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Abstract—Stochastic computing (SC) operates on stochastic bit
streams, which can realize complex arithmetic functions with simple
circuits. A previous work shows that by introducing a little approximation
error for the target function, the cost of SC circuits can be dramatically
reduced. However, the previous heuristic method only explores a limited
subset of the solution space, so the optimality of the results cannot be
guaranteed. In this paper, we propose MinSC, an exact synthesis-based
method for minimal-area stochastic circuits under relaxed error bound.
First, a novel search method is proposed to find the best approximation
polynomial for a target function. Then, considering gates with different
fanin numbers and areas, an exact SC synthesis method using satisfiability
modulo theories is designed to obtain an area-optimal SC circuit realizing
the best approximation polynomial. The experimental results show that
compared with the state-of-the-art method, given an error ratio 0.05,
MinSC on average reduces the gate number, area, delay, and area-
delay-product of the SC circuits by 60.24%, 47.24%, 7.10%, 57.07%,
respectively.

Index Terms—stochastic computing, stochastic circuit synthesis, exact
synthesis, satisfiability modulo theories (SMT).

I. INTRODUCTION

With the development of CMOS technology, reliability has become
a great concern. Stochastic computing (SC), a re-emerging computing
paradigm [1], has received much attention due to its strong fault
tolerance. Instead of using binary radix encoding, SC encodes a real
value x ∈ [0, 1] by a stochastic bit stream, where x is the probability
of being a 1 for each bit. SC can use simple digital circuits to realize
many complex arithmetic functions. For example, the multiplication
of two numbers can be realized by a simple AND gate. Besides, it is
tolerant to bit flipping errors. Due to these advantages, SC has been
applied successfully to several applications, including error-correcting
coding [2], [3], image processing [4], [5] and neural networks [6]–[8].

In recent years, many methods are proposed for the synthesis of SC
circuits. The work [9] proposes a method to synthesize sequential SC
circuits. In [10], a method is designed to synthesize reconfigurable
combinational SC circuits. Besides, there are several works for the
synthesis of fixed combinational SC circuits [11]–[14], which is also
the focus of our work. The work [11] proposes a spectral transform-
based method to synthesize SC circuits. The work [12] proposes to
search for the SC circuits within an equivalence class. In [13], another
method is proposed that finds a good SC circuit through a heuristic
breadth-first search algorithm. The work [14] synthesizes SC circuits
based on truncated Maclaurin series polynomials.

However, these existing works still have the following issues.
• Issue 1: To realize a target function, existing methods first

approximate the function by the closest polynomial with the
minimal error and then synthesize an SC circuit for that poly-
nomial. However, realizing the closest polynomial usually leads
to a large hardware cost.
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• Issue 2: As shown in [12], [15], there are many different Boolean
functions realizing the same approximation polynomial, which
results in an extremely large solution space. In [11]–[14], they
only search a limited part of the space, so the results are sub-
optimal.

For some error-tolerant applications (e.g., image processing and
neural networks), the approximation error can be relaxed to some
extent. With the relaxed approximation error, we may find a better
approximation polynomial for the target function, which can realize
an SC circuit with reduced cost. This idea can address the above Issue
1. In [16], given an error bound and a target function, a dynamic
approximation (DA) method is proposed to heuristically search a
good approximation polynomial and synthesize the corresponding SC
circuit simultaneously. However, the method still has the following
drawbacks: 1) It does not search for the whole space to obtain the
best approximation polynomial, and the quality of the approximation
polynomial depends on the starting point of search; 2) The above
Issue 2 still remains: given a target approximation polynomial, there
are many different Boolean functions realizing it. However, the
heuristic method in [16] only explores a limited subset of the solution
space. Therefore, the obtained solution is still not optimal.

To reach the optimal solution, we apply exact synthesis to generate
SC circuits in this work. Exact synthesis is an approach of finding an
optimum Boolean network (e.g., in size or depth) for a given Boolean
function [17]. Several prior works apply exact synthesis for traditional
logic circuits. The work [18] compares different conjunction normal
form (CNF) encoding schemes and conducts satisfiability (SAT)-
based exact synthesis under different constraints. In [19], SAT-based
exact synthesis is applied to find a minimum-size network under delay
constraints. The work [17] compares different CNF encoding schemes
and uses topology information to leverage parallelism. In [20],
majority-inverter graphs (MIGs) are used as logic representation, and
satisfiability modulo theories (SMT)-based exact synthesis is applied
to minimize the MIG’s size and depth.

However, due to the exponential complexity, exact synthesis can
only find optimum solutions for small-scale circuits. Fortunately, as
many SC circuits only require a small number of gates, it is suitable
for SC circuit synthesis. As a preliminary attempt, the work [21]
applies SAT-based exact synthesis to realize an SC circuit with the
fewest gates, where SC circuits are represented as MIGs. However,
due to the complex constraints of SC circuits, it can only synthesize
very simple SC circuits. In addition, all the existing exact synthesis
methods have one common shortcoming, i.e., they do not take gate
area into account, as they only work on a technology-independent
representation of circuits. Although they can obtain circuits with the
fewest gates, the circuit area may not be optimal after technology
mapping, due to a gap between technology-independent synthesis
and technology mapping.

In this paper, by addressing the aforementioned challenges, we
propose MinSC, an exact synthesis-based method for minimal-area



stochastic circuits under relaxed error bound. First, given a target
function and an error bound, a novel search method is proposed to
find the best approximation polynomial for the given target. Then,
an SMT-based exact SC synthesis method is proposed to obtain an
area-optimal SC circuit realizing the best approximation polynomial.
The main contributions of our work are listed as follows.
• We propose a novel search method to find the best approximation

polynomial for the target function. This method searches directly
based on the input error bound, which guarantees the optimality
of the best approximation polynomial.

• To directly reach an area-optimal circuit, we propose a method
to take gate area into account during exact synthesis, which has
never been explored before. With this method, an SMT-based
exact synthesis method is designed to synthesize an area-optimal
SC circuit directly with no need of technology mapping.

• To synthesize complex SC circuits, we propose two novel
techniques to reduce the search space with minimal influence
to the optimality: partial one assignment (POA) and multi-
granularity search (MGS).

The experimental results show that compared with the state-of-the-
art DA method [16], given an error ratio 0.05, MinSC reduces the gate
number, area, delay, and area-delay-product (ADP) of SC circuits by
60.24%, 47.24%, 7.10%, and 57.07%, respectively. The code of our
proposed method is made open-source at https://github.com/SJTU-
ECTL/MinSC.

