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Smoking is the major cause of lung cancer and the leading cause of cancer-related death in the world. The most current view about
lung cancer is no longer limited to individual genes being mutated by any carcinogenic insults from smoking. Instead, tumorigenesis
is a phenotype conferred by many systematic and global alterations, leading to extensive heterogeneity and variation for both the
genotypes and phenotypes of individual cancer cells. Thus, strategically it is foremost important to develop a methodology to capture
any consistent and global alterations presumably shared by most of the cancerous cells for a given population. This is particularly
true that almost all of the data collected from solid cancers (including lung cancers) are usually distant apart over a large span
of temporal or even spatial contexts. Here we report a multiple non-Gaussian graphical model to reconstruct the gene interaction
network using two previously published gene expression datasets. Our graphical model aims to selectively detect gross structural
changes at the level of gene interaction networks. Our methodology is extensively validated, demonstrating good robustness, as
well as the selectivity and specificity expected based on our biological insights. In summary, gene regulatory networks are still
relatively stable during presumably the early stage of neoplastic transformation. But drastic structural differences can be found
between lung cancer and its normal control, including the gain of functional modules for cellular proliferations such as EGFR and
PDGFRA, as well as the lost of the important IL6 module, supporting their roles as potential drug targets. Interestingly, our method
can also detect early modular changes, with the ALDH3A1 and its associated interactions being strongly implicated as a potential
early marker, whose activations appear to alter LCN2 module as well as its interactions with the important TP53-MDM2 circuitry.
Our strategy using the graphical model to reconstruct gene interaction work with biologically-inspired constraints exemplifies the
importance and beauty of biology in developing any bio-computational approach.

Index Terms—Lung cancer, graphical model, alternating direction method of multipliers.

I. INTRODUCTION and mouse, a number of important oncogenes and tumor
suppressor genes are highly associated with the neoplastic
transformation of lung, including ki-Ras, c-Myc, TP53, IL6,
IL10, CASP family [11],[27],[42],[45] as well as loss of
heterozygosity and change of epigenetics, etc. However, col-
lection of individual events has failed to provide a global
and systematic view of lung cancer, both structurally and
temporally at the level of gene interaction and regulation.

Using high-throughput technologies, a much larger group of
genes are compared for their differential expressions, leading
to the notion that tumorigenesis is a systematic problem,
affecting many more genes and modules than what we would
previously expect. Clinical problems previously unclassified
are now known to exhibit substantial molecular subtypes,
contributing to new diagnosis and treatment regiments, as well
as better differential prognosis. However, much of the com-
putational methodologies previously developed are centered
on clustering and classification based problems [14],[16],[17],
without taking into account of any simultaneous interactions
involving multiple genes. This is important because of the
possibility that despite multiple genes and their expressions
might be just slightly altered (insignificant in pairwise com-
parisons) under the assumption of conditional dependence, a
large number of genes (a module and/or highly interactive
genes involving hubs) might become apparent as a group using
a graphical model.

Lung cancer is the leading cause of death among all
malignancies in the world, most of which (> 85%) are
resulted from smoking. Over the years, we become more
aware of the fact that cancer including lung cancer is not
limited to individual genetic changes but a phenotype possibly
conferred by many systematic and global alterations [35].
However, still a number of key biological questions remain:
Firstly, do individual lung cancers resulted from smoking share
any non-random molecular changes, implicating a smoking-
induced cascade? Secondly, even though only about 10-20%
of smokers eventually develop lung cancer, it is still important
to find out what would be the early changes, mainly at the
systems level, that might potentially contribute to the risks of
smoking (early markers). Finally, it is unclear why individuals
still remain at high risk of developing lung cancer long after
their cession of smoking. The overall goal of this paper is
therefore to develop a constraint-based searching methodology
to capture any significant and systematic changes occurring
during the neoplastic transformation of lung. It is our belief
that gene interactions instead of individual genes at the global
level would be better (and more robust) markers for lung
cancers, potentially facilitating our understanding of smoking-
induced lung cancer.

Previous attempts have been largely focusing on individual

genes by large-scale comparisons [40],[41]. In both human
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For instance, using genechips, smokers with and without
lung cancers were compared for their expression profiles. A
set of biomarkers for lung cancer were obtained from the can-
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cerous samples by unsupervised learning methods. However,
these biomarkers obtained were largely based on differential
comparisons of individual genes, which inevitably will not
include their related genes at the network level. Multiple
interacting genes might undergo similar changes but missed
due to the lack of statistical power if considered individually.
In this paper, we aim to extend the current graphical model
approach with a novel structure-based constraint to focus on
systematic alternations.

Graphical models is a probabilistic model for which a net-
work structure is used to express the conditional dependencies
(i.e., possible biological interactions or regulations) among
individual genes [15],[53]. Since the learning of a graphical
model with partial observations is ill-posed (large dimensions
and small number of samples), regularizations with certain
constraints must be used in order to limit the searching space
and result. Mathematically, a number of structural priors can
be included, such as sparsity, group, and gradual variation
[4]. In practice, both individual snapshots and joint models
of multiple different stages of cancers were used to model
(compare) the progression of tumorigenesis. However, the
central issue of applying any graphical model for biological
network is how to design appropriate regularization schemes
according to biology.

The most commonly used constraint so far assumes network
evolution is gradual and local, capturing mainly local and
individual structural changes (loss or gain of certain edges),
with most of the systems remaining intact. For instances,
Guo developed a joint Gaussian graphical model to learn
multiple snapshots, assuming their biological networks being
only partially changed [19]. Peterson interpreted the joint
Gaussian graphical model in the framework of Bayesian [36].
Xing and his colleagues [1] first applied the fused Lasso con-
straint to model the development of the fruit fly (Drosophila
Melanogaster). Recently, Danaher [13] used a similar fused-
lasso scheme to integrate multiple stage of tumorigenesis. All
of these efforts assumed that most of the network remain large-
ly unchanged while allowing only minor and local variations
involving individual edges.

The assumption of gradual and local changes might be valid
for very similar cellular stages. However, since almost all of
the data collected from cancers (including lung cancers) are
usually distant apart over a large span of temporal and even
spatial contexts, it is our strong belief that gross structural
changes must have already occurred thus any models must
first focus on global signatures instead. Our motivation is also
supported by the fact that gene expression data are error-prone
and noisy, depending heavily on the source of samples [30],
as well as experimental conditions.

