we apply the
ALT is extracted from the node value matrix Napp in Line 5.
Lines 6–7 derive the signal value vector vnew of node nx after
we apply the ALT. Specifically, Line 6 first applies the ALT
A to the local circuit CL to derive a new local circuit CL,new.
Line 7 then obtains the signal value vector vnew. Since the
inputs of the local circuit CL,new are not affected by the ALT,
thus, we only need to simulate CL,new from its local inputs
using the input patterns stored in the node value matrix Napp.
This avoids the costly re-simulating of the entire circuit.

Then, the procedure goes through all the M input patterns
and accumulates the error increase. For each input pattern, it
first judges whether the value of nx changes after we apply
the ALT. This can be done by comparing vapp[i] and vnew[i]
(see Line 9). If the value of nx does not change, then for
the current input pattern, all the PO values do not change
after we apply the ALT. Consequently, the error increase is 0.
Otherwise, Lines 10–13 calculate the error increase.

Algorithm 5: The function ErrorEstimate(A, C, P ,
Oorg, Napp) for estimating the error increase of a single
ALT.

Input: an ALT A, an approximate circuit C, a CPM P , and
the output value matrix Oorg of the original circuit
and the node value matrix Napp of the approximate
circuit C obtained from the MC simulation;

Output: error increase ΔE;
1 ΔE ← 0; M ← number of samples in the MC simulation;
2 Oapp ← the output value matrix of C extracted from Napp;
3 CL ← the local circuit of C affected by A;
4 nx ← the output node of CL;
5 vapp ← node nx’s signal value vector extracted from Napp;
6 apply A to CL to get the new local circuit CL,new;
7 simulate CL,new from its local inputs using the values in Napp

and obtain the signal value vector vnew of node nx after we
apply A;

8 for i from 1 to M do
9 if vapp[i] �= vnew[i] then

10 Onew[i, :] ← GetNewOutputs(Oapp[i, :], P [i, nx, :]);
11 Eapp ← Error(Oapp[i, :], Oorg[i, :]);
12 Enew ← Error(Onew[i, :], Oorg[i, :]);
13 ΔE ← ΔE + Enew − Eapp;
14 return ΔE;

Assume that the errors of the new and the current ap-
proximate circuits are Enew and Eapp, respectively, where the
new approximate circuit is derived by applying the ALT to
the current one. The error increase equals (Enew − Eapp).
The notations Onew[i, :], Oapp[i, :], and Oorg[i, :] represent the
values of all the POs of the new approximate circuit, the
current approximate circuit, and the original circuit, respec-
tively, under the i-th input pattern. To calculate the error
increase, Line 10 first gets the output values Onew[i, :] of the
new approximate circuit. They are obtained by the function
GetNewOutputs based on the CPM and the output values
Oapp[i, :] of the current approximate circuit. For any PO o,
the function calculates Onew[i, o] as follows:

Onew[i, o] =

{
Oapp[i, o], if P [i, nx, o] = 1

Oapp[i, o], if P [i, nx, o] = 0
.

Line 11 calculates the value Eapp by the function Error
based on the output values of the current approximate circuit
and those of the original circuit, while Line 12 calculates the
value Enew by the same function based on the output values of
the new approximate circuit and those of the original circuit.
The function Error(A, B) calculates the error of the output
values A of an approximate circuit over the correct output
values B for one sample point in the MC simulation. The
calculation depends on the error metric of interest and can
be defined for any statistical error measure. We next illustrate
how the function is implemented for two typical statistical
error measures, ER and AEM.

• When the error measure is ER, the function returns 0 if
the output values A and B are equivalent. Otherwise, it
returns 1

M , since we just consider 1 sample point out of
M in the MC simulation.

• When the error measure is AEM, the function returns
1
M |Bin(A) − Bin(B)|, where the function Bin(X) gives
the binary number encoded by X .

Finally, Line 13 adds the error increase (Enew − Eapp) for
the current sample point to the total error increase ΔE.
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Since the error increase obtained by VECBEE is over
the current approximate circuit, the amount of error increase
may even be negative for some ALTs, which are favorable
choices. Due to the high accuracy of VECBEE, we are able
to identify these favorable ALTs and improve the quality of
the synthesized approximate circuit.