The rest of the paper is organized as follows. Section II provides
the preliminaries. Section III presents the proposed MinSC method.
Section IV discusses several speed-up techniques. Section V shows
the experimental results. Section VI concludes the paper.

II. PRELIMINARIES

In this section, we introduce a general model of SC circuits, a
basic synthesis flow for traditional SC circuits, and the background
of exact synthesis.

A. A General Model of SC Circuits

A general model of an SC combinational circuit is shown in Fig. 1,
which is proposed in [15]. The first n input independent bit streams
are for the input variable x, while the next m input independent
bit streams with constant 0.5 are the coefficients. Suppose that the
Boolean function of the combinational circuit is F . According to
[13], the output function of this SC circuit is

gn,m(x) =

n∑
i=0

G(i)

2m
xi(1− x)n−i, (1)

where G(i) are integers denoting the number of input
combinations (X1, . . . , Xn, Y1, . . . , Ym) satisfying that
F (X1, . . . , Xn, Y1, . . . , Ym) = 1 and

∑n
j=1Xj = i. The range of

G(i) is 0 ≤ G(i) ≤
(
n
i

)
× 2m. The vector G = (G(0), . . . , G(n))

is called feature vector (FV) [16]. The function gn,m(x) is called SC
polynomial (SCP). The parameters n and m are the degree and the
precision of gn,m(x), respectively. We call the sum of the degree
and precision of an SCP its degree-precision sum (DPS).

By the above discussion, the FV G is determined by the Boolean
function F . If we represent F as a 2-dimensional truth table with
X1, . . . , Xn and Y1, . . . , Ym defining the columns and rows, respec-
tively, then by the definition of G(i), it corresponds to the number of
1s in the columns with

∑n
j=1Xj = i. Table I shows an example of

such a 2-dimensional table for a Boolean function F on X1, X2, Y1.
Then, G(1) is the number of 1s in the columns with X1X2 being
01 and 10, as X1 +X2 = 1. In this case, G(1) = 2.
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...
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Fig. 1. A general model of an SC circuit realizing the target function.

Table I. The 2-dimensional truth table of a Boolean function with n = 2
and m = 1.

Y1\X1X2 00 01 10 11
0 1 0 1 0
1 0 1 0 1

B. Traditional SC Circuit Synthesis and a Basic Synthesis Flow

The traditional SC circuit synthesis produces an SC circuit with a
small cost realizing a given target arithmetic function f(x). A basic
SC synthesis flow involves the following two steps [13].

1) Target function approximation: Given a target function f(x)
and a degree n, a quadratic programming method proposed in [10]
is applied to obtain a degree-n Bernstein polynomial (BP) Bn(x)
closest to f(x) in the form of

Bn(x) =

n∑
i=0

bi

(
n

i

)
xi(1− x)n−i, (2)

where bi is a Bernstein coefficient and
(
n
i

)
xi(1−x)n−i is a Bernstein

basis polynomial. Then, given a precision m, by setting

G(i) = round

(
2mbi

(
n

i

))
, (3)

we round the real coefficients in Eq. (2) to integers to obtain the SCP
gn,m(x) shown in Eq. (1). Thus, gn,m(x) ≈ Bn(x) ≈ f(x).

2) SC circuit synthesis: Given the SCP from the previous step,
we further obtain an SC circuit with a small cost for the SCP.
This is essentially to determine a Boolean function so that 1) its
corresponding FV equals the FV of the SCP and 2) it leads to
a circuit with a small cost. The state-of-the-art work [13] uses a
heuristic breadth-first search algorithm to find a good but sub-optimal
SC circuit.

C. Exact Synthesis

Exact synthesis is the problem of finding a logic network that
exactly meets a specification (e.g., the number of gates in the
network) [17]. It can be applied to find an optimum logic network
for a given Boolean function. A logic network is called a Boolean
chain in exact synthesis, which is a directed acyclic graph (DAG).
Suppose that K-input operators are used, where K is an arbitrary
but fixed value. Given n primary inputs (PIs) x1, . . . , xn, a Boolean
chain of r K-input operators can be represented as a sequence of
gates xn+1, . . . , xn+r with

xi = φi(xj(i,1), . . . , xj(i,K)), n+ 1 ≤ i ≤ n+ r, (4)

where φi is the operator of gate xi and xj(i,·) is the fanin of gate xi
with 1 ≤ j(i, ·) < i [17]. For a single-output function, the output of
a Boolean chain is the last gate xn+r . For a multi-output function,
the outputs can be any gate xi. As an SC circuit is single-output, we
only consider single-output Boolean functions in this paper.



Example 1 A Boolean chain is shown in Fig. 2. It has three PIs
x1, x2, x3 and two gates x4, x5, where x4 = x2 ∨ x3 and x5 =
x1 ⊕ x4. The Boolean chain has only one output g1 = x5.
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Fig. 2. An example of a Boolean chain.

To solve an exact synthesis problem, a formulation with proper
encoding variables and constraints on them is built to ensure the
meeting of the specification. If the formulation contains integer or real
coefficients, integer or real variables, and linear arithmetic constraints,
it can be transformed into an SMT problem and solved by SMT
solvers.

III. PROPOSED METHOD

In this section, we present our proposed MinSC method to syn-
thesize an area-optimal SC circuit for a given target function and an
error bound.

A. Overview of the Proposed Method

The basic idea of MinSC is that given a target function and an
error bound, first we find a set of good approximate SCPs (ASCPs).
Usually, the smaller the DPS an ASCP has, the smaller the cost of the
corresponding SC circuit. Thus, we first aim at finding the ASCPs
with the smallest DPS satisfying the error bound (Section III-B).1

This is different from the target function approximation in the basic
synthesis flow shown in Section II-B1, which finds the closest SCP
with a given n and m for the target function. Once the ASCPs with
the smallest DPS have been found, instead of using the heuristic SC
synthesis method as before, an SMT-based exact synthesis method is
proposed to obtain the area-optimal SC circuits (Section III-C).

The main procedure of MinSC is shown in Algorithm 1. The inputs
are the target function f(x), a given error bound eb, and the maximum
difference vector (MDV) Vl, which is used to generate the candidate
ASCPs for the target function. The output of the algorithm is an area-
optimal SC circuit. In this work, the error metric can be any error
measures, such as mean absolute error (MAE), mean square error
(MSE), and worst-case absolute error (WCAE).