In addition, our strategy searching for consistent and global
changes lies on the recent fact that cancer cells are extremely
heterogeneous, diverging very quickly over the progression of
tumorigenesis, resulting in many and even random molecular
changes that might not be statistically significant when con-
sidered as “cancerous markers” [26]. The previous notion of
genomic instability being the tumor phenotype is thus well
received.

Since we are only going to focus on global changes at

the network level, many of the minor changes involving
individual genes and their interactions are considered local
and insignificant while only global changes are discovered in-
stead (i.e., hubs involving many genes). Though using similar
methodology (fused lasso), our assumption is different from
the previous works where only minor and local changes were
to be selected. Thus, the primary goal of this work is to capture
any consistent global (group) changes at the structural level
which can be used as the key biological markers (instead of
individual genes).

Finally, we want to note the possible disadvantage of
assuming a Gaussian distribution for a given gene expression
data. It is well known that gene regulations are extremely
complex, consisting of many individual subsystems which
themselves are interacting among each other, both temporally
and spatially, resulting in expression profiles characteristically
mixed and complex. Such a complexity has to be approximated
with an appropriate distribution. Thus, here we report a non-
Gaussian graphical model instead, so that hopefully our model
will be more flexible and inclusive for gene expression profiles.
Specifically, we provide a fused plus group lasso to constrain
our search for only global changes with the multiple D-Loss
(1) as our objective function, which does not require the
Gaussian assumption.

All of data used in this report are obtained from two
previous publications [40],[41]. Our strategy is to develop a
novel regularization to detect global changes in lung cancer
using the best established datasets available in the field. Specif-
ically, we ascertain if smoking-resulted cancers might exhibit
any consistent and presumably cancerous global alternations
compared to their normal controls. We chose the dataset [41],
consisting of 92 patients with lung cancer and 90 normal
controls of smokers. The second dataset [40] was obtained
from the same investigators because of our interests to detect
any smoking-induced changes (34 cases against 23 controls),
potentially as the risk factors. In addition, using the same
dataset, we intent to go further to possibly detect any structural
changes already mimicking cancerous state for former smokers
(18 cases), accounting at least in part for why individuals can
still remain at high risk long after their cession of smoking.
We also want to note that these two different datasets were
from the same investigators, which hopefully would minimize
any systematic and other variations.

II. METHODOLOGY
A. Notation

We defined our notations as follows. For n dimen%ional vec-
1
tor z € R™, for ¢ > 0 we define [, norm ||z||, = (D |z;]9)7.

i=1
Here we note [, norm is a quasi-norm for 0 < ¢ < 1.
1, € RP*P represents the identity matrix. For rectangular ma-
trix M in RP*9, the spectral norm || M| is the largest singular

value, ||M]|| = sup Hﬁiﬁ”. The Frobenius norm ||M || is
TERI

the I norm of singular values, || M|z = (tr(M M))z. The
loo norm is defined by ||[M]|sc = maxM;;. (X,Y) means
i,

Tr(XYT). For square matrix A, B € 'Rpo’ the dot division
is defined as (A./B);; = (a;;/bi;). Let C € R™**1 and
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F € R™*%2 the Kronecker product of C' ® F' € R"™™*5152
is defined as (C' ® F);; = (C;;jF);;. The vec(-) operator
creates a column vector from the matrix A by stacking the
column vectors of A = [aj,as---,a,] below one another:
vec(A) = [a1,ag,- -+, a,]T

B. Multiple D-Loss Graphical Model

To model the structural progression of multiple K stage
tumorigenesis, we formulate a partial correlation-based mul-
tiple Graphical model as G(V,E®),i = 1,2,---, K. The
node set V' represents n individual genes and the edge set
E) represents possible interactions among all of the V at
a snapshot k. The gene expression matrix X () e RP*ni =
(xy), J:gi), . xg)) consists of n; observations for p individual
genes (p > mn) at a snapshot ¢. The goal is to model
any significant conditional independencies among all of the
variables of V. In another word, the searching process is
equivalent to obtaining the edges so that e,(e? e EW if
and only if a:,(;) g-l)
remaining variables xi}) kgt Note that these independencies
are obtained with all of the remaining components being taken
into account. Furthermore, the conditional independence of

two nodes 1:,(;) and xg»i) is equivalent to their partial correlation

p,(;]) being zero, so that

and x:’ are conditionally dependent on the

i ; i Eflk‘
) ¢ BO o ) = (i Dk

(S Den(S71)55

=0.

where Y; denotes the sample covariance matrix of X (%)
It is established that such an equivalence requires that the
random variables X () be sampled from the families of
distributions characterized with a semi-group property [3].
This semi-group condition is rather inclusive, with the typical
multivariate Gaussian being one of its examples. In addition,
this condition also holds for elliptical, multivariate hyper-
geometric, multivariate negative hyper-geometric, multinomial
and Dirichlet distributions [3]. Gene expression profiles are
typically non-Gaussian with heavy-tailed distributions on both
the complete-experiment and the individual-gene level [31].
Since the elliptical family contains numerous multivariate
distributions, many of which also exhibit heavy-tails (including
the multivariate t-distribution, Gaussian copula distribution,
transelliptical distributions [7],[28]), thus our graphical model
is inclusive to model gene expressions with heavy tail effects.

We formulate a joint estimator for the precision matrix €2,
where 2; = Ei_l using a multiple D-Loss

K
1
Loss(,Q, -+, k) = Z{§<Qf72i> —Tr(Q)}.
i=1

Here the D-Loss is a novel loss function presumably more
suitable to estimate a sparse precision matrix. The D-Loss was
originally developed by Zhou and his colleagues, which also
possesses the nice irrepresentable condition hence requiring
fewer number of samples while achieving similar statistical
power [54]. Note that our multiple loss Loss(21,Qa, -+, Qk)
is a smooth and convex function for €2; with a global minimum

if and only if Q; = ;. Our proof is straightforward and
similar to the techniques used in [54].

C. Global Variation Lasso (GV-Lasso)

To join multiple graphical models together, we design a
novel regularization scheme named global variation Lasso(GV-
Lasso). The basic idea of our GV-Lasso is to decompose the
network structure into two parts (Figure 1): the known and
stable interactions (possible background signals); and the other
interactions in modular structures (possible modular structures
to be focused). The motivation is to control the possible
background effects from our observations of interests.