E. Time Complexity Analysis

In this section, we analyze the time complexity of VECBEE
for batch error estimation of all candidate ALTs in an iteration
of the ALS flow. VECBEE is shown in Algorithm 2. Assume
that the depth limit is l, the number of candidate ALTs is T ,
and the number of input patterns in the MC simulation is M .
Assume that the circuit has N nodes, E edges, and O outputs.
Thus, the average fanout number of the circuit is b = E/N .
VECBEE involves two major steps: 1) obtaining the CPM (see
Line 5 in Algorithm 2) and 2) calculating the error increases
for all the candidate ALTs (see Lines 6–7 in Algorithm 2).

For the first step, we analyze the general approach to
compute the CPM, which is shown in Algorithm 4. It involves
obtaining the one-cuts and calculating the CPM values by
Eq. (5) or Eq. (6). The time complexity of obtaining the one-
cuts is Θ(N(N + E)O). This is because we need to find
the one-cut for each pair of node n and PO o and finding
each one-cut requires a few invocations of the graph search
algorithm and the topological sorting algorithm, which have
time complexity Θ(N + E). To compute the CPM, we also
need to compute the BD values by simulating a sub-circuit for
each node n. The depth of the sub-circuit is roughly bounded
by l. Given the average fanout number b, the size of each
sub-circuit is Θ(bl). Thus, the time complexity for simulating
all the sub-circuits over all the input patterns is Θ

(
MNbl

)
.

The time complexity of calculating the CPM by Eq. (6) is
dominated by Line 19 in Algorithm 4. Since the size of the
set S′

n,l is Θ(bl), the number of occurrences of Line 19 is

Θ(MONbl). In summary, the time complexity of Algorithm 4
is Θ

(
N(N + E)O +MNbl(1 +O)

)
. Usually, N = O(M)

and E = Θ(N). Thus, the time complexity for computing the
CPM is Θ

(
MNObl

)
.

To calculate the error increases for all the candidate ALTs,
Algorithm 5 needs to be applied T times. The most time-
consuming steps in the algorithm are the simulation of the
local circuit CL,new at Line 7 and the loop from Line 8
to Line 13. The time complexity of the loop is Θ(MO),
as several steps in the loop body work on vectors of size
O. The time complexity of the local circuit simulation is
Θ(M(NL+EL)), where NL and EL are the number of nodes
and the number of edges of the local circuit, respectively.
Since the local circuit is typically small, the overall time
complexity of Algorithm 5 is Θ(MO). Therefore, the total
time complexity to obtain the error increases for all the
candidate ALTs is Θ(MTO).

Thus, the time complexity of VECBEE is
Θ
(
MO(Nbl + T )

)
. It should be noted that the number

of candidate ALTs T depends on the specific ALS flow. For
example, T is quadratic to N for SASIMI [21] and linear to
N for ANS [22]. Nevertheless, we generally have T = Ω(N).
For a small l, we can treat bl as a constant. Consequently,
the time complexity of VECBEE can be simplified to

Θ(MOT ). For comparison purpose, consider the traditional
simulation-based method, which performs the MC simulation
on the entire circuit for each candidate ALT to obtain its
accurate error increase. In order to get the error increase for
one ALT, the simulation runtime is Θ(M(N + E)), where
M is due to the M input patterns and (N + E) is due to
the forward propagation of the input values to the outputs.
Given that there are T ALTs in total, the time complexity of
the traditional simulation-based method is Θ(M(N + E)T ).
Since the number of outputs of a circuit is typically much
smaller than its number of nodes, VECBEE is much more
efficient than the traditional simulation-based method.

V. EXPERIMENTAL RESULTS

This section presents the experimental results on VECBEE.

A. Experiment Setup
To study the effectiveness of VECBEE, we apply it to two

existing greedy ALS flows, SASIMI [21] and ANS [22]. They
are described in details in Section II-A. In each iteration, they
evaluate the error increases and the quality improvement for all
the ALTs and apply the one with the highest FOM calculated
as the ratio of the quality improvement over the error increase.
For these methods, they just perform quick but inaccurate error
estimation, as described in Section II-A.

Since we do not have the source code of SASIMI, we
reimplement it using C++. We use the logic synthesis tool
SIS [51] for technology mapping. Since SIS does not consider
logic effort of gate during the mapping, the gates are not
down-sized when timing requirement is relaxed. Thus, we do
not consider the impact of logic downsizing as the original
SASIMI. However, we guarantee that the ALT does not
increase the circuit delay. This gives the baseline SASIMI
method we use in the experiments.