In Algorithm 1, set S holds the candidate SC circuits. Line 1
initializes it as an empty set. Line 2 calls the function ASCPSearch
to generate the ASCP set SSCP with the smallest DPS for the target
function. For each ASCP g in SSCP , we apply an SMT-based exact
synthesis method to obtain the area-optimal SC circuits for the ASCP
(Lines 4 and 5). Specifically, Line 4 calls the function gateOptimalES
to obtain a gate-number-optimal SC circuit Cgate. Line 5 calls the
function areaOptimalES to obtain an area-optimal SC circuit Carea

for the ASCP g, using the circuit Cgate as a starting design. Then,
Line 6 adds Carea into S. Line 7 chooses the SC circuit C∗area with
the smallest area from the set S and returns it.

Next, we will describe the details of the functions ASCPSearch,
gateOptimalES, and areaOptimalES.

1Strictly speaking, the ASCP with the smallest DPS may not always lead
to the optimal circuit cost. However, we find that in most cases, it is true.
Thus, for efficiency consideration, we focus on ASCPs with the smallest DPS.

Algorithm 1: The proposed MinSC method.
Input : the target function f(x), an error bound eb, and the

MDV Vl.
Output: an area-optimal SC circuit Carea.

1 S ← ∅;
2 SSCP ← ASCPSearch(f(x), eb, Vl);
3 foreach g ∈ SSCP do
4 Cgate ← gateOptimalES(g);
5 Carea ← areaOptimalES(g, Cgate);
6 S ← S ∪ {Carea};
7 return the SC circuit C∗area with the smallest area in S;

B. Finding ASCP Set with the Smallest Degree-Precision Sum

In this section, we present the details for finding the ASCPs with
the smallest DPS for the target function satisfying the error bound.
The whole procedure is shown in Algorithm 2. The basic idea is to
first find the lower bound on the degree of the ASCPs satisfying
the error bound, i.e., nmin, which also gives a lower bound on
the smallest DPS (Lines 2–3). From nmin, an upper bound on the
smallest DPS, i.e., dpsnew

up , is also found (Lines 4–9). Then, we search
from dpsnew

up downwards to derive the ASCPs with the smallest DPS
(Lines 10–13).

Algorithm 2: The procedure ASCPSearch.
Input : the target function f(x), an error bound eb, and the

MDV Vl.
Output: the ASCP set SSCP with the smallest DPS.

1 SSCP ← ∅; dpsnew
up ← −1;

2 for n from 1 to +∞ do
3 if error(Bn(x), f(x)) ≤ eb then nmin ← n; break;

4 for dps from nmin to +∞ do
5 Generate a set P of degree-precision pairs (n,m) with

n+m = dps and n ≥ nmin;
6 foreach (n,m) ∈ P do
7 if error(ĝn,m(x), f(x)) ≤ eb then
8 dpsnew

up ← dps; break;

9 if dpsnew
up > 0 then break;

10 do
11 dpsoldup ← dpsnew

up ;
12 {dpsnew

up , SSCP } ←
perturbSearch(f(x), eb, Vl, nmin, dps

old
up );

13 while dpsnew
up < dpsoldup ;

14 return SSCP ;

The inputs of this procedure are the target function f(x), an error
bound eb, and the MDV Vl. The output is the set SSCP of ASCPs
with the smallest DPS. In Algorithm 2, Line 1 initializes SSCP as
an empty set and dpsnew

up as −1. Lines 2–3 find the smallest degree
n (i.e., nmin) so that the error between Bn(x) and f(x) is no more
than the error bound eb, where Bn(x) is the degree-n BP closest to
f(x) obtained by the method in [10]. As the precision m ≥ 0, the
smallest DPS is at least nmin, which means that nmin also gives a
lower bound on the smallest DPS.

Lines 4–9 search the upper bound on the smallest DPS, i.e.,
dpsnew

up . To reduce the unnecessary computation, the search starts
from the lower bound on the smallest DPS we just obtain, i.e., nmin

(see Line 4). For a given DPS dps, Line 5 generates a set P of degree-
precision pairs (n,m) satisfying that n+m = dps and n ≥ nmin.
For each degree-precision pair (n,m), Line 7 obtains the initial SCP
ĝn,m(x) with degree n and precision m for the target function f(x)
by the method described in Section II-B1, and calculates the error



between ĝn,m(x) and f(x). If the error is no more than the error
bound eb, we obtain the upper bound dpsnew

up as the current dps
(Line 8) and break the search loop (Line 9).

Example 2 Consider a synthesis problem with the target function as
x0.45 and the error bound as eb = 0.05||x0.45||2. We can obtain
its nmin = 2. To search the upper bound dpsnew

up on the smallest
DPS, we start from the lower bound nmin = 2. Only when the
DPS reaches 5, we can find a degree-precision pair (n,m) = (2, 3)
such that the error between the initial SCP ĝn,m(x) obtained by the
method described in Section II-B1 and f(x) is smaller than the error
bound eb. Thus, we obtain dpsnew

up = 5.

In searching the upper bound dpsnew
up on the smallest DPS, for

each degree-precision pair, we only consider one ASCP, i.e., the one
obtained by the method described in Section II-B1. Since we do not
search extensively, the actual smallest DPS may be smaller than the
upper bound dpsnew

up . Fortunately, the actual smallest DPS is close to
dpsnew

up . Thus, we further perform a more exhaustive search for the
smallest DPS starting from dpsnew

up downwards. Lines 10–13 shows
the loop for that search. When the loop terminates, the smallest DPS
and a set of ASCPs with that DPS are obtained.

In the loop, Line 11 keeps the current upper bound dpsnew
up in the

variable dpsoldup . Note that the current upper bound is also the known
smallest DPS. Thus, we will refer to the current upper bound as the
known smallest DPS later. Line 12 calls the function peturbSearch to
update the known smallest DPS dpsnew

up and also obtain the ASCP set
SSCP with the DPS dpsoldup satisfying the error bound. If dpsnew

up <
dpsoldup , the known smallest DPS reduces and the loop will continue
(Line 13). Otherwise, it means that the known smallest DPS cannot
be improved. Consequently, the known smallest DPS dpsoldup is indeed
the smallest DPS. Thus, the loop terminates and Line 14 returns the
ASCP set SSCP with the smallest DPS dpsoldup .