We consider the known (prior) and the conserved interac-
tions as our possible sources of background signals. Firstly, we
denote the known interactions (our structural prior) as D;, an
RP*P matrix projected according to the adjacency matrix of
given prior GZ (with other entries to be zeros). In this paper,
we use no prior information that D; is a diagonal matrix. In
the Appendix C, we show an example incorporating a prior
extracted from literatures. This option is potentially very useful
as it is possible in the future to include any priors, which could
reduce search feature space and facilitate its convergence.

Secondly, we denote the conserved interactions as the Z;,
which is extracted by a fused penalty between two different
networks to be compared. We apply a fused lasso to constrain
the structural similarities between Z; and Z;, with only
minor and local variations being allowed. Biologically, certain
gene interactions are conserved over the course of evolution
(housekeeping genes and/or interlogs), which are supposed to
remain unchanged over tumorigenesis. In addition, we can
control the stringency of similarity of Z; for + = 1,2--- K
over the course of a progression.Since the progression of the
Z; is largely considered as the background noise or at most
some minor and local alternations, our method will likely
detect consistent and especially gross changes (see below).
This strategy is particularly relevant with data collected from
human tissues, to account for the heterogeneous nature of
neoplastic transformation.

Central to our methodology is to focus on global variation
using a group-lasso to capture only modular changes, such as
one-to-many gene or one-to-key module interactions, impli-
cated as the possible changes occurring on major regulatory
apparatuses. To do so, we use U; —|—UZ-T to assure the symmetry
for all of the interactions in the U;. We restrict the U; as a
group sparse matrix, i.e., a Tow sparse matrix.

Biologically, the s-th row of U; denotes the gene x, might
interact with a group of genes at a snapshot i. Since the
group-lasso will either select a row as a whole or dismiss a
row completely, the non-zero selections involving many genes
might be the good markers for global variation (formation
of new hubs). In contrast, the zero selection would suggest
a possible loss of global structures (loss of original hubs).
Mathematically, we formulate our multiple D-loss graphical
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W ® « ™ the stages over the progression to be modeled). The

EF EE = || [ strength of the background effect (the similarity among

o . " .l " - = Il BN the Z;) can be controlled by our tuning parameter as (1),

8 - i - ) .. ' = - depending on if and how much the background signal is
H Bl B . .

. .I. = l. T to be con31de.red (ae being small for s.trong background

effect and vice and versa). Alternatively, if we want

Putative gene D OIOBIR PHIOTS pygagive E\/:D%polog‘ical to focus only on global and consistent variations, this

fnteractions stability ~ resulatory medules comparison background effects can be considered as heterogeneous

® ® @ @ noises (genomic instability), thus purposely minimized

- - - (to increase a2). (2) does not have this important option;

= - u HEEE = (3) Once again, the use of multiple D-loss allow us to use

% - * + less and more heterogeneous data, particularly suitable

- o - .. ... for gene expression data derived from hyman tissues.

In contract, (2) assumes that the observations are sam-

e - D+ Z + U, . ur pled from a multivariate Gaussian distribution, thus not

Fig. 1. A schematic view of our regularization. A putative gene interaction
network €2; can be learned and decomposed through our GV-Lasso ((A) and
(E)), constrained by a combinatory regularization consisting of a fused penalty
((B) and (F)) plus a group-based penalty to enhance a global sparsity involving
individual groups ((D) and (H)). Note the (C) and (G) are the transposes of
(D) and (H), respectively, a transformation to guarantee the symmetry of (A)
and (E). The black color in (B) and (F) denotes the biological prior, which do
not have to be identical in cancers and normal controls. Note also the prior
can be readily included as a projection of any adjacency matrix, according to
biology. The purple color denotes the portion of a putative gene interaction
network, which is supposed to undergo only local or other minor changes
(systems stability). The blue and green colors represent the groups (arrays)
of one-to-many interactions (putative regulatory modules).

model regularized with GV-Lasso as follows:

N K K
Q; = arg min Z(%(Qf, 5 =Tr(W) + > arlZih
Q0 =1 i=1
K P
B2 >
1

K
+ > AlUi| +
i=1 k=1

=

9]
K

+ > @l|Zi — Zia|h,
i=2

Y =2Zi+D;+V;+ U,

subject to v, —UT.

Here a1, 9,51, B2 are all tuning parameters. (U;)y; repre-
sents the kj-th entries of matrix U;. Our regularization scheme
(1) is an extension to the node based regularization multiple
Gaussian graphical model originally developed by Mohan [33]
as follows:

R K
Q; = argmin > (—log det(€;) + Tr(X;))
Q>0 i=1

P K p p
+ 2 |l + 30 B 30 ) 2 (Ui)ig)?
i=1 i=1 k=1 \ j=1

The differences between our GV-Lasso (1) and the classical
node-based Gaussian graphical model (2) are:

2

subject to ; — diag(£2;)

(1) Known Biological prior D; can be readily included in
(1) compared to the restriction where only diagonal
adjustments are allowed in (2);

(2) The relative invariance Z; can be adjusted according
to the stringency desired using the fused penalty (your
assumption about how similar you would expect for

appropriate for heterogeneous gene expressions;

(4) Computationally, (1) is easier to implement with the
alternating direction method of multipliers (ADMM).
The derivatives of U; and V; in (1) can be explicitly
obtained.

D. Choice of parameters

We select the tuning parameters for our GV-Lasso model by
an approximation of the commonly-used Bayesian Information
Criterion (BIC),

K
BIC = Z{%mf, ¥i) = Tr(S%) + Eilogn;}.
i=1

where FE; is the numbers of nonzero entries in €2;. Since
the BIC doesn’t have a closed form with respect to the
a1, 9, 1, P2, a grid-based screen for the entire space of R
We justify this assumption as we treat each of our snaps
equally in terms of their structural configurations (sparsity,
modularity, background effect, etc). Thus any variations ob-
served would be something possibly intrinsic (based on the
same controls). This is in fact the most compute-intensive part
of our approach. We use BIC because it is intrinsically more
likely to identify the ’true’ model while being asymptotically
consistent. Other measures such as the Akaike information
criterion (AIC) were not used because of their higher risks of
overfitting [39].