We apply VECBEE to both SASIMI and ANS. The resulting
ALS flows are called VECBEE-SASIMI and VECBEE-ANS,
respectively. For comparison purpose, we also realize a version
of SASIMI enhanced with the traditional simulation-based
method, in which we simulate the entire circuit for each ALT
to evaluate its error. We call it FULLSIM-SASIMI.

All experiments are performed on a laptop with a quad-core
2.4GHz CPU (Intel I7-5500U) and a 8GB RAM. We assume
that the PIs are uniformly distributed. The depth limit l used
in Algorithm 4 is set to 1 unless otherwise specified. In the
previous conference version of our work [37], we use the same
set of random input patterns for all the iterations in the ALS
flow. However, the approximate circuits generated in such a
way may not satisfy the error threshold under another set of
input patterns. Thus, in the following experiments, different
sets of random input patterns are used in different iterations
of the ALS flow. To avoid the influence of randomness, we
perform the experiments in Sections V-E, V-F, and V-G 3 times
and report the averages of the metrics of interest, while the
other experiments are performed only once.

In terms of the number of samples used in MC simulation,
M , we find that setting it as 100000 generally gives a high-
accuracy error estimation. Thus, we set M = 100000 unless
otherwise specified. We also remark that if one looks for a
more systematic way to customize M for different circuits,
the method based on hypothesis test from [31] can be used.
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TABLE I
BENCHMARK CIRCUIT INFORMATION.

Name #I/O Function #nodes #literals Area Delay

c880 60/26 8-bit ALU 357 633 599 40.4
c1908 33/25 16-bit detector/corrector 880 759 1013 60.6
c2670 233/140 12-bit ALU and controller 1153 1357 1434 67.3
c3540 50/22 8-bit ALU 629 1674 1615 84.5
c5315 178/123 9-bit ALU 893 2461 2432 75.3
c7552 207/108 32-bit adder/comparator 1087 2552 2759 159.8

alu4 14/8 ALU 730 3199 2740 51.5
RCA32 64/33 32-bit ripple-carry adder 202 542 691 42.8
CLA32 64/33 32-bit carry-lookahead adder 303 843 1063 45.8
KSA32 64/33 32-bit kogge-stone adder 345 1031 1128 27.0
MUL8 16/16 8-bit array multiplier 436 978 1276 67.9
WTM8 16/16 8-bit Wallace tree multiplier 382 1008 1104 69.6
MAC 32/17 multiplier & accumulator 560 1351 1372 57.5

EUDIST 32/16 Euclidean distance unit 1122 2813 2731 87.3
SAD 48/13 sum of absolute differences 425 962 999 70.9

square 64/128 64-bit square unit 14967 37843 37672 355.5
sqrt 128/64 128-bit square root unit 16584 42199 43859 7304
div 128/128 128-bit divisor 17710 44475 47469 5533.8

multiplier 128/128 128-bit multiplier 20260 54911 54205 419.5
log2 32/32 32-bit log2 unit 27468 72635 69688 651.4

Table I lists a wide range of circuits used in our experiments,
including 6 ISCAS85 benchmark circuits [52], 9 arithmetic
circuits, and 5 large EPFL benchmark circuits [53].2 They are
well-optimized by SIS. The column “#nodes” lists the number
of nodes in the Boolean network representation of a circuit.
Notably, the last 5 EPFL circuits all have more than 10000
nodes. The column “#literals” lists the total number of literals
in all node functions of the Boolean network. The circuits are
mapped with the MCNC standard cell library [54].

B. Accuracy of Monte Carlo Simulation

TABLE II
SIMULATED ER (SER) BY MC SIMULATION VERSUS ACCURATE ER

(AER) AND SIMULATED AEM (SAEM) BY MC SIMULATION VERSUS

ACCURATE AEM (AAEM). DIFFERENT ROWS CORRESPOND TO

DIFFERENT APPROXIMATE VERSIONS OF A GIVEN CIRCUIT.