Algorithm 3: The procedure perturbSearch.
Input : the target function f(x), an error bound eb, the MDV

Vl, the smallest degree nmin, and the known smallest
DPS dpsoldup

Output: the updated known smallest DPS dpsnew
up and the ASCP

set SSCP with DPS dpsoldup .
1 SSCP ← ∅;
2 Generate a set P of degree-precision pairs (n,m) with

n+m = dpsoldup and n ≥ nmin;
3 foreach (n,m) ∈ P do
4 Obtain the initial SCP ĝn,m(x) with degree n and precision

m for the target function f(x) by the method in
Section II-B1;

5 Given ĝn,m(x) and Vl, get the candidate ASCP set Scd;
6 foreach ASCP gn,m(x) ∈ Scd do
7 if error(gn,m(x), f(x)) ≤ eb then
8 gn,m′ (x)← reducePrecision(gn,m(x));
9 gn′,m′ (x)← reduceDegree(gn,m′ (x));

10 dpsnew
up ← n′ +m′;

11 if dpsnew
up < dpsoldup then

12 return {dpsnew
up , SSCP };

13 else SSCP ← SSCP ∪ gn,m(x);

14 return {dpsoldup , SSCP };

The procedure of the function peturbSearch is shown in Algo-
rithm 3. Its inputs are the target function f(x), an error bound eb,
the MDV Vl, the smallest degree nmin, and the known smallest DPS
dpsoldup . The outputs are the updated known smallest DPS dpsnew

up and
the ASCP set SSCP with the DPS dpsoldup . Line 1 initializes the set

SSCP as an empty set. Line 2 generates a set P of degree-precision
pairs (n,m) satisfying that n+m = dpsoldup and n ≥ nmin. For each
degree-precision pair (n,m), Line 4 applies the method described in
Section II-B1 to obtain the initial SCP ĝn,m(x) with degree n and
precision m for the target function f(x). Next, given ĝn,m(x) with
FV Ĝ = (Ĝ(0), . . . , Ĝ(n)) and the MDV Vl = (Vl(0), . . .), Line 5
constructs the set of candidate ASCPs Scd so that their correspond-
ing FVs (G(0), . . . , G(n)) satisfy the following conditions for all
0 ≤ i ≤ n: 1) |G(i)−Ĝ(i)| ≤ Vl(dps

old
up ); 2) 0 ≤ G(i) ≤

(
n
i

)
×2m.

Then, for each ASCP gn,m(x) in the set Scd, if the error between
gn,m(x) and the target function f(x) is no more than the error bound
eb, we will check whether there exists an ASCP with smaller DPS
and equivalent to gn,m(x) (Lines 8–9).

• Line 8 calls the function reducePrecision to obtain the new
ASCP gn,m′(x) with the reduced precision m′. For the ASCP
gn,m(x) with the FV G = (G(0), . . . , G(n)), it finds the largest
integer 0 ≤ t ≤ m so that each entry in G can be divided by 2t.
Then, it obtains the new equivalent ASCP gn,m′(x) with the FV
G′ = (G(0)

2t
, . . . , G(n)

2t
) and the reduced precision m′ = m− t.

• Line 9 calls the function reduceDegree to obtain the equivalent
ASCP gn′,m′(x) with the reduced degree n′. According to [22],
given an SCP gn+1,m(x) of degree n + 1 with the FV G =
(G(0), . . . , G(n + 1)) and another SCP gn,m(x) of degree n
with the FV G′ = (G′(0), . . . , G′(n)), they are equivalent if
and only if Eq. (5) is satisfied:

G(i) =


G′(0), for i = 0
G′(i− 1) +G′(i), for 1 ≤ i ≤ n
G′(n), for i = n+ 1.

(5)

In the function reduceDegree, given the ASCP gn,m′(x) of
the original degree n, we first check whether there exists an
ASCP gn−1,m′(x) of degree n− 1 so that the FVs of gn,m′(x)
and gn−1,m′(x) satisfy Eq. (5). If it does, we continue this
process until Eq. (5) cannot be satisfied for the FVs of an ASCP
gn−i,m′(x) of degree (n − i) and an ASCP gn−i−1,m′(x) of
degree (n− i− 1). Then, gn−i,m′(x) is assigned to gn′,m′(x),
and the reduced degree n′ = n− i.

After obtaining the equivalent ASCP gn′,m′(x), Line 10 updates the
known smallest DPS dpsnew

up as n′ + m′. If dpsnew
up < dpsoldup , it

means the known smallest DPS can be reduced and Line 12 returns
the updated known smallest DPS dpsnew

up and the ASCP set SSCP

with DPS dpsoldup that has been found so far. Otherwise, Line 13 adds
the SCP gn,m(x) with DPS dpsoldup to the set SSCP . If for all ASCPs
satisfying the error bound, we cannot reduce their DPSs, then Line 14
returns the dpsoldup as the updated known smallest DPS and the ASCP
set SSCP with DPS dpsoldup .

Example 3 For the previous case in Example 2, the MDV is set as
Vl = [0, 0, 2, 2, 2, 3, 3]. We search its ASCPs with the smallest DPS
from the known smallest DPS dpsoldup = dpsnew

up = 5. During the
search, for the degree-precision pair (2, 3), one candidate ASCP is
g2,3(x) with the FV G = (2, 12, 8). Then, we further check whether
there exists an equivalent ASCP with smaller DPS for g2,3(x). To
reduce precision, we find the largest integer 0 ≤ t ≤ 3 so that
each entry in the FV G can be divided by 2t. Here, t = 1 satisfies
the condition. Thus, the reduced precision m′ = m − 1 = 2,
and the equivalent ASCP is g2,2(x) with its FV G′ = (1, 6, 4).
To reduce degree, we check whether there exists an ASCP g1,2(x)
so that the FVs of g1,2(x) and g2,2(x) satisfy Eq. (5). However,
no such ASCP exists. Thus, the final equivalent ASCP for g2,3(x) is
g2,2(x), and dpsnew

up = n′+m′ = 4. Since dpsnew
up < dpsoldup , we set



dpsoldup = dpsnew
up = 4, and perform the above process again. In the

next iteration, we find dpsnew
up = dpsoldup = 4, and there are 3 ASCPs

with DPS as dpsoldup satisfying the error bound, i.e., SSCP = {g2,2(x)
with the FV (1, 6, 4), g4,0(x) with the FV (0, 3, 3, 4, 1), g4,0(x) with
the FV (0, 4, 2, 4, 1)}. Thus, the loop terminates, and SSCP is the
ASCP set with smallest DPS as dpsoldup = 4.