E. Algorithm

We develop an alternating direction method of multipliers
(ADMM)[6] to implement our GV-Lasso: We write the aug-
mented Lagrange for (1), consisting both the objective function
and penalties as:

K K
L= (308, 5) = Tr(Q)) + X tT (0 — Zi — D; = V;

i=1 =1

K K
—U)+ X i (Vi Ul + ¥ 5% = Zi = Dy = Vi—

1545-5963 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCBB.2016.2599867, IEEE/ACM

Transactions on Computational Biology and Bioinformatics

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 5

Algorithm 1: ADMM

initialize {2, Z;, D;, U;, V;, Ty, R Yie1:x
parameters py, p2, a1, &2, 1, B2;
repeat for s=1,2---

K
25 = mgmin 3 41X - 2,
Zi—1:x =1

‘/’i(S) U(6)+T(é)||F 3)
K—1 K
+ > aolZi — Zioa|i + Y il Zilis

i=1 =1

_p®_

fori=1,2---K

Q§S+1) = argmin 3(Q%,%;) —
Q-0

_Zi(s+l)

Tr() + B0

_ DZ(S) _ VZ(S) _ Ui(S) + Ti(S)H%‘;

= arg min HQESH) — Zl-(sﬂ) - D;

D, , , )
V- U? 4 T

D(erl)

U(s+1)

%

(s+1)

. s+1
= arg min 24 ||Q; ZZ-( )

,Dgs‘*‘l) —U -
+|V,"

((Ui)k

VO + T
~UT+ RO ©

K
j)2 + ;51|Ui|1;

WMN

.
IV

(s+1)

AR = argvmin 2119, — Zi(SH)

_D’Eerl) - ‘/z - Ui(s+;) + ﬂ(S)H%‘ (7)
+2(|v; Ut 1 RY|I2

T.(erl) _ T(s) + (Q(_erl) Z(s+1) D(erl)
V(s—l—l) Uﬁ(9+1)).

i ’

R(s+1) R( s) (V(s+1) B U(s+1)T)_

end;
until convergence;
Return Q; = Z; + D; + U + U;

corresponding to the dual variables ¢; and r;. We rescale the
two dual variables 7; and R;, as T; = ;— and R; .
We apply the ADMM discretization method to 0pt1m1ze the
Lagrange as below (Algorithm 1):

We divide the algorithm into 5 consecutive loops. First of
all, we use the fused penalty for (3) to purposely select for
any invariant structures between our compared networks. The
computational complexity is O(K log K) for (3), very much
acceptable for the number of stages to be observed [23].

Specifically, we compute the proximity operator as the
solution of the following fused penalized problem

N
arg min % S ek — axl)?
21,22, 2N k=1

+ > T2k — 2r-1l1,
k=2

FLasso(z1,22, - +,2n) =

with zx, ar € R. Here the 7 is a tuning parameter.
We introduce the dual problem of (8)

(u1,ug,- -+, un—1) =
. 1 N 2
arg min 5 > llar — up +up_1]|
uy,uz, - uN—1€ER - k=1 9)
subject to |ug|; <7, Vk=1,2,--- N — 1,

and ug = uy = 0.

An equivalence between the primal and the dual solutions
1S zp = ap — up + ug_1 with k =1,2---, N. The deviation
from (8) to (9) will be given in Appendix A. The Karush-
Kuhn-Tucker condition is

Uug = unN :0, and Vk = 1,2---
ug € [-7,7], ifzg = xRy,
ug = —T, ifz, < Th+1,
ug =7, ifr, > T,

N1,
(10)

We note a special case with K = 2 (Ag)pendlx B). We obtain
an analytical solution leading to ZZ(H Lasso(A;, ) for
1 = 1,2, with Lasso(z, c) = sign(|x| — ¢)+[4], where

(A1, A2)n; = FLasso((A})ag, (A3)n;, 22)

((AD)nj — 52, (A3)ns + 52), if (A])nj — (A3)n; > 252,
((Af)hj;(A;)hj’ (Af)hj-‘r(A;)hy) if |(AD)n;

((AD)nj + 52 (A3)nj — 52)5 if (A7),

and A7 = Qgs> - DY — Vi(s) — U+ 19 fori = 1,2.
For general case (K > 2), we borrow a linear time screening
method to solve equation (9) which was proposed by [10].

And then, we solve (4) based on the following theorem:

Theorem 1: Supposing Y is a symmetry matrix and ®
is a given semi-definite matrix with an eigen-decomposition
written as ® = QAQT. We assume the parameter x be a
constant and M a given symmetry matrix. Accordingly, we
claim that the following matrix equation

YA+AY + kY —M =0.

= (A3)nj < =233,

Y

has an unique solution Y = QSQY, where the symmetry
matrix S satisfies

o (QTMQ)n;
= 3+ R+

Proof: We let S = Q7Y Q, then (11) will be equivalent to
SA+AS+ kS —QTMQ =0.

(12)

Since A is a diagonal matrix, we have

—(Q"MQ)n; =0,
We can thus directly obtain the equation (12) as a tensor form
Y =
QQTMQ./(vec(AN)T ® I+1T vec(A) + 2p1 7w T))QT

To optimize (4), we first take a derivative on (4) and obtain

Sthjj + AhhShj + nShj (13)

(%5 + Q) — I+ p1(Q; — z8t U v
(S)Let K= 2p1’ M = 2([ + pl(ZfS_‘—l) + Uq(s) + V'Z(S) + Dz(S) _

Ti(s))), directly leading a closed form solution.
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Next, we solve (5) by projecting the pattern matrix D; into
an adjacency of GZ, which encodes the biological prior. Hence

(Q(,S+1) . Z(s+1) B Dz B V(b) . U(s) + T(s))hj
if GZp,; #0
0, else.

(Di)hj ==

We use the group lasso [52] to enhance our search for any
gross topological changes between our compared networks (6).
We define

_ p1(Q—Z;—D;—V;+T;)+p2 (V;F +RT)
U = GLasso( FIE , Ba),

with GLasso(z,c) = (1 — m)#U Thus, we have U; =
Lasso(U}, f1).
Finally, we solve(7) by taking a derivative, resulting in

Vi = p1(Qi—Z;—D;—U;+T;)+p2(UF —Ry)
v p1+p2 ’
We note here, the convergence property of Algorithm 1 can
be derived from the convergence theory of ADMM [20].

FE. Network topology analysis

All of the global and local parameters describing network
topology according to [5] were calculated using the network
analysis tool box in matlab.

We obtain our “hubs” directly from our decomposition of
O, =2Z;,+D; +U; + UiT, thus the “hubs” is U;, or more
specifically the rows of U, each representing “one to many
interaction” for a given hub.