Approx.

version
alu4 WTM8 MUL8 WTM8

SER(%) AER(%) SER(%) AER(%) SAEM AAEM SAEM AAEM

ver. 1 0.390 0.361 0.210 0.244 1.751 1.750 1.863 1.875
ver. 2 0.550 0.549 0.250 0.244 3.784 3.750 3.795 3.797
ver. 3 0.870 0.885 0.570 0.629 7.390 7.437 7.780 8.008
ver. 4 1.120 1.068 1.090 1.010 13.729 13.758 15.589 15.621
ver. 5 3.070 3.033 2.890 2.923 25.574 29.939 29.028 28.839
ver. 6 5.190 5.060 4.310 4.388 59.0417 67.322 63.095 61.595

We validate the accuracy of MC simulation in this experi-
ment. Table II compares the simulated error obtained by MC
simulation with the accurate error obtained by enumerating
all the input patterns. We consider both ER and AEM. For
each error measure, we consider two approximate circuits
synthesized by SASIMI that are possible to enumerate all
the input patterns. Note that the minimum value of the total
number of input patterns among these circuits is 214 (i.e., given
by alu4). For a meaningful study, the number of samples in the
MC simulation, M , should be no more than 214. Therefore, we

2We remark that some ISCAS85 benchmark circuits listed in Table I
are inappropriate to be approximated, such as c1908, a 16-bit error detec-
tor/corrector. However, since they are used in SASIMI [21] and ANS [22],
we also include them in our experiments for a comprehensive study.

choose M as 10000 in this experiment instead of the default
value 100000. Different rows in the table correspond to differ-
ent approximate versions of a given circuit. From the table, we
can see that although the simulated error by MC simulation
and the accurate error are not equal, the difference between
them is usually small. Such a small deviation cannot influence
the functionality of the approximate circuits seriously due to
the error resilience of the target applications.

C. Accuracy of VECBEE

Fig. 4. The estimated ER (EER) by our method versus the simulated ER
(SER) by the traditional simulation-based method on three benchmarks.

In this section, we study the accuracy of VECBEE. We first
compare the estimated ER (EER) by VECBEE with l = 1
and the simulated ER (SER) by the traditional simulation-
based method for the approximate circuits of c880, RCA32,
and CLA32 synthesized by SASIMI. The results are shown
in Fig. 4. The horizontal axis gives the iteration number. As
shown in Fig. 4, the EERs obtained by VECBEE is close to
the SERs for all the iterations of the 3 circuits. However, due
to the existence of reconvergent paths, EER and SER are not
always equal, such as the 24th iteration of CLA32. We can
also see that both the EER and the SER of CLA32 decrease in
the 25th and 30th iteration. This demonstrates that VECBEE
can effectively identify ALTs that can cause error decrease.

TABLE III
ACCURACY OF VECBEE UNDER l = 1, 2, 4, +∞ COMPARED TO THE

TRADITIONAL SIMULATION-BASED METHOD. CP: CORRECTNESS

PERCENTAGE; AERD: AVERAGE ERROR RATE DIFFERENCE.

l = 1 l = 2 l = 4 l = +∞
Circuit

CP/% AERD CP/% AERD CP/% AERD CP/% AERD

c880 62.8 1.4E-02 74.8 5.5E-03 84.6 1.9E-03 100.0 0
c1908 52.2 3.9E-02 86.3 1.3E-02 89.0 1.2E-02 100.0 0
c2670 58.5 2.3E-02 86.5 5.7E-03 87.4 5.4E-03 100.0 0

RCA32 92.1 1.6E-02 99.5 1.0E-04 99.9 1.0E-05 100.0 0
CLA32 42.3 8.2E-02 95.1 3.2E-03 98.4 3.0E-05 100.0 0
KSA32 39.3 1.1E-01 100.0 1.0E-05 100.0 0 100.0 0

square 98.5 1.1E-04 99.0 6.3E-05 99.5 1.6E-05 100.0 0
sqrt 72.2 4.8E-03 72.7 4.7E-03 73.7 4.7E-03 100.0 0
div 100.0 4.4E-07 100.0 4.4E-07 100.0 6.2E-08 100.0 0

multiplier 97.2 1.5E-04 98.8 5.8E-05 100.0 0 100.0 0
log2 87.5 5.1E-04 87.5 5.0E-04 87.6 5.0E-04 100.0 0