C. SMT-based Exact SC Synthesis

For each ASCP in the ASCP set SSCP , an SMT-based exact SC
synthesis method is proposed to obtain an area-optimal SC circuit. It
corresponds to Lines 4 and 5 in Algorithm 1. To eliminate the gap
between SC logic synthesis and technology mapping, gate area is
considered during exact synthesis. Here, we assume that the gate areas
are integers. Due to the area constraint, there exist linear arithmetic
constraints. Therefore, SMT solver is used to solve the problem.

First, given an ASCP g, the function gateOptimalES is called to
obtain a gate-number-optimal SC circuit. The whole procedure is
shown in Algorithm 4. In Line 1, the gate number r of the circuit is
set as zero, and an SMT solver is initialized. In the main loop, we
formulate a problem whether there exists an SC circuit with r gates
realizing the given ASCP g. It is realized by resetting the solver and
adding encoding variables, connection constraints, fanin constraints,
ASCP constraints, and gate index constraints to the solver (Lines 3–
5). If the solver returns UNSAT, it means that such a circuit does not
exist, so Line 6 increases the gate number r by 1. Otherwise, a gate-
number-optimal SC circuit Cgate is found (Line 8). Then, Line 9
returns the circuit.

Algorithm 4: The procedure gateOptimalES.
Input : an ASCP g.
Output: a gate-number-optimal SC circuit Cgate.

1 r ← 0; s← getSMTSolver();
2 while true do
3 resetSMTSolver(); addVars(r);
4 addConnectionCons(r); addFaninCons(r);
5 addASCPCons(g, r); addGateIndexCons(r);
6 if solve(s)=UNSAT then r ← r + 1;
7 else
8 Cgate ← s.model();
9 return the gate-number-optimal SC circuit Cgate;

After obtaining a gate-number-optimal SC circuit, the function
areaOptimalES is called to obtain an area-optimal SC circuit. The
main procedure is shown in Algorithm 5. Line 1 initializes the area-
optimal SC circuit Carea as the gate-number-optimal SC circuit
Cgate obtained from Algorithm 4. It also initializes an SMT solver.
Note that the area of Cgate is a known smallest area. Line 2 sets the
next area to be checked (i.e., A). Under the assumption that the gate
areas are integers, this value is the area of Cgate minus 1. Besides,
the gate number rmin is set as the gate number r of Cgate. During
the whole process, the gate number of the circuit is fixed as rmin.
In the main loop, we formulate a problem whether there exists an
SC circuit with rmin gates and area no more than A realizing the
given ASCP g. It is realized by adding encoding variables, the above
four types of constraints, and an additional area constraint to the
solver (Lines 4–7). If the solver returns SAT, such a circuit exists.
Then, Line 9 obtains the SC circuit Carea with the area no more
than A, and the area of Carea minus 1 will be assigned to A, which
is the next area to be checked. Then, the loop continues. Otherwise,
it means that the area of the SC circuit Carea obtained in the last
iteration is indeed the smallest. Then, Line 10 returns the circuit.

We note that Algorithm 5 works under the assumption that the
gate areas are integers. If they are not, we can convert them to
integers through rounding. Alternatively, as SMT solvers can also
handle problems with real coefficients, we can change the search
framework to binary search to find the area-optimal SC circuit.

Algorithm 5: The procedure areaOptimalES.
Input : an ASCP g, a gate-number-optimal SC circuit Cgate.
Output: an area-optimal SC circuit Carea.

1 Carea ← Cgate; s← getSMTSolver();
2 A← Cgate.A− 1; rmin ← Cgate.r;
3 while true do
4 resetSMTSolver(); addVars(rmin);
5 addConnectionCons(rmin); addFaninCons(rmin);
6 addASCPCons(g, rmin); addGateIndexCons(rmin);
7 addAreaCons(A);
8 if solve(s)=SAT then
9 Carea ← s.model(); A← Carea.A− 1;

10 else return the area-optimal circuit Carea ;

Next, we will describe the details of encoding variables and
constraints. Our method uses multiple selection variable (MSV)
encoding [17]. The operator size is set as the maximum fanin number
(i.e., K) of the gates in a library. For a gate with the fanin number
less than K, we propose a method to extend them to K-input gates.
Thus, our method can be applied to a realistic gate library whose
gates have different fanin numbers. In the following illustration, we
assume that K = 4.

1) Encoding Variables: Assume the number of gates in the SC
circuit is r. The encoding variables are defined as follows:
• xit: the t-th bit in the global truth table of node xi, where

1 ≤ i ≤ n+m+r and 0 ≤ t < 2n+m. As our circuit has n+m
PIs, we let x1, . . . , xn+m be the PIs and xn+m+1, . . . , xn+m+r

be the gates. As we only consider a single-output function, the
final output is mapped to the last gate xn+m+r .

• sij : whether gate xi has input from gate xj , where n + m <
i ≤ n+m+ r and 1 ≤ j < i.

• fipquv: the output of gate xi with its local input combination
(p, q, u, v), where n+m < i ≤ n+m+r and p, q, u, v ∈ {0, 1}.

• vil: whether gate xi is the l-th gate in the given gate library,
where n+m < i ≤ n+m+ r and 1 ≤ l ≤ L. Here, L is the
total number of gates in the given library.

2) Connection Constraint: According to [17], we formulate con-
straints to ensure that the circuit encoded by the variables is legal
and gives the correct output. The constraint is shown below:

s̄ij ∨ s̄ik ∨ s̄il ∨ s̄ip ∨ (xit ⊕ a) ∨ (xjt ⊕ b) ∨ (xkt ⊕ c)
∨ (xlt ⊕ d) ∨ (xpt ⊕ e) ∨ (fibcde ⊕ ā) = 1.

(6)

It must hold for all n+m < i ≤ n+m+r, 1 ≤ j < k < l < p < i,
and a, b, c, d, e ∈ {0, 1}. It means that if the inputs of gate xi are
xj , xk, xl, and xp, and the t-th bits of the global truth tables of xi,
xj , xk, xl, and xp are a, b, c, d, e, respectively, then the output of
gate xi with local input combination (b, c, d, e) must be a.