ITI. RESULT AND DISCUSSION
A. Validation of Our Methodology

Synthetic Data
Our method makes three extensions of existing efforts:

1) Gaussian distribution not to be assumed for gene expres-
sion (to model any even mixture of distributions);

2) Adjustable instead of remaining identical for the invari-
ant part to be regularized (to account to any noisy, minor,
and/or local changes);

3) Biological prior to be included (to facilitate conver-
gence).

Ay (B)

Q, Q,

Fig. 2. The sparsity patterns of €21 and €22 , synthetic data as the standard
for the accuracy of recovery. Note the random selection for group sparsity
(rows and columns).

To validate our methodology, we compare ours with two other
classical examples:

1) Two individual node-based Gaussian graphical models
(NBGGM) as two independent snapshots (non-fused)
[44];

2) Node-based joint Gaussian graphical model (NBJGGM)
assuming absolute invariance between two individual
graphs [33];

We generated two Gaussian distributions as N7(0,%;) and
N2(0, X2), in which the ; = Q;l,for i = 1, 2. The precision
matrices {2; are obtained by the following three steps (Figure
2): (a) The invariant components €2y in ; and €y are
constructed as Qg = QO+QOT, where QO contains 10% nonzero
entries which are uniformly distributed in R!%9*100 Each
of the non-zeros entries in Y is generated according to a
Gaussian distribution A (0,02) (we take o = 1/2); (b) The
variable components V; (for i = 1,2) is each generated using
a 100 x 100 zero matrix, in which 5 randomly selected rows
are each replaced with a vector sampled from an uniform
distribution of 24(0,1); (c) We let Q; = Qg + Vi + VT
and Qy = Qg + Vo + VI, Here, in order to guarantee the
positive definiteness of €2; (for ¢ = 1, 2), we iterate the matrix
Q; = Q;+1.111go until the €;’s smallest eigen-value is greater
than zero.

To assess the consistence of model selection for our meth-

ods, we use the Matthews correlation coefficient(MCC €
[—1, 1]) to quantify recovery merits, where

MOC — TP xTN —-FP x FN

V(TP +FP)(TP + FN)(TN + FP)(TN + FN)’

with TP, TN, FP, FN denote the numbers of true positives,
true negatives, false positives, and false negatives, respectively.
Figure 3 depicts the MCC over the typical range for two
of the most important parameters used in our model, the
local sparsity (method’s selectivity), and the group sparsity
(method’s specificity). The assessments were performed using
synthetic data, purposely reflecting the degree of ill-posed
nature of gene expression data (large p small n). Note the
use of % (sample vs. node numbers) fits roughly appropriate
to the actual data we are going to use in this study, in which
about a thousand nodes (genes) are independently observed
for about few hundred individual experiments. We attribute
the irrepresent condition [55] as the possible major factor
influencing our method, using the multiple D-loss as the
objective function.

Cross-Validation Given the ill-posed nature of using graph-
ical models for gene expression data (large p small n), one
of the foremost important criteria is to demonstrate that our
methodology be robust, insensitive to issues such as insuffi-
cient observations, noise, or even missing data. This is partic-
ularly relevant to this investigation because cancers including
lung cancers are composed of heterogeneous cells, each of
which could have some very different gene expression profiles,
inevitably resulting in multiple individual distributions.

One of the specific aims of our effort is to ascertain if
neoplastic transformation can still be largely described as a
certain cascade, diverging but still sharing some key events.
Mathematically, it is our strategy to hence treat any local
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MCcC

0

26 0

2 Number of hubs

Fig. 3. The assessment of recovery accuracy based on MCC rate. Panels A-C are the MCC rates obtained using the identical synthetic data, with A: NBGGM;
B: NBJGGM; and C: our GV-Lasso; Panels D-F are the projection to the identical ranges for the two original parameters assessed in Panels A-C. The
purpose of the projection is to validate three methods under the identical conditions (here the number of the hubs is actually used as a latent variable). The X
axis represents the group sparsity, Y the local sparsity. The intensity of the color for A-C indicates the MCC accuracy; D-F the number of recovered hubs.
Demonstrated here is the supremacy of our GV-Lasso, particularly efficient for large p small n problems (such as gene expression data). .

and diverging events as noises while hopefully capture some
common events shared by most (if not all) of the cells for
a given tumor tissue sample. Since our method is purposely
designed to focus on gross structural variation (aimed to
detect consistent biological changes) while ignoring minor
and local alternations, its robustness must first be absolutely
validated (not detecting any structures which are random or
data-dependent).

As demonstrated in the Figure 4, our method does possess
the good reproducibility regardless of the data used. Note that
we use the likelihood over the number of edges as a global
criterion for structural similarity. Certainly it is still possible
that some of the local variations might not be specifically
detected, which will not significantly affect our strategy of
treating any sporadic variations as noises. In contrast, we argue
that the classical Gaussian graphical model (such as the cases
in Figure 3, A and B and Figure 3, D and E) can become
error-prone especially when a small portion of the data is
selected (hard to fit any good Gaussian distribution, owning
to insufficient samples to satisfy the central limit theorem).

Global-Variation Since we are going to compare and model
various structural variations occurring during and even before
tumorigenesis, we need to further validate the specificity
and selectivity of our methodology. Ideally, such a method-
ology would be able to reveal smoking-induced neoplastic

—b—Fold 1
—<—Fold 2
—S—Fold 3
—*—Fold 4

Lihelihood

L L L s L L L Il

1 2 5
Positive edge numbers x10°

Fig. 4. Cross-Validation using data divided randomly into 4 folds (shown
as 4 different labels: circle, up triangle, down triangle, and star). We use
the random fractions of the original gene expression data consisting of 97
cancers plus 90 normal controls. The reproducibility (robustness) of our GV-
Lasso methodology is revealed by the consistent number of edges over their
likelihood regardless of the fraction of the data employed.

transformation as a multistage process, during which only
minor and benign changes be initially observed from early
exposure while more gross and major alterations be detected
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Fig. 5. Global structural variation is cancer-specific. To globally assess the degree of gross structural changes occurring during or before lung tumorigenesis,
we use two statistical criteria, the average clustering coefficient (pairwise affinity) and the closeness centrality (distance from the center) to describe the local
topology with respect to each of the nodes (genes). Panels A and B demonstrate the structural differences between the lung cancers and normal lung controls
(both smokers, thus the control for cancer-specific changes). The arrowheads in (A) and (B) indicate the hubs (larger than which) are more likely to undergo
gross structural variations (note the phenomena being more apparent in (B)). In contrast, Panels C and D reveal no significant gross alterations from the
benign epithelial cells exposed to smoking, including the cells isolated from those who have long ceased smoking before this investigation. The cells from

the individuals who never smoke are used as the control for smoking.

in cancerous cells. Gross topological changes between cancer
and normal become apparent, especially among the hubs with
connections roughly larger than 10-20 (Figure 5B). Using a
different statistical criterion the average clustering coefficient,
however, similar observations appear not as distinguishable.
Interestingly, similar changes are not detected among any
of the normal individuals, exposed to smoking, currently or
formally (Figure 5, C and D). These preliminary observations
establish the foundation of our GV-Lasso, which can be used
to specifically scan for cancer-related gross changes while
selectively ignoring minor or local alternations, presumably
accumulating during the early stage of smoking-induced tu-
morigenesis.