Then, we demonstrate that VECBEE can be configured to
more accurate modes by changing the parameter l. We test
VECBEE-SASIMI with different values of l to estimate the
ERs for the circuits listed in the first column of Table III. The
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values of l we choose are 1, 2, 4, and +∞, where l = +∞
corresponds to the fully accurate version of VECBEE. The
golden ERs are obtained by the traditional simulation-based
method. For the first 6 small circuits, we set M as the
default value 100000, while for the last 5 large circuits from
EPFL, M is set as 1000 to make the traditional simulation-
based method feasible in runtime. We use two metrics to
evaluate the accuracy of VECBEE. The first is correctness
percentage (CP). It is defined as the percentage of the ALTs in
certain iterations of the ALS flow for which VECBEE obtains
the golden ER. The second is average error rate difference
(AERD). It is defined as the average difference between the
ER obtained by VECBEE and the golden one over all ALTs
in certain iterations of the ALS flow. For the first 6 small
circuits, we consider all the ALTs in the first 3 iterations of the
ALS flow. For the last 5 large circuits, to make the traditional
simulation-based method feasible in runtime, we only consider
all the ALTs in the first iteration of the ALS flow.

The experimental results are listed in Table III. We can see
that regardless of the circuit size, as the parameter l increases,
CP increases monotonically, while AERD decreases monoton-
ically. This shows that VECBEE becomes more accurate as l
increases, which is expected. When l equals +∞, CP becomes
100%, while AERD drops to 0. This verifies that VECBEE
with l = +∞ is fully accurate.

D. Runtime and Synthesis Quality of VECBEE

In this section, we study the runtime and synthesis quality of
VECBEE. We compare it with the traditional simulation-based
method, which guarantees the accuracy of error estimation,
but takes a long time. We apply both methods to the base-
line SASIMI. This gives VECBEE-SASIMI and FULLSIM-
SASIMI, as we mentioned in Section V-A.

TABLE IV
RUNTIME OF FULLSIM-SASIMI AND VECBEE-SASIMI.

Runtime of Runtime of VECBEE-SASIMI/s

Circuit
FULLSIM-SASIMI/s l = 1 l = 2 l = 4 l = +∞

c880 767.1 8.1 8.6 8.7 8.9
c1908 1221.9 17.0 17.1 17.3 18.1
c2670 2843.6 22.9 23.6 23.8 23.9

RCA32 608.0 11.1 11.3 11.3 11.4
CLA32 1495.4 15.4 15.4 17.2 18.8
KSA32 1863.9 18.3 18.5 19.4 20.0

square 10297.6 111.3 113.7 120.0 155.7
sqrt 25604.8 203.6 207.0 221.1 711.0
div 46794.2 450.1 455.2 469.3 1588.2

multiplier 40213.9 476.2 477.3 491.4 645.3
log2 115161.6 911.1 920.8 931.0 1683.5

Arithmean 22442.9 204.1 206.2 211.9 444.1
Acceleration 1× 110× 109× 106× 51×

1) Runtime of VECBEE: Table IV compares the runtime
of FULLSIM-SASIMI and VECBEE-SASIMI with different
depth limit l’s, using the same set of circuits listed in Table III.
Similar to Section V-C, VECBEE-SASIMI and FULLSIM-
SASIMI are applied for 3 iterations of the ALS flow with
M = 100000 for the first 6 small circuits, and for one iteration
of the ALS flow with M = 1000 for the last 5 large circuits.

From Table IV, we can see that regardless of the circuit size,
VECBEE-SASIMI is much faster than FULLSIM-SASIMI,

even for l = +∞. As expected, the runtime of VECBEE-
SASIMI increases with l. On average, VECBEE-SASIMI with
l = 1 achieves a speed-up of 110× over FULLSIM-SASIMI,
while that with l = +∞ achieves a speed-up of 51×.

From Table IV, we can also see that when l ≤ 4, the
runtime of VECBEE-SASIMI does not change a lot. However,
when l changes from 4 to +∞, the runtime of VECBEE-
SASIMI shows a large increase for some large circuits (e.g.,
log2). The reason is that l only affects the runtime of getting
the CPM. When l ≤ 4, the runtime of getting the CPM
does not increase much, and so is the overall runtime. When
l = +∞, the procedure of getting the CPM is the fully
accurate version based on one-cut. Its runtime is dominated
by the runtime of computing the BD value D[i, n, t] as shown
in Line 11 in Algorithm 4. For those large circuits with many
long reconvergent paths, the runtime of computing all the BD
values D[i, n, t] through simulating each sub-circuit between
a node n and its one-cut t increases significantly. Hence, the
runtime of getting the CPM increases significantly, leading to
a notable increase in the overall runtime.