3) Fanin Constraint: As each gate has exactly four inputs, Eq. (7),
a cardinality constraint, must be satisfied for all n + m < i ≤ n +
m+ r:

i−1∑
j=1

sij = 4. (7)

4) ASCP Constraint: Given an ASCP with degree n, precision
m, and FV G = (G(0), . . . , G(n)), the output function of an SC



circuit, which is the output of gate xn+m+r , must satisfy the FV.
Thus, Eq. (8) must hold for all 0 ≤ i ≤ n:

G(i) =
∑
t∈Si

x(n+m+r)t, (8)

where Si represents the set of indexes of input combinations
(X1, . . . , Xn, Y1, . . . , Ym) satisfying that

∑n
j=1Xj = i. Note that

the above constraints are cardinality constraints. They are converted
to two sets of CNFs according to the method in [17].

Example 4 Given an ASCP with n = 2, m = 1, and the FV as
(2, 4, 1), assume there are r = 2 gates in the SC circuit. Table II
shows the global truth table of gate x5, which gives the output
function of the circuit. Clearly, the sets S0, S1, and S2 are {0, 1},
{2, 3, 4, 5}, and {6, 7}, respectively. Thus, to make sure that the
output function satisfies the FV, the following constraints must be
satisfied: G(0) = x50 + x51 = 2, G(1) =

∑5
t=2 x5t = 4, G(2) =

x56 + x57 = 1.

Table II. The global truth table of the output gate x5 in Example 4.

Y1\X1X2 00 01 10 11
0 x50 x52 x54 x56
1 x51 x53 x55 x57

5) Gate Index Constraint: As we want to reduce the gap between
logic synthesis and technology mapping, we need to take a realistic
gate library into account, which has gates of different fanin numbers.
However, the above encoding requires all the gates to have 4 inputs
(see the variable fipquv). A novel method is proposed to address
this inconsistency. Note that the method can be applied to any gate
library. The MCNC standard cell library [23] is used as an example
to illustrate the method.

inv: 10

inv-1: 1111111100000000

inv-2: 1111000011110000

inv-3: 1100110011001100

inv-4: 1010101010101010

Fig. 3. Extend 1-fanin inverter inv to 4-fanin inverters.

The key idea is that for a gate with the fanin number less than 4, it
is extended to a 4-input gate with some fake fanins. For example, we
extend the inverter inv to a 4-input gate by introducing 3 additional
fake fanins. Since we need to select one input from the 4 inputs as
the actual fanin, there are

(
4
1

)
= 4 kinds of inv gates with 4 fanins in

total. Fig. 3 shows the truth tables represented as row vectors of inv
gates with 1 fanin and 4 fanins, respectively, where inv-i (1 ≤ i ≤ 4)
represents the 4-input inverter with the i-th fanin as the real one.
Similarly, the other gates with fanin numbers less than 4 are extended
to 4-input gates. Finally, we obtain L = 86 gates in the library.

As each gate xi is mapped to exactly one gate in the given library,
Eq. (9) must be satisfied for n+m < i ≤ n+m+ r:

L∑
l=1

vil = 1. (9)

Furthermore, for each gate xi, we need to set a constraint on the
local truth table variables fipquv and the gate index variables vil (1 ≤
l ≤ L). For example, for the inv-1 gate shown in Fig. 3, assume its
index is l = 1 in the gate library. Eq. (10) shows the constraint on
the variables fipquv and vi1:

vi1 =1⇐⇒ fipquv =

{
1, for pquv ∈ {0000, . . . , 0111}
0, for pquv ∈ {1000, . . . , 1111}

. (10)

It means that if gate xi is mapped to inv-1, then the local truth table
of xi must equal the truth table of inv-1. Similar constraints as above
should be set on variables fipquv for gate xi and the other vil’s.

6) Area Constraint: Let the area of the l-th (1 ≤ l ≤ L) gate in
the library be al. In each iteration of the function areaOptimalES, as
we look for an SC circuit with area no more than A, the following
constraint should be satisfied, which is a linear arithmetic constraint:

n+m+r∑
i=n+m+1

L∑
l=1

alvil ≤ A. (11)

IV. SPEED-UP TECHNIQUES

In this section, we present some speed-up techniques for the
solving process, including filtering unpromising ASCPs and dealing
with the complex ASCP constraints.

A. Filtering Unpromising ASCPs

For each ASCP in the ASCP set, we conduct SMT-based exact
synthesis to find an area-optimal circuit. If many ASCPs exist, it will
take much time to handle all of them. In fact, some unpromising
ASCPs can be filtered out to reduce the runtime. We propose two
ways to filter out unpromising ASCPs.

1) Applying the gate-number-optimal exact synthesis: For each
ASCP in the ASCP set, we conduct gate-number-optimal exact
synthesis to obtain the minimal gate number for the ASCP. Then,
we only keep the ASCPs with the smallest gate number and filter
out the other ASCPs.

2) Applying the heuristic method: For each ASCP in the ASCP
set, the state-of-the-art heuristic SC synthesis method [13] is applied
to obtain an SC circuit for the ASCP, whose area can be regarded
as the upper bound on the circuit area corresponding to this ASCP.
Among these ASCPs with different areas, the smallest area is denoted
as Amin. Then we only keep the ASCPs whose circuit area is less
than or equal to Amin + w, where w is a non-negative integer.

B. Dealing with Complex ASCP Constraints

Consider an ASCP with degree n, precision m, and FV G =
(G(0), . . . , G(n)). To synthesize an SC circuit realizing the ASCP,
we need to assign G(i) 1s to the cells satisfying that

∑n
j=1Xj = i

in the truth table of the form shown in Table I. Since the number of
such cells is Gm(i) =

(
n
i

)
× 2m in total, there are

(
Gm(i)
G(i)

)
different

assignments in total. However, as n and m increase,
(
Gm(i)
G(i)

)
will

increase exponentially. We propose two novel techniques to reduce
the solution space.

1) Partial One Assignment (POA): The basic idea of this method
is to partially assign some 1s in the truth table to reduce each G(i)
in the FV. Thus, the search space becomes smaller. Note that the
assignment of the 1s should favor the synthesis of a small SC circuit.
For this purpose, we borrow the idea from work [13]. It constructs
a solution tree and iteratively assigns 1s in the form of the largest
cubes among all valid cubes until the FV becomes a zero vector. In
our method, we assign 1s based on the first several cubes decided
by the method in [13]. To reduce the solution space with minimal
influence to the optimality, usually, we only choose the first one or
two cubes.