We recommend our GV-Lasso to be generally applicable
to scan for gross structural changes in any network evolution
problems. Mathematically, we use a convex optimization (GV-
Lasso) to make a threshoulding of signals in multi-scales.
Specifically, our strategy captures gross variations by detecting
significant changes within groups using a scale different from
the criterion used when evaluating local similarities. Such a
use of different scales enhances the global signatures with
local variations being treated simply as noises.

B. Smoking-induced cancer cascade (common and shared
events)

Having validated our method using both synthetic and
real data, we next want to pursue our scan using the gene
expression data (Affymetrix Human U133A Array) publically
available from 97 lung cancer patients with 90 normal con-
trols (GDS2771). Here both of the cancers and controls are
collected from individuals who have smoked, with smoking
being implicated as the predominant etiological factor leading
to their cancers. We select 1185 genes whose expressions show
significantly larger variance across both the cancer samples
and controls. We apply our GV-Lasso, with the parameters
setting and convergence as showed in Figure 8. The overall
goal of this comparison is to capture any significant gross

structural changes associated with tumorigenesis.

We purposely focus on global changes because tumorigen-
esis is a very heterogeneous and complex process, diverging
into individual cells harboring possible different mutations
over time. It is thus desirable to pay our first attentions to the
more consistent and global events, thus our strategy to focus
on modular changes, including the gain or loss of hubs, or hub
transient as first proposed by Gerstein’s group [29]. Also, it
is conceivable that highly-connected hubs are generally more
influential than leaves in a gene interaction network.

Lung cancers appear to undergo significant gross topological
changes, involving many important genes, previously implicat-
ed in the neoplastic transformation of lung (Figures 6 and 7).
We detect a total of 11.2% of the nodes (133 out of 1185) as
hubs (non-zeros rows in U;) between the lung cancers and their
controls. We consider these changes consistent (or common)
because a mixture of multiple individual cancers is used as
the subject. Of the 133 hubs selected, 13 happened to be
the ones consistent with the 36 candidate cancerous genes in
lung cancers (based on literatures for their associations with
lung cancers [21], [48], see the details in the Appendix C).
Under the null hypothesis that these priors would be included
randomly, the p-value is 4.6860e-05, strongly suggesting that
our method can discover the biology consistent with literature.

Cancer network appears to gain more hubs compared to
their controls. A total of 117 hubs are either newly formed or
significantly expanded while losing about 12. In contrast, nor-
mal controls only have about 16 hubs (ALDHI1A1, CALMI,
CDK4, EEF1A1, EIF1, EIF4H, FGFR1, FOXA2, HINTI,
HIPK1, IL6, PERP, PPP2CB, PTGES3, TM9SF2, TMCO1).
One of the possible mechanisms by which such extensive topo-
logical changes can occur would be the “hub-transient” model
proposed by Gerstein and his colleagues [29], that regulatory
genes can switch their interaction partners during the progres-
sion of tumorigenesis, involving many new hub formations or
alternations (Figure 7, C and D). Besides, nearly all of the
hubs in the normal controls are drastically changed during
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Fig. 6. Gross topological changes detected in lung epithelial cancer cells. The genes listed on the bottom are those which have undergone significant global
variations. The dashed green line indicates the connectivity (the number of edges) for all of the 133 genes in the normal controls. The dashed red line indicates
the connectivity for the same 133 genes in the lung cancers. These 133 genes are the hubs (non-zeros rows in U;) selected in our scan either in the normal

state or cancer.

tumorigenesis except 4 (ALDH1A1,CALMI1,FGFRI1,PERP).
Interestingly, these stable hubs including ALDH1A1, FGFR1
and PERP are either oncogene or associated with smoking (see
below).

One of the four stable hubs is ALDH1A1, a tumor stem cell-
associated marker which is known to be activated by smoking,
presumably due to the carcinogenic aldehydes in cigarette
smoke [24]. PERP, an apoptosis-associated target of TP53, is a
member of the PMP-22/gas3 family [2]. FGFR1 amplification
is found to be a prognostic marker in early-stage non-small cell
lung cancer [9]. CALM1 is an important mediator of signal
transductions by Ca++ for cellular proliferation and cell cycle
progression [8].

We note the loss of the IL6 motif in tumorigenesis,
an important cytokine mediating cellular immunity against
neoplastic transformation through the famous JAKI1/STAT3
pathway [38], supporting the notion that gain of function-
s promoting cellular proliferation (oncogenes) and loss of
functions inhibiting tumor growth (tumor suppressor)(Figure
7C). Interestingly, another cytokine IL10 undergoes opposite
changes, gaining a significant number of new partners during
tumorigenesis. Unlike IL6, IL10 promotes tumorigenesis by
stimulating cell proliferation and inhibiting cell apoptosis [37].
High systemic levels of IL-10 correlate with poor survival of
some cancer patients. Our results thus support the principle
that cytokines play the important roles in the immunity of
lung tumorigenesis.