TABLE V
RUNTIME OF VECBEE-ANS TO GENERATE APPROXIMATE EPFL
CIRCUITS UNDER AN ER THRESHOLD OF 1% WITH M = 100000.

Circuit square sqrt div multiplier log2
Runtime/h 8.23 20.85 25.81 18.84 11.83

We also remark that even accelerated by VECBEE, SASIMI
takes an excessively long time to finish all the rounds of the
ALS flow for the large EPFL circuits, since the number of
ALTs given by SASIMI for a circuit is quadratic to the node
number of the circuit [22]. However, for ALS methods with
fewer number of ALTs, e.g., ANS, the version accelerated
by VECBEE can handle the large circuits. Table V lists the
runtime of VECBEE-ANS on the 5 large EPFL circuits under
an ER threshold of 1% with the default value of M as 100000.
The runtime ranges from 8.2 hours to 25.8 hours. The long
runtime is mainly due to the large size of the circuits and
hence, the large number of ALTs. Furthermore, the large
number of ALTs also increases the number of iterations of
the ALS flow significantly, as each iteration is more likely to
identify an ALT with a very small induced error. Nevertheless,
the data also highlights the usefulness of VECBEE, since if
not accelerated by VECBEE, the runtime can reach more than
100 days for large circuits like div.3

2) Synthesis quality of VECBEE: As for the synthesis
quality, we compare the area ratios for the depth limits
l = 1, 2, 4,+∞ under the AEM constraint of 0.00153% for
the arithmetic circuits RCA32, CLA32, KSA32, MUL8, and
WTM8. The area ratio is the area of the approximate circuit
over that of the original circuit. The area ratios for different
circuits and different l’s are shown by the bars at the right
of Fig. 5. We can see that as l increases, the quality of the
final approximate circuits for some benchmarks (e.g., MUL8
and CLA32) keeps almost the same. This is reasonable, since
VECBEE achieves high enough accuracy when l = 1, 2, 4
as shown in Table III and hence, the final synthesis quality
is similar. However, we do see that as l increases, the areas

3It is estimated based on the average acceleration ratio for l = 1 in Table IV.
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Fig. 5. Synthesis quality and runtime of VECBEE-SASIMI under the AEM
constraint.

of some approximate circuits generated by VECBEE-SASIMI
decrease (e.g., KSA32 and RCA32), which indicates the need
to improve the accuracy of the error estimation.

To further understand the quality-runtime tradeoff, we also
show the normalized runtime for different circuits with differ-
ent l’s by the bars at the left of Fig. 5. The number at the
left of each red bar denotes the runtime for the corresponding
circuit with l = +∞, which is also the baseline value for
normalization. As expected, the runtime increases with l. By
considering the synthesis quality and runtime together, we can
conclude that the quality improvement generally comes with
a longer runtime, which is expected.

E. Performance of VECBEE-SASIMI under ER Constraint
This section studies the performance of VECBEE-SASIMI

under the ER constraint. We apply it to a set of circuits listed
in Table I, which are also used in [22], and measure the area
and delay ratios of the approximate circuits over the original
circuits. Fig. 6 plots how the area ratio changes with the ER.
We can see that VECBEE-SASIMI can reduce 15%–35% area
for most circuits under 5% ER threshold.
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Fig. 6. Area ratios of the approximate circuits obtained by VECBEE-SASIMI
over the original circuits for different ERs.