2) Multi-granularity Search (MGS): The basic idea of this method
is that sometimes when we assign 1s, we assign multiple adjacent
1s in the truth table together. For example, if we want to assign two
1s to the first column of the truth table shown in Fig. 4 (i.e., the set
of minterms satisfying that X1 + X2 + X3 = 0), we choose either
the cells 00000 and 00001 together or the cells 00010 and 00011



together. On the one hand, this method reduces the total number of
choices. On the other hand, the final circuit is still close to optimal,
as a small circuit usually has many adjacent 1s in its truth table. The
number of 1s we assign together is called the granularity. In our
implementation, we first decompose the FV into several sub-FVs,
which is guided by the method in [13]. Then, for different sub-FVs,
we assign 1s in the truth table with different granularities. We choose
the granularity for a sub-FV as a power of 2 that divides all the entries
of the sub-FV. The 1s belonging to different sub-FVs should occupy
different cells in the truth table.

 

 

 

 

 

 

 

𝑌1𝑌2\𝑋1𝑋2𝑋3 000 001 010 011 100 101 110 111 
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𝑌1\𝑋1𝑋2 00 01 10 11 

0 1 1 1 1 

1 0 1 0 1 

𝑌1\𝑋1𝑋2 00 01 10 11 

0 0 0 0 0 

1 0 1 0 1 

𝐺(0) = 1 𝐺(1) = 2 𝐺(2) = 1 

𝑌1\𝑋1𝑋2 00 01 10 11 

0 𝑥50 𝑥52 𝑥54 𝑥56 

1 𝑥51 𝑥53 𝑥55 𝑥57 

𝑌1𝑌2\𝑋1𝑋2𝑋3 000 001 010 011 100 101 110 111 
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 𝑦1 

 

𝑦14 

 𝑦15 

 

Fig. 4. The truth table with different granularities for the output gate.

Example 5 Consider an ASCP with n = 3,m = 2, and FV
G = (3, 8, 9, 2). Guided by the method in [13], the FV G is
decomposed into two sub-FVs, G1 = [2, 6, 6, 2] and G2 = [1, 2, 3, 0].
The granularity of G1 and G2 are 2 and 1, respectively. To assign
G1 with granularity 2 in the truth table, as shown in Fig. 4, two
consecutive xt’s (0 ≤ t < 32) are combined to generate a new
variable yv , where 0 ≤ v < 16. Then, we assign 1s of the sub-FV
G1 with granularity 2 using variable yv . The sub-FV G2 is assigned
with granularity 1 using variable xt. To realize the MGS method,
from the variable relationship shown in Fig. 4, Eq. (12) should be
satisfied for all 0 ≤ v < 16:

yv = 1 ⇐⇒ x2v = 1, x2v+1 = 1. (12)

Besides, we need to introduce additional constraints to satisfy the
FV G based on the sub-FVs with different granularities. We illustrate
this using G(0) as an example. For G(0) = G1(0)+G2(0) = 2+1 =
3, it should satisfy the following two constraints:

y0 + y1 = 1,

(1− y0)(x0 + x1) + (1− y1)(x2 + x3) = 1.

The first constraint ensures that only one of y0 and y1 is 1.
Correspondingly, a group of two adjacent cells in the first column
of the truth table in Fig. 4 is assigned with 1s. Thus, G1(0) = 2
is satisfied. The second constraint ensures that in the remaining
two cells in the first column, only one is assigned with a 1. Thus,
G2(0) = 1 is satisfied.

V. EXPERIMENTAL RESULTS

In this section, we show the experimental results of the proposed
MinSC method. All the experiments are conducted on a desktop
with 3.59GHz Intel CPU and 31.9GB memory. The 14 benchmark
functions are listed in Table III, which are obtained from work [16],
[24], [25]. The gate library is chosen as the MCNC library. In
addition, we use the state-of-the-art SMT solver z3 [26] to solve
the SMT-based exact synthesis problem.

The approximation error is measured as the L2-norm distance
between an ASCP gn,m(x) and the target function f(x), i.e.,
||gn,m(x)−f(x)||2. Moreover, the error bound eb is set as γ||f(x)||2,
where error ratio γ (0 < γ < 1) is used to adjust the error bound.
In our experiments, we choose the error ratio γ as 2% and 5%. The

MDV is set as Vl = [0, 0, 2, 2, 2, 3, 3, 8], which is used to generate
the candidate ASCPs. As MinSC calls SMT solving multiple times,
to reduce the runtime, we set a timeout of 1 minute for SMT solving.
For the 14th function in Table III with the error ratio 2%, MinSC
cannot synthesize it in reasonable time due to the large scale of its
SC circuit. Thus, we exclude this function for the error ratio 2%.

To speed up the solving process, for the error ratio 2%, we apply
POA and MGS techniques to the 5th, 8th, 11th, 12th, and 13th
functions in Table III. For the error ratio 5%, these two techniques
are applied to the 13th and 14th functions.

Table III. The 14 arithmetic functions used in our experiments.

ID function ID function ID function ID function ID function
1
2
3

sin(x)
cos(x)
tanh(x)

4
5
6

exp(−x)
log(x+ 1)
x2.2

7
8
9

sin(πx)/π
exp(−2x)
1/(x+1)

10
11
12

tanh(πx)
x0.45√
x

13
14

tan(x/2)
xln(x/2) + 1

A. Comparison to the DA method

In this section, we compare MinSC with the state-of-the-art method
DA [16]. Starting from an initial SCP ĝn0,m0(x) with degree n0 and
precision m0, DA simultaneously searches for a good ASCP and
conducts SC synthesis. The initial error between ĝn0,m0(x) and the
target function f(x) should be smaller than the error bound eb. Thus,
for the 13th function with the error ratio 2% in Table III, the initial
degree-precision pair (n0,m0) for DA is set as (6, 4). For the other
functions, we set (n0,m0) as (4, 4).
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Fig. 5. The normalized gate number, area, delay, and ADP of the 14 arithmetic
functions, which is normalized to the DA method. The results of the DA
method are listed above each column.