We demonstrate the emergences of new hub structures in the
cancers associated with BCL2, EGFR, MDM2, 1L10, DAD1,
MMADHC, SRP9, HSP90AB, and IGF1R). Interestingly, all
of these changes are previously implicated in tumorigenesis.
Most strikingly to note is the important EGFR, BCL2, MDM?2,

DAD, HSP90, and IL10 genes and their known associations
with lung cancers [48]. EGFR is only recently discovered to
be an crucial factor in lung neoplastic transformation and now
a new drug target of this dreadful malignancy (Figure 7D)
[34]. In our result, EGFR undergoes the most obvious changes,
gaining the most number of interactions during tumorigenesis.
Note that our results also justify why EGFR has been an ideal
target for drug development against lung cancers, being the
largest hub thus more effective to be perturbed. In addition, a
similar growth factor receptor PDGFRA appears to be also
associated with lung tumorigenesis as well. As a member
of the platelet-derived growth factor family, PDGFRA is a
cell surface tyrosine kinase receptor, promoting mitosis for
cells of mesenchymal origin, which are widely dispersed in
lung and highly associated with smoking-induced non-small
cell lung cancers [46]. MDM?2 is involved in the important
TP53-MDM?2 circuitry. Also it is known that IGF-1R promotes
cellular proliferation in several cancers, including lung, liver,
and breast [47].

Correlations underlying gene expression data are largely
considered indirect and at the best suggestive of possible gene-
gene interactions (or regulation). In addition, the levels of gene
expressions are also not necessarily associated with any direct
effects of biological functions. However, a graphical model
aimed to infer a possible interaction (or regulation) under the
global conditional dependence for all of the other genes in-
volved is a more sensible approach. Such a global conditional
dependence is scientifically more appropriate because here
each of the interaction is not assessed alone but is inferred
by taking rest of the system into account as a whole. Figure
7 demonstrates the importance of using a graphical model
compared to the original pairwise-based method (Pearson
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(A): Gene interaction.n’etwork for normal stage

o

(B): Gene interaction network for cancer stage

Fig. 7. Topological characteristics around the hubs detected by our GV-Lasso with lung tumorigenesis. Shown here in the Panels A, B, C and D are the
sub-networks around the aforementioned 133 genes. The sizes of nodes correspond to the degrees of their interactions. The colors represent similar classes
according the pairwise Pearson correlations of gene expressions. Demonstrated here is the absolute essentiality of using conditional independence to interpret
the apparent correlations between gene expressions. Panel (A) represents the normal controls; (B) the cancers; (C) the interactions lost in cancer; and (D) the

interactions gained in cancer.

correlation). Without the graphical model, nearly all of the
genes selected particularly in the cancers (Figure 7B: the nodes
in pink) would have been clustered together, forming a highly
connected giant component, computationally inseparatable nor
biologically interpretable. Over the years, many efforts have
been devoted to work on this problem, using either betweeness
or other measures. Wille has first established the importance
of using a Gaussian graphical approach to model biological
networks [50]. Here, we demonstrate again that the previously
observed correlations among individual genes can be further
divided into multiple individual modules, anchored by some
important hubs (which would have been indistinguishable
using the previous approach). Therefore, graphical model pro-
vides a biologically relevant framework, allowing us to revisit
many of the gene expression datasets previously published for
more meaningful and biologically-inspired investigations.

C. Direction of Neoplastic Transformation

Having established that lung cancers undergo consistent
and gross topological alterations, implicating lung cancers
might occur as a consequence (or activation) of some intrinsic
cascade, induced as a result of exposure to smoking. We
seek to address an important biological question as to the
direction of neoplastic transformation in terms of the topo-
logical structure and organization. We are inspired by Alon
and his colleagues for their work using random graphs to
assess the level of organization (or orderness) for any given
networks [32]. Accordingly, we calculate the average shortest
path of our cancer-based network compared to its normal
control. Additional topological features, such as the number
of cliques and other local orderness are also assessed for
their relative significances over their random permutations (a
null hypothesis suggested by Alon and his colleagues). Our
result does indicate the cancer network appears to become
slightly more disorganized, with the average shortest distance
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TABLE I
TOPOLOGICAL CHARACTERISTICS ASSOCIATED WITH SMOKING

Never-smokers ~ Former-smokers  Current-smokers

Vertices 1180 1180 1180
Edges 8806 10064 9042
Degree 14.93 17.06 15.33
Vertices in the giant component 1107 1135 1116
Edges in the giant component 8733 10019 8978
Average shortest path in the giant component 2.16 2.11 2.14
The longest shortest path in the giant component 5 5 5
Independent loops 7700 8930 7927
Star motifs s4(one hub and three spokes) 260555538 422713879 301211468
W) Buiy Current Former
o Xy, = Max((px - Xy, smokers smokers
i 'AGR2,CEACAMG
. : CYP4B1,
IFI27,1SG15,PRDX1 SER,
z;f TCN1
T T Nunbersofieatons s T e
Fig. 8. The convergence of our GV-Lasso. Panels A for the cancer dataset with
normal control. Here, the parameters are: a; = 0.8, a2 = 0.5, 1 = 0.38,
B2 = 7.5, p1 = 1, po = 1.5. Panels B for the early changes caused by
smoking. Here, the parameters are: ovy = 1.5, aeg = 5, 1 = 1.5, B2 = 15,
p1 = 1.5, po = 1.5.
Fig. 9. Detailed topological comparisons for the normal epithelial cells

being 4.39 in cancer compared to 4.51 in normal (both
are significant compared to their random ensembles see the
Table 1 in the Appendix). However, because of the nature
of our approach, intentionally missing many of the local and
minor events occurring during tumorigenesis, we are unable
to reach a strong conclusion based purely on our empirical
extrapolations. As a future direction of this effort, one of our
goals is to perform a genome-wide permutation to assess the
structural and organizational significances for both the cancer
and normal cells.

D. Detection of early changes as potential early markers

Our preliminary results (see Figure 5, C and D) have
demonstrated the relative stability for the topological structures
among the samples presumably still at their early stages of
neoplastic transformation (histologically normal). This result
nicely validates our methodology, linking biological structures
to their phenotypes.

We then seek to explore in detail, both globally and locally,
for any structural variations among the samples employed in
our study. The purpose is to capture any early signs which
would be likely attributable to future tumorigenesis, thus used
as potential early markers for smoking related malignancies.
The original work using the same dataset (GDS534) has
reported a number of candidates with differential expressions
between smoking and its control, including genes responsible
for xenobiotic metabolism and redox-regulations, all being

exposed to smoking. Human airway epithelial cells are isolated from 34
current smokers, 18 former smokers, and 23 never smokers (using the identical
genes aforementioned), respectively. Identical parameters and genes as the
Figures 8 are used to model any possible early changes by comparisons.
Demonstrated here are the relative proportions for each of the unique and the
joint. The name of genes in each of the fractions are all of hubs discovered,
using our GV-Lasso.

consistent with the consequence of smoking. Their results
also reveal the importance of inflammation, immunity, and
secretion being potential early markers because of their pre-
sumptive roles protective against smoking. Interestingly, our
method discover similar events but with a few extra insights.