We also compare VECBEE-SASIMI with the baseline
SASIMI, which performs fast but inaccurate error estimation.
The results are shown in Table VI, which lists the average area
ratio and average delay ratio over 7 ER thresholds (i.e., 0.1%,
0.3%, 0.5%, 0.8%, 1%, 3%, and 5%) for each circuit. The
entries in bold highlight the cases where VECBEE-SASIMI
is better than the baseline SASIMI. It can be seen that for
all the circuits, VECBEE-SASIMI gives smaller area than
the baseline. For most circuits, the former also gives smaller
delay than the latter. Especially, for the circuit alu4, VECBEE-
SASIMI can reduce 13.8% more area and 14.8% more de-
lay than the baseline SASIMI. Considering all the circuits,
VECBEE-SASIMI on average can reduce 4.4% more area and
4.5% more delay than the baseline. This demonstrates that
VECBEE can truly improve the quality of SASIMI ALS flow

under ER constraint. It is also noted that for the circuits c5135,
c7552, KSA32, and WTM8, VECBEE-SASIMI increases the
delay over the baseline SASIMI. The main reason is that
VECBEE-SASIMI estimates the ALT errors more accurately
than SASIMI. Hence, it selects a different and possibly better
ALT in each iteration of the ALS flow than SASIMI. Since the
ALTs always cause area reduction and less frequently cause
delay reduction, these different choices always have a positive
impact on area, but may induce a negative impact on delay.

TABLE VI
COMPARISON BETWEEN THE BASELINE SASIMI AND VECBEE-SASIMI

UNDER THE ER CONSTRAINT.

Circuit
Average area ratio Average delay ratio

SASIMI VECBEE-SASIMI SASIMI VECBEE-SASIMI

c880 0.896 0.875 0.953 0.921
c1908 0.610 0.603 0.965 0.886
c2670 0.724 0.639 0.682 0.664
c3540 0.975 0.936 0.991 0.983
c5315 0.981 0.948 0.989 0.991
c7552 0.948 0.877 0.977 0.979
alu4 0.892 0.754 0.969 0.821

RCA32 0.972 0.961 0.694 0.652
CLA32 0.829 0.765 1.251 1.031
KSA32 0.848 0.835 0.833 0.872
MUL8 0.829 0.792 0.925 0.899
WTM8 0.959 0.945 0.937 0.947

Arithmean 0.872 0.828 0.922 0.887

F. Performance of VECBEE-SASIMI under AEM Constraint

In this section, we study the performance of VECBEE-
SASIMI under the AEM constraint. We apply it to the last 8
arithmetic circuits listed in Table I, which are also used in [21].
Fig. 7 plots how the area ratio changes with the AEM. Its
horizontal axis is the AEM rate, calculated as the AEM divided
by the maximum binary number encoded by the outputs of a
circuit. For AEM less than 0.2% of the maximum value, we
can obtain 16%–85% area reduction.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200

AEM rate (%)

0.2

0.4

0.6

0.8

1.0

A
re

a
 r

a
ti

o

RCA32

CLA32

KSA32

MUL8

WTM8

MAC

EUDIST

SAD

Fig. 7. Area ratios of the approximate circuits obtained by VECBEE-SASIMI
over the original circuits for different AEMs.

We also compare VECBEE-SASIMI with the original
SASIMI [21] for different AEM thresholds. The results for
the original SASIMI are taken from [21], and we choose
the same AEM thresholds as those in [21] for VECBEE-
SASIMI. Table VII lists the average area ratio over all the
AEM thresholds for each circuit. The entries in bold highlight
the cases where VECBEE-SASIMI is better than the original
SASIMI. For all the circuits, VECBEE-SASIMI saves much
more area than the original SASIMI, although it does not even
apply gate downsizing. On average, VECBEE-SASIMI has
an improvement of 1.8× in area over the original SASIMI.
The reason why the original SASIMI is much worse than



13

VECBEE-SASIMI is that it only uses the signal probability
difference between a pair of internal signals to guide the ALT
selection and it cannot predict the errors at different POs.
Therefore, it may choose ALTs that cause errors at the most
significant bits, hence reaching the AEM threshold too quickly.
This demonstrates that VECBEE is particularly helpful in
synthesizing approximate circuits under the AEM constraint.

TABLE VII
COMPARISON BETWEEN THE ORIGINAL SASIMI [21] AND

VECBEE-SASIMI UNDER THE AEM CONSTRAINT.

Average area ratio Average area ratio

Circuit
SASIMI VECBEE-SASIMI

Circuit
SASIMI VECBEE-SASIMI

RCA32 0.555 0.193 WTM8 0.863 0.390
CLA32 0.673 0.136 MAC 0.794 0.500
KSA32 0.423 0.140 EUDIST 0.869 0.785
MUL8 0.626 0.457 SAD 0.657 0.473

Overall arithmean, SASIMI = 0.683, VECBEE-SASIMI=0.384

G. Performance of VECBEE-ANS under ER Constraint

TABLE VIII
COMPARISON BETWEEN THE ORIGINAL ANS [22] AND VECBEE-ANS

UNDER THE ER CONSTRAINT.