Fig. 5 plots the gate number, area, critical path delay, and ADP
of SC circuits obtained by MinSC with error ratio 5%, which is



Table IV. The comparison between MinSC and DA on the average results over the benchmarks.

error ratio average DPS average gate number average area average delay average ADP average MAE average runtime(s)
DA MinSC DA MinSC DA MinSC DA MinSC DA MinSC DA MinSC DA MinSC

2% 5.61 5.30 5.54 2.62 11.38 7.76 3.61 3.46 45.70 29.74 0.0085 0.0087 0.125 270.883
(5.48%) (52.78%) (31.76%) (4.05%) (34.91%) (−2.35%)

5% 5.14 4.35 5.93 2.36 11.64 6.14 3.32 3.08 47.25 20.28 0.0164 0.0126 0.122 101.582
(15.28%) (60.24%) (47.24%) (7.10%) (57.07%) (23.17%)

normalized to those of DA. For all the target functions, the gate
number and the area of the SC circuits produced by MinSC are all
better than or equal to those produced by DA. The gate number for
9 out of 14 functions is reduced by more than 50%, and the area for
7 out of 14 functions is reduced by more than 35%. This is because
MinSC can find the ASCP with the smallest DPS and synthesize an
area-optimal SC circuit for the ASCP, while DA cannot guarantee the
optimality of ASCPs, and it uses a heuristic method to conduct SC
synthesis. Usually, there exists a trade-off between area and delay.
For most functions, the delay of the SC circuits produced by MinSC
is no larger than that by DA, while for the others, the delay increases.
Usually, the large reduction in area can compensate the increase in
delay. For all the functions except the 10th one, the ADP of the SC
circuits obtained by MinSC is smaller than that by DA.

Table IV shows the average hardware cost, the average MAE,
and the average runtime for error ratios 2% and 5% together with
the reduction ratio of MinSC over DA in parentheses. To calculate
the average MAE, we select 9 points x = 0.1, . . . , 0.9 for each
function f(x) in simulation, and the length of SC bit streams is
set as a representative value of 1024. Note that the length affects
the error due to stochastic variation [10]. However, it is not the
focus of our work. Thus, we do not consider different bit stream
lengths. From Table IV, the average DPS, gate number, area, delay,
and ADP of MinSC are all better than those of DA. For error ratio 2%
(resp. 5%), MinSC reduces the DPS, gate number, area, delay, and
ADP over DA by 5.48% (resp. 15.28%), 52.78% (resp. 60.24%),
31.76% (resp. 47.24%), 4.05% (resp. 7.10%), and 34.91% (resp.
57.07%), respectively, without much MAE degradation. However, the
runtime of MinSC is much longer than that of DA. The reason is that
MinSC calls SMT solving multiple times to obtain the optimal result.
Besides, the ASCPs of some functions have large DPS, which costs
much time synthesizing the corresponding SC circuits. However,
considering that the SC circuit synthesis is a one-time design effort
and our proposed method produces a high-quality design, the longer
runtime is acceptable. Furthermore, it is possible to apply some
advanced techniques in [17] to speed up the process.

B. Comparison to the SAT-based Exact Synthesis Method

In this section, we compare the proposed SMT-based exact synthe-
sis method with the state-of-the-art work [21]. It conducts SAT-based
exact synthesis to obtain a gate-number-optimal SC circuit, where the
SC circuits are represented as MIGs. We call it SAT-based method.
The focus here is to compare the performance of the proposed SMT-
based method and the SAT-based method to synthesize a given ASCP.
Thus, we choose the ASCP with the smallest area obtained by MinSC
as the input to both methods. For the SAT-based method, after it
obtains the gate-number-optimal MIG networks, we use ABC [27]
to conduct logic optimization and technology mapping. For the 11th
and the 13th functions in Table III with error ratio 2%, the SAT-
based method cannot synthesize them in reasonable time. Therefore,
we exclude these two functions for error ratio 2%.

Fig. 5 plots the gate number, area, critical path delay, and ADP of
SC circuits obtained by the SMT-based and the SAT-based methods

with error ratio 5%, which is normalized to those of DA. Note that
the results for the SMT-based method are just those for MinSC, as we
choose the ASCP with the best area as the input to the SMT-based
method. For almost all target functions, the gate number and the area
of the SC circuits synthesized by the SMT-based method are better
than or equal to those produced by the SAT-based method. For all
the functions except the 7th, 10th, and 12th one, the ADP of the SC
circuits obtained by the SMT-based method also outperforms that
of the SAT-based method. This shows there exists a gap between
logic synthesis and technology mapping, and our proposed SMT-
based exact synthesis method can eliminate the gap.

Table V. The average hardware cost and runtime comparison between the
SAT-based and the proposed SMT-based exact synthesis method.

error
ratio

gate number area delay ADP runtime(s)
SAT SMT SAT SMT SAT SMT SAT SMT SAT SMT

2% 5.6 2.5 11.1 7.1 3.6 3.1 44.6 23.6 60.8 38.14
(55.4%) (36.1%) (13.9%) (47.1%) (37.3%)

5% 4.9 2.4 9.1 6.1 3.14 3.08 31.0 20.3 349.5 17.85
(51.0%) (33.0%) (2.0%) (34.5%) (94.9%)

Table V lists the average hardware cost and the average runtime
for error ratios 2% and 5% together with the reduction ratio of the
SMT-based method over the SAT-based method in parentheses. Note
that the runtime is only the synthesis time for the best ASCP with
the smallest area. Clearly, the SMT-based method synthesizes a much
smaller SC circuit than the SAT-based method in a shorter time.

Table VI. The runtime (s) for several functions with error ratio 5%.

founction ID 6 7 8 9 10 11 12 13 14
SAT 0.08 0.06 2.5 0.01 0.26 0.03 0.08 4605.78 272.96
SMT 3.65 0.50 52.91 0.11 0.26 0.31 0.30 61.93 66.94

Table VI shows the synthesis time for several target functions with
error ratio 5%. Due to the page limit, we only list the last 9 functions.
The SMT-based method not only conducts gate-number-optimal exact
synthesis, but also conducts area-optimal exact synthesis. Thus, its
runtime sometimes is longer than the SAT-based method. The major
runtime improvement comes from the 13th and 14th functions, which
have complex ASCP constraints with large DPS. For these two
functions, we apply POA and MGS techniques to reduce the solution
space, which results in a large runtime reduction.

VI. CONCLUSION

In this work, given a target function and an error bound, we
propose a novel search method to find the ASCP with the smallest
DPS and an SMT-based exact synthesis method to obtain an area-
optimal SC circuit realizing the ASCP. Compared with the start-of-
the-art methods, the proposed method can synthesize SC circuits with
much smaller area and ADP. We note that a limit of the proposed
method is the scalability. For large-scale SC circuits, the search space
will increase exponentially, which makes the solution infeasible. Our
future work will explore how to apply decomposition to synthesize
large-scale SC circuits.
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