The parameters used for our GV-Lasso and their conver-
gences are given in Figure 8. First, similar to the previous
reports, we also detect the same two modules involving AGR2
and AKRI1C2, both of which are well-known markers for
smoking-related risks (tumorigenesis, miscarriage, birth defec-
t, etc) [25],[49]. Interesting to note is the additional advantage
of our methodology that the markers are discovered along with
their interacting genes as the hubs, allowing modular structures
instead of individual genes as the potential markers while
filtering out all other minor and local variations. Obviously,
the changes of these modular structures would be statistically
more significant.

We next seek to find what would be the potential benefits to
quit smoking. It turns out that at least five functional modules
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can remain intact if the exposure to smoking is only temporary,
including FCGBP, HLA-DRB1/5, SAA2 and TPT1. FCGBP is
a known cancer marker for a number of different malignancies,
including lung as well as prostate, gallbladder, and thyroid
cancers [51]. The expression of FCGBP has been shown
to be inversely related to the progression of tumorigenesis,
presumably as a protective and/or favorable marker. TPTI
belongs to another protective system, thought to promote
remodeling and repair of pulmonary vascular cells. On the
other hand, all members of HLA family are perhaps the most
important mediators of cellular-immunity, without which cells
would lost much of the protection by the T-cell mediated self-
recognition and the consequential cytotoxicity. Interestingly,
the loss of SAA2 has recently been reported to be a potential
marker for lung cancer [43].

It is important to also find out what the possible protective
markers might be lost as a result of smoking. Here three
modules are found to specifically retain only in cells without
any exposure to smoking, anchored by FTL, RSP24, and
WARS. Interestingly, all three modules appear relevant to
smoking: FTL (ferritin) is responsible for the storage of iron
in a soluble and nontoxic state, which has been shown to be
affected following smoking [22]; RPS24, a ribosomal protein,
is known to regulate the Mdm2-TP53-MdmX circuitry, the
most important tumor suppressor [12]; and WARS, a tRNA
synthetase, whose inactivation has been used as an informative
cancer marker [18]. However, all these markers have not been
previously reported to be directly related to smoking.

It is unclear why individuals can still remain at higher risk
developing lung cancer long after their cession of smoking
compared to the general public. ALDH3AI1 and its associ-
ated module are captured from the epithelial cells isolated
from both of the short and long term smokers, which is
also well-documented in previous literatures as a potential
cancer marker, including the original work using the same
data as this study. We are not completely sure how this
epigenetic effect would be directly or indirectly associated
with previous smoking. But we want to speculate that it is
possible that smoking has been such an insult, which has
left cells with some permanent imprints, presumably affecting
gene expressions. Overall, cession of smoking could retain, or
possibly reverse at least some of the important and beneficial
biological functions, many of which would perhaps prevent
tumorigenesis from further development.

We suggest that a topological structure (a functional module
consisting of many genes) instead of individual genes be
a more robust biological marker. Besides ALDH3A1 and
CYP4B1, our results do not overlap with the original report
using exactly the same dataset. For instance, even though
CYPIBI1 over-expresses significantly (30 folds) while RPS24
does not (often used as an internal control for gene expres-
sions) based on the differential analysis, our method in fact
considers RPS24 and its associated network a potential marker
but not CYP1BI1. Interestingly, RPS24 mediates many interac-
tions both in normal controls and smokers, while undergoing
drastic changes as well. Though we are not sure about the
biological significance of this event, it is conceivable that
a ribosomal protein like RPS24 might still be an important

Former smokers' with never smoker as control

Current smokers' with never smoker as control

smoker as control

Current smokers'

Fig. 10. Topological characteristics around the hubs detected by our GV-Lasso
with the comparison among the never, former and current smokers. The sizes
of nodes correspond to the degrees of their interactions. The colors represent
similar classes according the pairwise Pearson correlations of gene expressions
(see Figure 7). Panel (A) represents the interactions lost in former smokers
with never smokers as the control; (B) the interactions gained in the former
smokers with the never smokers as control; (C) the interactions lost in the
current smokers with the never smokers as control; (D) the interactions gained
in current smokers with the never smokers as control; (E) the interactions lost
in the current smokers with the former smokers as control; and (F) the gained
interactions in current smokers with former smokers as control

regulator, synchronizing protein synthesis.

Finally, we want to explore the possible mechanism by
which ALDH3A1 might mediate the neoplastic transformation
of lung epithelial cells. Since LCN2 is presumably responsible
as a protective agent against smoking (suppression of invasive-
ness and metastasis), the continued exposure of smoking will
consistently activate ALDH3A1, while eventually inactivating
LCN2 (Figure 11, B and C). Consequentially, we speculate that
the ALDH3A1 will serve at least as one of the key events,
influencing the important TP53-MDM2 system by directly
interacting with TP53 (Figure 11, B and C). Thus, it is our
hypothesis that LCN2 might be used as early marker for poten-
tial tumorigenesis. In summary, smoking will not necessarily
lead to tumorigenesis; only about 10-20% of smokers would
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Fig. 11. A putative model by which ALDH3A1 could promote lung neoplastic
transformation. Shown here are the TP53-MDM2 circuitry captured using our
GV-Lasso. The colors indicate classes of co-expression profiles based on the
Pearson correlations. Panel A: Normal controls (never smoking); Panel B:
Former smokers; and Panel C: Current smokers. Note the loss of LCN2 after
smoking; also note the gain of ALDH3AI in current smokers, all associated
with the important TP53 gene.

eventually develop lung cancer. Cession of smoking is good
but can still possess an eventual risk, perhaps depending at
least in part on the luck as to whether the exposure of smoking
has been long or strong enough to have already turned on the
ALDH3A1, in a way irreversible to its original state.

IV. PERSPECTIVE

The consistency of the global variations among at least a
majority of lung cancers studied implicates a possible common
cascade induced by smoking, leading to the eventual genomic
instability as a tumor phenotype. The notion is well taken
that cancers of solid tissues are extremely heterogeneous thus
our methodology developed here is purposely aimed to focus
only on the common and global variations. Our results support
the traditional position that neoplastic transformation is still
a clonal and evolutionary process, with at least some of the
progenitor events being largely shared. As a further direction,
we plan to expand the temporal application of our GV-Lasso,
with a hidden Markov model for the truly dynamic process of
a cancer.
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