Circuit
Average literal ratio Average area ratio Average delay ratio

ANS VECBEE-ANS ANS VECBEE-ANS ANS VECBEE-ANS

c880 0.904 0.883 0.891 0.888 0.942 0.937
c1908 0.830 0.864 0.536 0.567 0.685 0.746
c2670 0.797 0.755 0.635 0.613 0.627 0.610
c3540 0.978 0.867 0.989 0.987 0.933 0.852
c5315 0.982 0.884 0.938 0.950 0.661 0.645
c7552 0.972 0.905 0.911 0.865 0.734 0.715
alu4 0.875 0.707 0.758 0.761 0.665 0.680

RCA32 0.972 0.957 0.873 0.873 0.733 0.727
CLA32 0.913 0.899 0.738 0.725 0.831 0.836
KSA32 0.885 0.845 0.794 0.778 0.753 0.789
MUL8 0.982 0.970 0.806 0.811 0.829 0.841
WTM8 0.975 0.936 0.876 0.878 0.773 0.758

Arithmean 0.922 0.873 0.812 0.808 0.764 0.761

To further demonstrate the effectiveness and applicability
of VECBEE, in this section, we apply it to the ANS ALS
flow [22] and study the resulting VECBEE-ANS ALS flow
under the ER constraint. The same set of circuits listed in
Table VI is used here. Note that we do not consider the
AEM constraint, since ANS only targets at ER constraint. For
a fair comparison to ANS, we set M as 10000, the same
value used in ANS, here. ANS works on the Boolean network
representation of a circuit and optimizes the typical quality
measure of a Boolean network, the literal count. Thus, we
measure the total literal count here. Besides this, the areas and
delays of the final circuits mapped from the Boolean networks
are also obtained. We use ABC [55] to map the circuits and
report the areas. Meanwhile, SIS is used for a more accurate
delay measure, since SIS takes the output load of gates into
account when reporting the delay, while ABC does not.

The experimental results comparing the original ANS and
VECBEE-ANS under the ER constraint are shown in Ta-
ble VIII. For each method, we obtain the literal count ratios,
the area ratios, and the delay ratios of the approximate circuits
over the original circuits. We consider 7 ER thresholds, which
are 0.1%, 0.3%, 0.5%, 0.8%, 1%, 3%, and 5%, for each circuit.

The columns list the average literal count ratio, area ratio, and
delay ratio over the 7 ER thresholds for each circuit. The
entries in bold highlight the cases where VECBEE-ANS is
better than the original ANS. For most circuits, VECBEE-
ANS gives a smaller literal count than the original ANS.
Considering all the circuits, VECBEE-ANS reduces 4.9%
more literals and 0.4% more area than the original ANS on
average. It is worth noting that the reduction in area is smaller
than the reduction in literal count. We believe that this is
because the technology mapping tool, which maps the Boolean
network into the final circuit, does not always guarantee a
strong correlation between the literal count and the circuit
area. Nevertheless, since literal count is the major optimization
target of ANS, the significant reduction in literal count still
demonstrates the effectiveness of VECBEE.

VI. CONCLUSION

In this work, we propose VECBEE, a versatile efficiency-
accuracy configurable batch error estimation method for
greedy ALS flows. It is based our proposed CPM, which
can be efficiently built to capture the influence of all the
candidate ALTs on all the POs. It is generally applicable
to any statistical error measure and graph representation of
circuits. It allows runtime and accuracy trade-off and can be
configured to a fully accurate version. The experimental results
show that VECBEE has very high error estimation accuracy.
Furthermore, it is much faster than the traditional simulation-
based error estimation method. We apply VECBEE to two
existing ALS flows, SASIMI and ANS, and demonstrate that
VECBEE can help improve the synthesis quality of these ALS
flows. Currently, VECBEE only supports ALTs affecting local
circuits with a single output. In the future, we will study how
to enhance VECBEE to support ALTs affecting local circuits
with multiple outputs. A possible solution is to extend the
definition of the current CPM.
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